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Martin’s maximum revisited

Matteo Viale

Abstract

We present several results relating the general theory of the stationary tower
forcing developed by Woodin with forcing axioms. In particular we show that, in
combination with class many Woodin cardinals, the forcing axiom MM++ makes
the Π2-fragment of the theory of Hℵ2 invariant with respect to stationary set pre-
serving forcings that preserve BMM. We argue that this is a promising generaliza-
tion to Hℵ2 of Woodin’s absoluteness results for L(�). In due course of proving
this, we shall give a new proof of some of these results of Woodin. Finally we
relate our generic absoluteness results with the resurrection axioms introduced by
Hamkins and Johnstone and with their unbounded versions introduced by Tsaprou-
nis.

This1 paper is meant as an introductory exposition containing some preliminary
results to the research I’ve undertaken to generalize Woodin’s absoluteness results.
More precisely it is a survey over a different approach to present Woodin’s generic
absoluteness results for L(�) and how this approach can lead to generalize Woodin’s
results to larger fragments of the universe.

Woodin shows that the first order theory of L(�) with real parameters is invariant
under set forcing assuming large cardinals. In this paper we shall show that in models
V of MM++ the Π2-theory of HV

ℵ2
with parameters in P(ω1)V is invariant with respect

to stationary set preserving forcings which preserve BMM. We shall also argue that the
restriction to the class of stationary set preserving forcings is a necessary requirement
if one wishes to admit as parameters of the generically invariant theory all subsets of
ω1 which are in V . A complete account on the (close to) optimal absoluteness results
we can obtain for models of strenghtenings of MM are presented in [19] and in [1] (this
latter with Giorgio Audrito) which are the natural continuation of this article.

The paper is organized as follows: In the introduction (Section 1) we shall take a
long detour to motivate the absoluteness results we want to present and to show how
they stem out of Woodin’s work on Ω-logic. Section 2 presents background material on
forcing (Subsection 2.1), the stationary tower forcing (Subsection 2.2), forcing axioms
(Subsection 2.3), the relation between the stationary tower forcing and forcing axioms
(Subsection 2.4), and a new characterization of the forcing axiom MM++ in terms of
complete embeddings of stationary set preserving posets into stationary tower forcings
(Subsection 2.5). Section 3 gives a new elementary proof of the invariance of the theory
of Hℵ1 with respect to set forcing in the presence of class many Woodin cardinals,

1The author acknowledges support from the 2009 PRIN grant “Modelli e Insiemi” and from the Kurt
Gödel Research Prize Fellowship 2010.
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while Section 4 presents the proof of the main result i.e. the Π2-absoluteness for the
theory of Hω2 in models of MM++ with respect to stationary set preserving forcings
that preserve BMM. Section 5 extends the results of Section 4 to the setting of the
resurrection axioms introduced by Hamkins and Johnstone [7] and of their unbounded
version introduced by Tsaprounis [17].

While the paper is meant to be as much self-contained as possible, we presume
that familiarity with forcing axioms (in particular with Martin’s maximum) and with
the stationary tower forcing are of valuable help for the reader. A good reference for
background material on Martin’s maximum is [8, Chapter 37]. For the stationary tower
forcing a reference text is [11].

The reader who is interested only in the proofs of the new generic absoluteness
results and is already acquainted with forcing axioms and the stationary tower may skip
the introduction, have a glance at the results of Section 2 with a particular attention to
the content of Subsection 2.5 and then move directly to Sections 3, 4, 5.

1 Introduction
We tried to make this introduction comprehensible to any person acquainted with the

theory of forcing as presented for example in [9]. The reader may refer to subsec-
tion 1.1 for unexplained notions and to Section 2 for the background material he may
need to follow our presentation.

Since its discovery in the early sixties by Paul Cohen [3], forcing has played a cen-
tral role in the development of modern set theory. It was soon realized its fundamental
role to establish the undecidability in ZFC of all the classical problems of set theory,
among which Cantor’s continuum problem. Moreover, up to date, forcing (or class
forcing) is the most efficient method to obtain independence results over ZFC. This
method has found applications in virtually all fields of pure mathematics: in the last
forty years natural problems of group theory, functional analysis, operator algebras,
general topology, and many other subjects were shown to be undecidable by means of
forcing (see [5, 14] among others). Perhaps driven by these observations Woodin intro-
duced Ω-logic, a non-constructive semantics for ZFC which rules out the independence
results obtained by means of forcing.

Definition 1.1. Given a model V of ZFC and a family Γ of partial orders in V , we say
that V models that φ is Γ-consistent if V� |= φ for some � ∈ Γ.

