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Abstract. In this paper we present a stepwise method for the analysis of
musical sequences. The starting point is either a MIDI file or the score of a
piece of music. The result is a set of likely themes and motifs. The method
relies on a pitch intervals representation of music and an event discovery
system that extracts significant and repeated patterns from sequences.
We report and discuss the results of a preliminary experimentation, and
outline future enhancements.

1 Introduction

In the last few years many efforts have been spent on music issues within the
AI community. Two main tasks have been addressed, requiring “intelligent” and
sophisticated strategies: music analysis and music performance. The first line of
research investigated topics such as performer recognition [1], harmonic analysis
[2], segmentation [3], whereas the second one aims at reproducing expressive
music performance by means of artificial systems [4,5].

Music analysis is a relevant task, in that it deeply affects our comprehension
of music, as regards of composition, performance and listening. Music analysis
is a challenging task: consider, e.g., that a significant part of professional music
instruction is concerned with assisting the learner in “understanding” music for
the different purposes of composition and performance.

In this paper we point out the problem of discovering repeated patterns,
as a major issue for building systems for music analysis. It is commonly ac-
knowledged that in Western Tonal Music repetition plays a fundamental role,
and individuating themes and motifs is a fundamental step towards discovering
higher order blocks, and their dependency relationships as well [6]. For example,
looking at a fugue, one would individuate its main constituents (subject and
countersubject), and then recognize their disperse episodes, generated through
imitation and transposition [7]. Discovering significant repetitions in music has
many applications, such as providing tools for indexing large music corpora and
for content-based retrieval from music databases [8]. Moreover, in the area of
computer assisted music analysis, both didactic tools and softwares for music
performers and analysts would benefit from the discovery of the motifs underly-
ing whole pieces.
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Fig. 1. Main theme from Contrapunctus 4 from J.S. Bach’s Die Kunst der Fuge, and
the variations obtained through the techniques of inversion, inversion combined with
contrary motion, augmentation and diminution

Three main complexity factors increase the difficulty of the task. Meaning-
ful motifs are interleaved with irrelevant gaps. Moreover, we are interested in
discovering modified occurrences of motifs, as well. Lastly, we are interested in
discriminating motifs from insignificant repetitions, whilst the greater part of
repetitions in music are not perceptually significant [9]. These issues make the
discovery of repeated patterns a challenging problem, and an interesting test-bed
for automatic systems.

In this work we propose a novel approach to individuate themes and motifs.
We show that the musical patterns discovery can be tackled via a Hierarchical
Hidden Markov Model (HHMM) approach: the present system takes as input
MIDI files and returns scores, where the patterns found are highlighted, and the
corresponding MIDI files of the discovered themes.

The paper is organized as follows. First, we define the problem being solved;
then we point out some similarities with other fields where one has to handle
episodes represented as strings of symbols. Next, we briefly review the literature,
and then introduce our system. We describe the music encoding adopted, and
illustrate the system’s basic features. Finally we report about a preliminary
experimentation, discussing the obtained results.

2 Patterns in Music

We address the problem of recognizing the most significant motifs, and the prob-
lem of recognizing their disperse episodes as well. At all times composers adopted
various techniques for composing music from few ideas; but it is from the Renais-
sance that these techniques were refined to such an extent that it was possible
to build entire pieces from a single musical idea. The simpler form of repetition
is literal repetition, but far more often the repetition is combined with varia-
tion: changes may involve harmony and/or melody and/or rhythm. Among the
most widely used variation techniques, we mention augmentation and diminution
(where the length of the repeated notes is prolonged or shortened), inversion of
intervals between note pairs and contrary motion [10] (Fig. 1). These techniques
have been used by both historic and contemporary composers (see, e.g., the
works from J.S. Bach (1685–1750) and A. Schoenberg (1874–1951)), in particular
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for polyphonic music. Polyphonic music can be defined as a texture consisting of
overlapped lines, where each of the individual parts is called voice, even if it is
played by instruments. Each voice is independent from the other ones (we don’t
have a melody together with the accompaniment, but rather equally important
voices), thus retaining its identity (Fig. 2).

The problem of finding repeated patterns in polyphonic music can be for-
mulated in the following terms. A motif can be thought of as a complex event
(CE), occurring sparsely in a sequence of notes. Such a complex event is com-
posed by episodes of atomic events (AEs). In turn, episodes are composed by
strings of symbols: in our case, by pitch intervals (see below, Section 4.1). In this
setting, based on the properties of regular expressions, it is possible to infer a
model of the motif being searched via an abstraction mechanism. This approach
transports to the musical domain a well established modeling framework, which
has been successfully tested on various domains, such as user (typing) profiling
[11,12].