The notions of Γ-validity and of Γ-logical consequence |=Γ are defined accordingly.
Woodin’s Ω-logic is the Γ-logic obtained by letting Γ be the class of all partial orders2.
Prima facie Γ-logics appear to be even more intractable than β-logic (the logic given by

2There is a slight twist between Woodin’s original definition of Ω-consistency and our definition of Γ-
consistency when Γ is the class of all posets. We shall explain in this footnote why we decided to modify
Woodin’s original definition. On a first reading the reader may skip it over. Woodin states that φ is Ω-
consistent in V if there is some α and some � ∈ Vα such that V�α |= φ. For our purposes the advantage of our
definition (with respect to Woodin’s) is that it allows for a simpler formulation of the forcing absoluteness
results which are the motivation of this paper and which assert that over any model V of some theory T which
extends ZFC any statement φ of a certain form which V models to be Γ-consistent actually holds in V . To
appreciate the difference between Woodin’s definition of Ω-consistency and the current definition, assume
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the class of well founded models of ZFC). However this is a misleading point of view,
and, as we shall see below, it is more correct to view these logics as means to radically
change our point of view on forcing:

Γ-logics transform forcing in a tool to prove theorems over certain natural
theories T which extend ZFC.

The following corollary of Cohen’s forcing theorem (which we dare to call Cohen’s
Absoluteness Lemma) is an illuminating example:

Lemma 1.2 (Cohen’s Absoluteness). Assume T ⊃ ZFC and φ(x, r) is a Σ0-formula in
the parameter r such that T ` r ⊂ ω. Then the following are equivalent:

• T ` [Hω1 |= ∃xφ(x, r)].

• T ` ∃xφ(x, r) is Ω-consistent3.

Observe that for any model V of ZFC, HV
ω1
≺Σ1 V and that for any theory T ⊇ ZFC

there is a recursive translation of Σ1
2-properties (provably Σ1

2 over T ) into Σ1-properties
over Hω1 (provably Σ1 over the same theory T ) [8, Lemma 25.25]. Summing up we
get that a Σ1

2-statement is provable in some theory T ⊇ ZFC iff the corresponding Σ1-
statement over Hω1 is provably Ω-consistent over the same theory T . This shows that
already in ZFC forcing is an extremely powerful tool to prove theorems. Lemma 1.2
complements Shoenfield’s absoluteness theorem [8, Theorem 25.20] and gives another
powerful argument to prove the validity of some Σ1

2-property by means of an absolute-
ness argument.

We briefly sketch why Lemma 1.2 holds since this will outline many of the ideas
we are heading for:

Proof. We shall actually prove the following slightly stronger formulation4 of the non-
trivial direction in the equivalence:

Assume V is a model of T . Then Hω1 |= ∃xφ(x, r) if and only if V |=
∃xφ(x, r) is Ω-consistent.

that φ is a Π2-formula and that φ is Ω-consistent in V in the sense of Woodin: this means that there exist α
and � such that V�α |= φ, nonetheless it is well possible that V� 6|= φ and thus that � does not witness that φ
is Ω-consistent according to our definition. Now if V models ZFC+there are class many Woodin cardinals
and φL(�) is Ω-consistent in V in the sense of Woodin, this can be reflected in the assertion that ∃α ∈ V ,
Vα |= φL(�), but not in the statement that φL(�) holds in V . On the other hand if V models ZFC+there are
class many Woodin cardinals and φL(�) is Ω-consistent in V according to our definition, we can actually
reflect this fact in the assertion that V |= φL(�). There is no real discrepancy on the two definitions because
for each n we can find a formula φn such that if V is any model of ZF, Vα |= φn if and only if Vα ≺Σn V .
Thus, if we want to prove that a certain Σn-formula φ is Ω-consistent according to our definition, we just
have to prove that φn ∧ φ is Ω-consistent in V according to Woodin’s definition. On the other hand the set
of Γ-valid statements (according to Woodin’s definition) is definable in V in the parameters used to define
Γ, while (unless we subsume that there is some δ such that Vδ ≺ V and all the parameters used to define Γ

belong to Vδ) we shall encounter the same problems to define in V the class of Γ-valid statements (according
to our definition) as we do have troubles to define in V the set of V-truths.

3I.e. T ` There is a partial order � such that � ∃xφ(x, r).
4In the statement below we do not require that the existence of a partial order witnessing the Ω-

consistency of ∃xφ(x, r) in V is provable in T .
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To simplify the exposition we prove it with the further assumption that V is a transitive
model. With the obvious care in details essentially the same argument works for any
first order model of T . So assume φ(x, ~y) is a Σ0-formula and ∃xφ(x,~r) is Ω-consistent
in V with parameters ~r ∈ �V . Let � ∈ V be a partial order that witnesses it. Pick
a model M ∈ V such that M ≺ (H|�|+ )V , M is countable in V , and �,~r ∈ M. Let
πM : M → N be its transitive collapse and � = πM(�). Notice also that π(~r) = ~r. Since
πM is an isomorphism of M with N,

N |= (� ∃xφ(x,~r)).

Now let G ∈ V be N-generic for � (G exists since N is countable), then, by Cohen’s
fundamental theorem of forcing applied in V to N, we have that N[G] |= ∃xφ(x,~r). So
we can pick a ∈ N[G] such that N[G] |= φ(a,~r). Since N,G ∈ (Hℵ1 )V , we have that
V models that N[G] ∈ HV

ω1
and thus V models that a as well belongs to HV

ω1
. Since

φ(x, ~y) is a Σ0-formula, V models that φ(a,~r) is absolute between the transitive sets
N[G] ⊂ Hω1 to which a,~r belong. In particular a witnesses in V that HV

ω1
|= ∃xφ(x,~r).�

If we analyze the proof of this Lemma, we immediately realize that a key observation
is the fact that for any poset � there is some countable M ≺ H|�|+ such that � ∈ M and
there is an M-generic filter for �. The latter statement is an easy outcome of Baire’s
category theorem and is provable in ZFC. For a given regular cardinal λ and a partial
order �, let S λ

�
be the set consisting of M ≺ Hmax(|�|+,λ) such that there is an M-generic

filter for � and M ∩ λ ∈ λ > |M|. Then an easy outcome of Baire’s category theorem is
that S ℵ1

�
is a club subset of Pω1 (H|�|+ ) for every partial order �. If we analyze the above

proof what we actually needed was just the stationarity of S ℵ1
�

to infer the existence of
the desired countable model M ≺ H|�|+ such that r ∈ M and there is an M-generic filter
for �. For any regular cardinal λ, let Γλ be the class of posets such that S λ

�
is stationary.

In particular we can generalize Cohen’s absoluteness Lemma as follows:

Lemma 1.3 (Generalized Cohen Absoluteness). Assume V is a model of ZFC and λ
is regular and uncountable in V. Then HV

λ ≺Σ1 VP if P ∈ Γλ.

Let FAν(�) assert that: P is a partial order such that for every collection of ν-many
dense subsets of P there is a filter G ⊂ P meeting all the dense sets in this collection.
Let BFAν(�) assert that HV

ν+ ≺Σ1 VP.
Given a class of posets Γ, let FAν(Γ) (BFAν(Γ)) hold if FAν(P) (BFAν(P)) holds for

all P ∈ Γ. Then Baire’s category theorem just says that FAℵ0 (Ω) holds where Ω is the
class of all posets. It is not hard to check that if S λ

P is stationary, then FAγ(P) holds for
all γ < λ. Woodin [21, Proof of Theorem 2.53] proved that if λ = ν+ is a successor
cardinal P ∈ Γλ if and only if FAν(P) holds (see for more details subsection 2.3 and
Lemma 2.7). In particular for all cardinals ν we get that Γν+ is the class of partial
orders P such that FAν(P) holds or (equivalently) such that S ν+

P is stationary. With this
terminology Cohen’s absoluteness Lemma states that FAν(P) implies BFAν(P) for all
infinite cardinals ν.

Observe that many interesting problems of set theory can be formulated as Π2-
properties of Hν+ for some cardinal ν (an example is Suslin’s hypothesis, which can
be formulated as a Π2-property of Hℵ2 ). Lemma 1.3 gives a very powerful general
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framework to prove in any given model V of ZFC whether a Π2-property ∀x∃yφ(x, y, z)
(where φ is Σ0) holds for some HV

ν+ with p ∈ HV
ν+ replacing z: It suffices to prove that

for any a ∈ HV
ν+ , V models that ∃yφ(a, y, p) is Γν+ -consistent. This shows that if we are

in a model V of ZFC where ΓV
ν+ contains interesting and manageable families of partial

orders ΓV
ν+ -logic is a powerful tool to study the Π2-theory of HV

ν+ . In particular this is
always the case for ν = ℵ0 in any model of ZFC, since Γℵ1 is the class of all posets.
Moreover this is certainly one of the reasons of the success the forcing axiom Martin’s
Maximum MM and its bounded version BMM have had in settling many relevant prob-
lems of set theory which can be formulated as Π2-properties of the structure Hℵ2 and
that boosted the study of bounded versions of forcing axioms5.

For any set theorist willing to accept large cardinal axioms, Woodin has been able
to show that Ω-logic gives a natural non-constructive semantics for the full first order
theory of L(�) and not just for the Σ1-fragment of Hℵ1 ⊂ L(�) which is given by
Cohen’s absoluteness Lemma. Woodin [11, Theorem 2.5.10] has proved that assuming
large cardinals Ω-truth is Ω-invariant i.e.:

Let V be any model of ZFC+there are class many Woodin cardinals. Then
for any statement φ with parameters in �V ,

V |= (φ is Ω-consistent)

if and only if there is � ∈ V such that

V� |= (φ is Ω-consistent).