3 State of the Art

Several algorithms that tackle the task of pattern recognition in music have
been developed. We briefly review the principal and closely related ones, whilst
a richer tour is provided in [9]. Dovey [13] proposes an algorithm for querying
musical databases, where music events are represented as strings of (sets of) note
pitches. Different kinds of relationships can be individuated between events, such
as about harmony, or according to whether the two events under consideration
fall into some pitch range. This approach also requires to specify the dimension
of gaps between consecutive events. The pattern discovery technique devised by
Conklin & Anagnostopoulou [14] relies on a representation based on a set of
parameters (viewpoints, in the authors terms [15]): here each string represents
an individual parameter, and meaningful repetitions are individuated based on
a Hidden Markov Model, looking for repetitions more frequent than expected.
These approaches only discover exactly repeated factors in strings.

On the other side, the algorithm by Rolland [16], which allows retaining much
musical information such as duration, interval, degree in the overall tonality, has
been designed to discover approximately repeated patterns. The author defines
a similarity metrics between pairs of sequence segments: the Multi-Description
Valued Edit Model implements a function for computing the edit distance be-
tween strings [17]. This algorithm allows discarding as not similar all the patterns
below some threshold k, thus allowing to define a notion of k-similarity. Then, the
distance between each pattern instantiation and the pattern itself is computed.
Based on this proximity score, Rolland obtains a list of the most prominent
repeated patterns. Cambouropoulos et al. [18] propose an algorithm for approx-
imate string matching, by transporting to the music domain the well-known
concept of edit distance.

Lartillot [19] devised an interesting mechanism for pattern induction, based
on a plain encoding of pitch intervals and metrical salience. The algorithm first
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Fig. 2. Bars 1–7 from Fugue in C major from Book 1 of J.S. Bach’s Das Wohltem-
perierte Klavier : each voice states the subject

analyses note pairs within a temporal window of fixed size. At this step similar
intervals are retained as potential patterns. Then, Lartillot’s algorithm checks
the prosecution of repeated patterns by considering only melodic contour (se-
quences being considered can prosecute upward, downward, or constant). This
way, individuating approximate repetitions is no longer an issue. Also, this sys-
tem is provided with a sort of abstraction mechanism, defining pattern occur-
rences as instances of pattern classes. However, a limitation of the approach
resides in the fact that the algorithm cannot handle long sequences, due to the
high computational cost necessary for this kind of analysis.

One popular approach for discovering repeated patterns is the“geometric”
approach by Meredith et al. [9]: music is represented as a multidimensional
dataset. Each event in the score can be encoded via an arbitrary number of
dimensions, such as onset time, pitch, duration and voice. The authors define
perceptually relevant repetitions in terms of the maximum pattern that can be
translated into another pattern in the dataset. This is equivalent to finding out
all the transposition-invariant occurrences of a pattern, according to a given
dimension/set of dimensions. Unlike the above mentioned works, this approach
allows handling polyphonic music.

4 The System

4.1 Encoding Musical Information

We take as input pieces encoded as standard MIDI files1, where each musical
“voice” is represented as a separate track: given n voices, we have as many tracks.
For example, the piece in Fig. 2 can be encoded with 4 tracks (Fig. 3). We then
extract from each track a sequence of music events: an event has a pitch, onset
and offset; each new onset determines a new event.

Underpinned by music analysis [7] and music cognition [6] literatures, we
are primarily concerned with music intervallic content, in that it can reveal
pitch contour commonalities between motifs. For example, let us consider the
excerpt presented in Fig. 2. Here we have a “curve” shaped motif (properly, the
1 http://www.midi.org/
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Fig. 3. Top: the subject of the fugue presented in Fig. 2 is extracted from each voice.
Bottom: all the voices exhibit the same shape, despite the notes are actually different.
Commonalities among the different occurrences of the subject can be seen via a pitch
interval representation.

subject of the fugue), that accomplishes an ascending–jump–descending melodic
movement. The essence of this kind of motifs –see e.g., the top of Fig. 3– is
best grasped if one considers the pitch intervals between each pair of notes, as
it is shown in the bottom of Fig. 3. We can see that the four occurrences of the
subject are invariant under transposition, so that the pattern can be individuated
considering the intervals rather than the actual notes. More sophisticated kinds
of representation have been designed, such as Conklin’s multiple viewpoints [15],
that in principle could better fit to pattern discovery. However, as it was pointed
out by Conklin [14], a systematic experimentation over 185 J.S. Bach chorales
provided evidence that patterns were mainly found via “melodic intervals”. As
a consequence, we chose a simple representation accounting for intervals only;
this has the advantage of permitting to translate music input into a string with
a smaller alphabet.