Thus Ω-logic, the logic of forcing, has a notion of truth which forcing itself cannot
change. Woodin [11, Theorem 3.1.7] also proved that the theory ZFC+large cardinals
decides in Ω-logic the theory of L(�) and actually, by strengthening the large cardinal
assumptions, even of the larger structure L(Pω1 Ord), i.e.:

For any model V of ZFC+there are class many Woodin cardinals which are
a limit of Woodin cardinals and any first order formula φ, L(Pω1 Ord)V |= φ
if and only if

V |= [L(Pω1 Ord) |= φ] is Ω-consistent.

He pushed further these result and showed that if T extends ZFC+ There are class many
measurable Woodin cardinals, then T decides in Ω-logic any mathematical problem ex-
pressible as a (provably in T ) ∆2

1-statement. These are optimal and sharp results: it is
well known that the Continuum hypothesis CH (which is provably not a ∆2

1-statement)
and the first order theory of L(P(ω1)) cannot be decided by ZFC+ large cardinal ax-
ioms in Ω-logic. Martin and Steel’s result that projective determinacy holds in ZFC∗

complements the fully satisfactory description Ω-logic and large cardinals give of the
first order theory of the structure L(�) in models of ZFC∗. Moreover we can make
these results meaningful also for a non-platonist, for example we can reformulate the
statement that ZFC∗ decides in Ω-logic the theory of L(�) as follows:

5Bagaria [2] and Stavi, Väänänen [15] are the first who realize that bounded forcing axioms are powerful
tools to describe the Π2-theory of Hc exactly for the reasons we are pointing out.
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Assume T extends ZFC+there are class many Woodin cardinals which are
a limit of Woodin cardinals. Let φ(r) be a formula in the parameter r such
that T ` r ⊆ ω. Then the following are equivalent:

• T ` [L(Pω1 Ord) |= φ(r)].

• T ` φ(r)L(Pω1 Ord) is Ω-consistent.

The next natural stage is to determine to what extent Woodin’s results on Ω-logic
and the theory of Hℵ1 and L(�) can be reproduced for Hℵ2 and L(P(ω1)). There is
also for these theories a fundamental result of Woodin: he introduced an axiom (∗)
which is a strengthened version of BMM with the property that the theory of Hℵ2 with
real parameters is invariant with respect to all forcings which preserve this axiom6.
The (∗)-axiom is usually formulated [10, Definition 7.9] as the assertion that L(�) is a
model of the axiom of determinacy and L(P(ω1)) is a generic extension of L(�) by the
homogeneous forcing �max ∈ L(�).

There are two distinctive features of (∗):

1. It asserts the “proximity” of L(�) with L(P(ω1)): on the one hand the homo-
geneity of �max entails that the first order theory of L(P(ω1)) is essentially deter-
mined by the theory of the underlying L(�). On the other hand (∗) implies that
L(P(ω1)) = L(�)[A] for any A ∈ P(ω1) \ L(�).

2. (∗) entails that (HV
ω2
, ∈,�V ) ≺ (HVP

ω2
, ∈,�V ) for any notion of forcing P ∈ V

which preserves (∗) even if FAℵ1 (P) may be false for such a P.

In this paper we propose a different approach to the analysis of the theory of Hℵ2

then the one given by (∗). We do not seek for an axiom system T ⊇ ZFC which makes
the theory of Hℵ2 for formulae with real parameters invariant with respect to all forcing
notions which preserve a suitable fragment of T . Our aim is to show that the strongest
forcing axioms in combination with large cardinals give an axiom system T which
extends ZFC and makes the theory of Hℵ2 for formulae with arbitrary parameters in
the structure invariant with respect to all forcing notions P which preserve a suitable
fragment of T and for which we can predicate FAℵ1 (P) (i.e. forcings P which are in the
class Γℵ2 ).

This leads us to analyze the properties of the class Γℵ2 in models of ZFC∗. This is
a delicate matter, first of all Shelah proved that FAℵ1 (P) fails for any P which does not
preserve stationary subsets of ω1. Nonetheless it cannot be decided in ZFC whether
this is a necessary condition for a poset P in order to have the failure of FAℵ1 (P). For
example let P be a forcing which shoots a club of ordertype ω1 through a projectively
stationary and costationary subset of Pω1 (ω2) by selecting countable initial segments
of this club: It is provable in ZFC that P preserve stationary subsets of ω1 for all
such P. However in L, FAℵ1 (P) fails for some such P while in a model of Martin’s
maximum MM, FAℵ1 (P) holds for all such P. This shows that we cannot hope to prove
general theorems about Hℵ2 in ZFC∗ alone using forcing, but just theorems about the
properties of Hℵ2 for particular theories T which extend ZFC∗ and for which we have
a nice description of the class Γℵ2 .