4.2 Extracting and Modeling Motifs

In order to accomplish this step, we used a recently proposed event discovery
system [11,12]. The main idea is that of modeling each motif by means of a
Profile Hidden Markov model (PHMM), and representing a sequence of motifs
interleaved with gaps by a Hierarchical Hidden Markov model (HHMM).

A Hidden Markov Model (HMM) is a stochastic finite state automaton [20]
defined by a tuple λ = 〈Q, O, A, B, π〉, where:

– Q is a set of states, and O is a set of atomic events (observations),
– A is a probability distribution governing the transitions from one state to

another. Specifically, any member ai,j of A defines the probability of the
transition from state qi to state qj , given qi.

– B is a probability distribution governing the emission of observable events
depending on the state. Specifically, an item bi,j belonging to B defines the
probability of producing event Oj when the automaton is in state qi.

– π is a distribution on Q defining, for every qi ∈ Q, the probability that qi is
the initial state of the automaton.
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The difficulty, in this basic formulation, is that, when the set of states Q
grows large, the number of parameters to estimate (A and B) rapidly becomes
intractable. Nevertheless, the size of the parameters to estimate can be strongly
reduced if one defines a structure for the automaton, where a number of state
transitions and the possible emissions in a state are cut a priori. This corresponds
to setting to 0 the corresponding values in matrix A and B. Actually, many work
related to HMM applications consists in handcrafting the a priori structure of
the automaton, as, for instance, the Profile Hidden Markov Model [21], widely
used for DNA analysis.

A Profile Hidden Markov Model assumes that a motif has a canonical instan-
tiation form, that can be affected by insertion and deletion errors. A PHMM is
basically a forward graph with three categories of states:

– match states, where the emission corresponds to the unique symbol expected
in the canonical instantiation;

– insertion states, where a number of symbols due to random noise can be
inserted;

– deletion states, where non emission occurs where it was supposed to.

In addition, other two non emitting states are required: the start state, and
the end state. Recursion is considered only in the form of self-loops associated to
insertion states. It has been experimentally shown that PHMM is more accurate
than string matching to detect motifs [21], and then we expect that it holds
for musical sequences as well. Moreover, the algorithmic complexity inherent to
PHMM is linear both for Viterbi and Forward-Backward algorithms.

The Hierarchical HMM (HHMM) proposed by Fine, Singer and Tishby [22] is
an extension of the basic HMM, that immediately follows from the regular lan-
guages property of being closed under substitution; this property allows a large
finite state automaton to be transformed into a hierarchy of simpler ones. More
specifically, a HHMM is a hierarchy where, by numbering the hierarchy levels
with ordinals increasing from the lowest towards the highest level2, observations
generated in a state qi

k by a stochastic automaton at level k are sequences gen-
erated by an automaton at level k − 1. The emissions at the lowest levels are
again single tokens as in the basic HMM. Moreover, no direct transition may
occur between the states of different automata in the hierarchy. As in HMM, in
every automaton the transitions from state to state is governed by a distribu-
tion A and the probability for a state being the initial state is governed by a
distribution π. The restriction is that there is only one state which can be the
terminal state.

The major advantage provided by the hierarchical structure is a strong re-
duction in the number of parameters to estimate. In fact, automata at the same
level in the hierarchy do not share interconnections: every interaction through
them is governed by transitions at the higher levels.

A second advantage is that, as it will be described in the following, the mod-
ularization enforced by the hierarchical structure allows the different automata
2 We use a reverse numeration for hierarchy levels, with respect to the original formu-

lation in [22].
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to be modified and trained individually, thus providing a natural subproblem
decomposition.

The basic learning algorithm, fully described in [11,12] builds the HHMM
hierarchy bottom-up starting from the lowest level (actually, only two levels are
built). The first step consists in searching for possible motifs, i.e., short chains
of consecutive symbols that appear frequently in the learning traces, by means
of classical methods used in DNA analysis [21]. A PHMM is then built from
the found motifs. As models of the motifs are constructed independently from
one another, it may happen that models for spurious motifs are constructed. At
the same time, it may happen that relevant motifs are disregarded just because
their frequency is not high enough. Both kinds of problems will be fixed at a
later time. Starting from the models found at this step, a HHMM can be built
in the following way: the input sequences are abstracted (i.e., rewritten in terms
of the models found) by substituting each occorrence of a PHMM with a symbol
in a new alphabet and subsequences between two motifs not attributed to any
PHMM, by means of a special symbol called gap.

After this basic cycle has been completed, an analogous learning procedure is
repetead on the abstracted sequences, where models are now built for sequences
of episodes, searching for co-occorrent motifs. In this process, spurious motifs
not showing significant regularities can be discarded. The major difference with
respect to the first step, is that models built from the abstracted sequences are
observable Markov models. This makes the learning task easier and decreases
its computational complexity. After building the HHMM structure in this way,
it can be refined by using standard training algorithms [23,22].