6We refer the reader to [10] for a thorough development of the properties of models of the (∗)-axiom.
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In this respect it is well known that the study of the properties of Hℵ2 in models of
Martin’s maximum MM, of the proper forcing axiom PFA, or of their bounded versions
BMM and BPFA has been particularly successful. Moreover it is well known that the
strongest such theories (MM and PFA) are able to settle many relevant questions about
the whole universe V and to show that many properties of the universe reflect to Hℵ2

7.
The reason is at least two-fold:

• First of all there is a manageable description of the class Γℵ2 in models of MM
(PFA,MA): this is the class of stationary set preserving posets for MM (respec-
tively contains the class of proper forcings for PFA, and the class of CCC partial
orders for MA).

• MM realizes the slogan that FAℵ1 (P) holds for any partial order P for which
we cannot prove that FAℵ1 (P) fails, thus MM substantiates a natural maximality
principle for the class Γℵ2 .

We believe that the arguments we presented so far already show that for any model
V of ZFC and any successor cardinal λ ∈ V it is of central interest to analyze what
is the class Γλ in V , since this gives a powerful tool to investigate the Π2-theory of
HV
λ . Moreover in this respect ZFC + MM is particularly appealing since it asserts the

maximality of the class Γℵ2 . The main result of this paper is to show that a natural
strengthening of MM (denoted by MM++) which holds in the standard models of MM, in
combination with Woodin cardinals, makes Γℵ2 -logic the correct semantics to describe
completely the Π2-theory of Hℵ2 in models of MM++. In particular we shall prove the
following theorem:

Theorem 1.4. Assume MM++ holds and there are class many Woodin cardinals. Then

HV
ℵ2
≺Σ2 HVP

ℵ2

for all stationary set preserving posets P which preserve BMM.

Notice that we can reformulate the theorem in the same fashion of Woodin’s and Co-
hen’s results as follows:

Theorem 1.5. Assume T extends ZFC + MM+++ There are class many Woodin cardi-
nals. Then for every Π2-formula φ(x) in the free variable x and every parameter p such
that T ` p ∈ Hω2 the following are equivalent:

• T ` [Hℵ2 |= φ(p)]

• T ` There is a stationary set preserving partial order P such that P φ
Hℵ2 (p) and

P BMM.
7The literature is vast, we mention just a sample of the most recent results with no hope of being exhaus-

tive: [12, 16, 21] present different examples of well-ordering of the reals definable in Hℵ2 (with parameters
in Hℵ2 ) in models of BMM (BPFA), [4, 18, 20] present several different reflection properties between the
universe and Hℵ2 in models of MM++ (PFA,MM), [5, 13] present applications of PFA to the solution of prob-
lems coming from operator algebra and general topology and which can be formulated as (second order)
properties of the structure Hℵ2 .
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1.1 Notation and prerequisites
We adopt standard notation which is customary in the subject, our reference text is [8].

For models (M, E) of ZFC, we say that (M, E) ≺Σn (M′, E′) if M ⊂ M′, E = E′∩M2

and for any Σn-formula φ(p) with p ∈ M, (M, E) |= φ(p) if and only if (M′, E′) |= φ(p).
We usually write M ≺Σn M instead of (M, E) ≺Σn (M′, E′) when E, E′ is clear from the
context. We let (M, E) ≺ (M′, E′) if (M, E) ≺Σn (M′, E′) for all n.

We let Ord denote the class of ordinals. For any cardinal κ PκX denote the subsets
of X of size less than κ. Given f : X → Y and A ⊂ X, B ⊂ Y , f [A] is the pointwise
image of A under f and f −1[B] is the preimage of B under f . A set S is stationary if
for all f : Pω(∪S ) → ∪S there is X ∈ S such that f [X] ⊆ X (such an X is called a
closure point for f ). A set C is a club subset of S if it meets all stationary subsets of
S or, equivalently, if it contains all the closure points in S of some f : Pω(∪S ) → ∪S .
Notice that PκX is always stationary if κ is a cardinal and X, κ are both uncountable.

If V is a transitive model of ZFC and (P,≤P) ∈ V is a partial order with a top
element 1P, VP denotes the class of P-names, and ȧ or τ denote an arbitrary element
of VP, if ǎ ∈ VP is the canonical name for a set a in V we drop the superscript and
confuse ǎ with a. We also feel free to confuse the approach to forcing via boolean
valued models as done by Scott and others or via the forcing relation. Thus we shall
write for example VP |= φ as an abbreviation for

V |= [1P  φ].

If M ∈ V is such that (M, ∈) is a model of a sufficient fragment of ZFC and (P,≤P)
in M is a partial order, an M-generic filter for P is a filter G ⊂ P such that G∩ A∩M is
non-empty for all maximal antichains A ∈ M (notice that if M is non-transitive, A * M
is well possible). If N is a transitive model of a large enough fragment of ZFC, P ∈ N
and G is an N-generic filter for P, let σG : N ∩ VP → N[G] denote the evaluation map
induced by G of the P-names in N.

We say that (M, E) ≺Σn (Ṅ, Ė) for some Ṅ ∈ VP if

VP |= Ė ∩ M2 = E

and for any Σn-formula φ(p) with p ∈ M, (M, E) |= φ(p) if and only if

VP |= [(Ṅ, Ė) |= φ(p)].

We will write M ≺Σn Ṅ if (M, E) ≺Σn (Ṅ, Ė) and E, Ė are clear from the context.
For any set M we denote πM : M → NM the unique transitive collapse map which

is an homomorphism of the structure (M, ∈) with the structure (NM , ∈).
We shall also frequently refer to Woodin cardinals, however for our purposes we

won’t need to recall the definition of a Woodin cardinal but just its effects on the prop-
erties of the stationary tower forcing. This is done in subsection 2.2.

2 Preliminaries
We shall briefly outline some general results on the theory of forcing which we shall
need for our exposition. The reader may skip Subsections 2.1, 2.2, 2.3 and eventually
refer back to them.
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2.1 Preliminaries I: complete embeddings
For a poset Q and q ∈ Q, let Q � q denote the poset Q restricted to conditions r ∈ Q
which are below q and �(Q) denote its boolean completion, i.e. the complete boolean
algebra of regular open subsets of Q, so that Q is naturally identified with a dense
subset of �(Q). We say that:

• P completely embeds into Q if there is a map i : P → �(Q) which preserves
the order relation and maps maximal antichains of P into maximal antichains
of �(Q). With abuse of notation we shall call a complete embedding of P into
Q any such homomorphism i : P → �(Q) (notice that our definition does not
prevent that i may map large portions of P to 0�(Q)).

• P regularly embeds into Q if there is an injective map i : P → Q which is also a
complete embedding of P into Q.

• i : P → �(Q) is locally complete if for some q ∈ �(Q), i : P → �(Q � q)
is a complete embedding (we shall also call any locally complete embedding a
locally regular embedding).

We remark that what we define here as a complete embedding is a weaker notion
than the one appearing in [9, Definition VII.7.1] with this same terminology, which
instead corresponds exactly to what we defined here to be a regular embedding. The
following facts are well known and we just state them without a proof.

Lemma 2.1. The following are equivalent:

1. P completely embeds into Q,

2. for any V-generic filter G for Q there is in V[G] a V-generic filter H for P,

3. There is a complete homomorphism i : �(P) → �(Q) of complete boolean
algebras.

Remark 2.2. Observe that if i : P→ �(Q) is a complete embedding then for all q ∈ Q
such that i(p) ∧ q > 0�, the map iq : P → �(Q � q) which maps p to q ∧ i(p) is also a
complete embedding. Moreover if q Q p̌ ∈ Ḣ where Ḣ = i−1[Ġ] ∈ VQ and Ġ is the
canonical �(Q)-name for a V-generic filter for �(Q), we have that iq(r) = 0�(Q) for all
r ∈ P incompatible with p. Thus in general a complete embedding (according to our
terminology) i : P→ �(Q) may map a large portion of P to 0�(Q).

The quotient forcing�/i[�] is some object belonging to V� such that � ∗ (�/i[�])
is forcing equivalent to �.

Remark 2.3. There might be a variety of complete embeddings of a poset P into a
poset Q. These embeddings greatly affect the properties the generic extensions by Q
attributes to elements of the generic extensions by P. For example the following can
occur:
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There is a P-name Ṡ which is forced by P to be a stationary subset of ω1
and there are i0 : P → �(Q), i1 : P → �(Q) distinct complete embed-
dings of P into Q such that if G is V-generic for �(Q) and H j = i−1

j [G],
then σH0 (Ṡ ) is stationary in V[G], σH1 (Ṡ ) is stationary in V[H1] but non-
stationary in V[G].

If i : P → �(Q) is a locally complete embedding and p ∈ P, q ∈ Q are such that i
can be extended to a complete homomorphism of�(P � p) into�(Q � q) we shall also
denote �(Q � q)/i[�(P � p)] by Q/i[P], if i is clear from the context we shall even
denote such quotient forcing as Q/P.

2.2 Preliminaries II: stationary sets and the stationary tower forc-
ing

S is stationary if for all f : Pω(∪S )→ (∪S ) there is an X ∈ S such that f [Pω(X)] ⊂ X.
For a stationary set S and a set X, if ∪S ⊆ X we let S X = {M ∈ P(X) : M∩∪S ∈ S },

if ∪S ⊇ X we let S � X = {M ∩ X : M ∈ S }.
If S and T are stationary sets we say that S and T are compatible if

S (
⋃

S )∪(
⋃

T ) ∩ T (
⋃

S )∪(
⋃

T )

is stationary.
We let S ∧T denote the set of X ∈ P(∪S ∪∪T ) such that X∩∪S ∈ S and X∩∪T ∈ T

and for all η
∧
{S α : α < η} is the set of M ∈ P(

⋃
α<η S α) such that M ∩ ∪S α ∈ S α for

all α ∈ M ∩ η.
For a set M we let πM : M → V denote the transitive collapse of the structure (M, ∈)

onto a transitive set πM[M] and we let jM = π−1
M .