4.3 Producing the Results

Once the HHMM has been built, we are ready to produce the final results of the
system. In this last step, the acquired model is instatiated on every voice and two
outputs are generated: a score of the piece tagged with the motifs found in that
voice. In order to provide also audible results, we generate as many MIDI files
as the found motifs (i.e., for every motif we produce a MIDI file that contains
the notes in the motif). Both scores and MIDI files are available on the Web3.

5 Experimental Validation

In order to assess the results provided by the system, we have collected a dataset
composed by the fugues from Book 1 of J.S. Bach’s Das Wohltemperierte Klavier.
We used MIDI recordings retrieved from BachCentral.com4. Due to problems
encountered while processing the MIDI files5, we could actually use only 15 of
the 24 fugues from the original corpus.
3 http://www.di.unito.it/∼botta/bach-fugues
4 http://www.bachcentral.com/wtcMidi1.html
5 For reading the files and extracting the tracks, we used the parsing routines provided

by the standard javax.sound.midi package.

http://www.bachcentral.com/wtcMidi1.html
http://www.di.unito.it/~botta/bach-fugues
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We have run the system to discover the main motif (i.e., the subject) of
each fugue. Also, we have been looking for all the occurrences of such subject
throughout the fugue: specifically, we have been looking for the occurrences of
the whole (if varied) subject, thus disregarding episodes such as the stretti, where
only the head or the tail of the subject occurs. While testing the system on fugues
motifs only, we considered motifs longer than a fixed amount (presently, this was
set to 6 notes), thereby retaining motifs that have a score higher than the average
of the scores left. The experimentation should answer the following questions: i)
How much do such filtered data fit to the actual subjects; ii) How many of the
subject repetitions do we find; iii) How many notes in the (repeated) subjects
are actually individuated.

i) The system correctly recognized the subject in 72.55% of cases. Overall
ii), 74.73% of the total number of subject occurrences were identified; also, on
average, iii) we have individuated 80.86% of the notes in the subjects.

5.1 Discussion

The present results hardly compare with literature, because, to the best of our
knowledge, no researchers addressing the pattern discovery in the musical do-
main have tested their systems in a systematic way. Rather, examples of indi-
vidual patterns have been provided, or the most discriminative musical features
have been pointed out –e.g., pitch intervals, contour– (see, respectively, the state
of art systems presented in [9] and [14]). Reasonably, providing crude numbers
would result improper in some cases, but perhaps the lack of systematic exper-
iments witnesses about the difficulty of the task, as well. Hence our results can
furnish a baseline against which other systems can be compared.

Provided that this preliminary experimentation considered only a small
dataset, and that we have performed only a reduced form of automatic analysis,
aiming at discovering vividly individuated motifs, the results are satisfying.

A closer look to the data may be helpful in completing the assessment of the
results, and in suggesting some criteria for future improvements. In the test i)
we identify the subject in 72.55% of cases, but if we retain all the results with-
out filtering, then the success ratio raises to 100% of cases. Therefore, taken for
granted that models for subjects can be acquired, refinements to the filtering
function are at hand. For what concerns test ii), some improvements would be
possible by considering additional music information, such as, e.g., the absolute
intervals. Most likely this would be useful to discover occurrences of the subject
with inverted (Fig. 1) intervals. Grasping these cases (Fig. 4) would further im-
prove the system’s accuracy. The test iii) would benefit from a slightly different
splitting of the string in input.

However, the results also show that much work has still to be done. Many
errors were committed when encountering “too short” subjects (e.g., Fugue 4),
where it is harder to acquire a significant pattern. Moreover, we were penalized
from cases where “real answer” significantly transforms the expositions of the
subject (e.g., Fugue 21), thus increasing the difficulty to individuate the common
underlying model.
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Fig. 4. Top: the subject of Fugue 20; bottom: the subject is stated by the soprano
voice with the inversion of intervals

6 Conclusions

This paper has presented a methodology for addressing a captivating problem:
analyzing the horizontal textures of music. Namely, we have applied it for discov-
ering the subjects in some fugues from J.S. Bach’s Das Wohltemperierte Klavier.
A working system implements the methodology: based on a plain though effec-
tive encoding of music, it acquires a model of the most significant repeated
patterns. Then it outputs the results both as analyzed scores and as MIDI files,
containing the patterns discovered. The experimental validation demonstrated
the adequacy of the approach, while also pointing out some open issues, that
will steer our future work.

Furthermore, the hierarchical hidden Markov model learned by the system
could provide useful insights about the overall structure of musical pieces, al-
lowing to describe them in terms of basic building blocks (motifs and gaps) and
their relationships.
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