For any regular cardinal λ

Rλ = {X : X ∩ λ ∈ λ and |X| < λ}.

and for any Woodin cardinal δ > λ, �λδ is the stationary tower whose elements are
stationary sets S ∈ Vδ such that S ⊂ Rλ with order given by S ≤ T if, letting X =

∪(T ) ∪ ∪(S ), S X is contained in T X modulo a club.
Notice that �λδ/ ≡ where ≡ is the equivalence relation induced by its order is easily

seen to be a < δ-complete boolean algebra whose positive elements give a forcing
which is the separative quotient of �λδ . We shall thus feel free to confuse �λδ/ ≡ with
�λδ , for example in the proof of 2 implies 3 in Theorem 2.4 below. �δ will denote �ℵ2

δ .
We recall that if G is V-generic for�λδ , then G induces in a natural way a direct limit

ultrapower embedding jG : V → Ult(V,G) where [ f ]G ∈ Ult(V,G) if f : P(X f ) → V
in V and [ f ]G RG [h]G iff for some α < δ such that X f , Xh ∈ Vα we have that

{M ≺ Vα : f (M ∩ X f ) R h(M ∩ Xh)} ∈ G.

If Ult(V,G) is well founded it is customary to identify Ult(V,G) with its transitive
collapse.

We recall the following results about the stationary tower (see [11, Chapter 2]):
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Theorem 2.4 (Woodin). Assume δ is a Woodin cardinal, λ = ν+ < δ is a successor
and G is V-generic for �λδ . Then

1. Ult(V,G) is a definable class in V[G] and

V[G] |= (Ult(V,G))<δ ⊆ Ult(V,G).

2. Vδ,G ⊆ Ult(V,G) and jG(λ) = δ.

3. Ult(V,G) |= φ([ f1]G, . . . , [ fn]G) if and only for some α < δ such that fi : P(Xi)→
V are such that Xi ∈ Vα for all i ≤ n:

{M ≺ Vα : V |= φ( f1(M ∩ X1), . . . , fn(M ∩ Xn))} ∈ G.

Moreover by 1 Ult(V,G) is well founded and thus can be identified with its transitive
collapse. With this identifications we have that for every α < δ and every set X ∈ Vα,

X = [{〈M, πM(X)〉 : M ≺ Vα, X ∈ M}]G

and
jG[X] = [{〈M, X〉 : M ≺ Vα, X ∈ M}]G.

In particular these identifications show that:

• (H jG(λ))M[G] = Vδ[G] = (Hδ)V[G].

• jG � HV
θ ∈ Ult(V,G) and jG[HV

θ ] ≺ HUlt(V,G)
jG(θ) for all θ < δ.

• jG � HV
λ is the identity and witnesses that HV

λ ≺ HV[G]
jG(λ).

• S ∈ G iff jG[∪S ] ∈ jG(S ) for all S ∈ �λδ .

2.3 Preliminaries III: forcing axioms
Definition 2.5. Given a cardinal λ and a partial order P, FAλ(P) holds if:

For every collection of λ-many dense subsets of P there is a filter G ⊂ P
meeting all the dense set in this collection.

FA<λ(P) holds if FAν(P) holds for all ν < λ.
BFAλ(P) holds if Hλ+ ≺Σ1 VP.
If Γ is a family of partial orders, FAλ(Γ) (FA<λ(Γ), BFAλ(Γ)) asserts that FAλ(P)

(FA<λ(P), BFAλ(P)) holds for all P ∈ Γ.
For any partial order P

S λ
P = {M ≺ H|P|+ : M ∩ λ ∈ λ > |M| and there is an M-generic filter for P}

We shall abbreviate S ℵ2
P by S P.

For any regular uncountable cardinal λ, we let Γλ be the family of P such that S λ
P is

stationary.
In the introduction we already showed:

11



Lemma 2.6. Assume λ is an infinite cardinal. Then P ∈ Γλ+ implies BFAλ(P).

MM asserts that FAℵ1 (SSP) holds, where SSP is the family of posets which pre-
serve stationary subsets of ω1. BMM asserts that BFAℵ1 (SSP) holds. It is not hard to
see that if S λ

P is stationary, then FA<λ(P) holds. It is not clear whether the converse
holds if λ is inaccessible. However the converse holds if λ is a successor cardinal
and Woodin’s proof of (1) imlies (2) in [21, Theorem 2.53] gives a special case of the
following Lemma for λ = ω2.

Lemma 2.7. Let λ = ν+ be a successor cardinal. Then the following are equivalent:

1. FAν(P) holds.

2. S λ
P is stationary.

2.4 Preliminaries IV: Woodin cardinals are forcing axioms
The following is an outcome of Woodin’s work on the stationary tower and slightly
generalizes [21, Theorem 2.53].

Theorem 2.8. Woodin [21, Theorem 2.53]
Assume V is a model of ZFC+ there are class many Woodin cardinals, and λ = ν+

is a successor cardinal in V.
Then the following are equivalent for any partial order P ∈ V:

1. S λ
P is stationary.

2. FAν(P) holds.

3. There is a complete embedding of P into�λδ � S for some Woodin cardinal δ > |P|
and some S ∈ �λδ .

Proof. We just sketch it. The equivalence of the firts two items has already been stated
in Lemma 2.7.

We prove that the third item implies the second item: If the third item holds, let H
be V-generic for �λδ � S and G ∈ V[H] be V-generic for P.

Let j : V → Ult(V,H) be the generic ultrapower embedding, let θ = |P|+. Then j[G]
is a j[Hθ]-generic filter for j(P). Now observe that j[G], j[Hθ], j(P) are all elements of
Ult(V,H) and that

Ult(V,H) |= j[Hθ] ≺ H j(θ).

By standard arguments we can infer that Ult(V,H) models that (S j(λ)
j(P))

Ult(V,H) is station-
ary. Now we can conclude by elementarity that S λ

P is stationary in V and moreover that
S λ

P belongs to H since j[Hθ] ∈ j(S λ
P). This shows that S λ

P is stationary and belongs to
H whenever H is a V-generic filter for �λδ which adds a V-generic filter for P.

Now we prove that the second item implies the third item: Assume S λ
P is stationary

and let HM be an M generic filter for P for any M ∈ S λ
P. Consider the map

i : P→ �λδ � S λ
P

12



which maps p to the set of M ∈ S λ
P such that p ∈ HM . It is immediate to check that

i is a complete embedding (though it may map large portions of P to non stationary
subsets of S λ

P). �

SSP denote the class of posets which preserve stationary subsets of ω1. Martin’s
maximum MM asserts that FAℵ1 (P) holds for all P ∈ SSP.

The following sums up the current state of affair regarding the classes Γλ for λ ≤ ℵ2.

Theorem 2.9. Assume there are class many Woodin cardinals. Then:

1. Γℵ1 is the class of all posets and for any poset P there is a regular embedding
into �ℵ1

δ for any Woodin cardinal δ > |P|.

2. �ℵ2
δ ∈ SSP for any Woodin cardinal δ.

3. MM holds if and only if SSP is the class of all posets which regularly embeds
into �ℵ2

δ � S for some Woodin cardinal δ and S ∈ �ℵ2
δ . (Foreman, Magidor,

Shelah [6]).

Proof. We sketch a proof.

1 Trivial by Theorem 2.8.

2 Let S ∈ V be a stationary subset of ω1, G be V-generic for �ℵ2
δ and Ċ be a �ℵ2

δ -name
for a club subset of ω1. Then σG(Ċ) ∈ (Hω2 )V[G] = Vδ[G] = (Hω2 )Ult(V,G). In
particular since jG : V → Ult(V,G) is elementary, Ult(V,G) |= σG(Ċ) ∩ jG(S ) ,
∅. Now, since jG(ω1) = ω1, we have that jG(S ) = S . The conclusion follows.

3 ℵ2 is a a successor cardinal. For this reason, if MM holds, we can use the equivalence
given by Theorem 2.8 to get that any P ∈ SSP regularly embeds into �ℵ2

δ � S P

for any Woodin cardinal δ. We can then use 2 to argue that if P regularly embeds
into some �ℵ2

δ � S with δ a Woodin cardinal and S ∈ �ℵ2
δ , then P ∈ SSP. �

2.5 Preliminaries V: MM++

The ordinary proof of the consistency of MM actually gives more information than
what is captured by Theorem 2.9.3: the latter asserts that any stationary set preserving
poset � can be completely embedded into �ℵ2

δ � S � for any Woodin cardinal δ > |�|
via some complete embedding i. However MM doesn’t give much information on the
nature of the complete embedding i. On the other hand the standard model of MM
provided by Foreman, Shelah and Magidor’s consistency proof actually show that for
any stationary set preserving poset � and any Woodin cardinal δ > |�| we can get
a complete embedding i : � → �(�ℵ2

δ � T ) with a ”nice” quotient forcing (�ℵ2
δ �

T )/i[�]. For this reason we introduce the following well known variation of Martin’s
maximum:

Definition 2.10. MM++ holds if T� is stationary for all � ∈ SSP, where M ∈ T� iff

• M ≺ H|�|+ is in Rℵ2 ,

13



• There is an M-generic filter H for � such that, if G = πM[H], Q = πM(�) and
N = πM[M], then σG : NQ → N[G] is an evaluation map such that σG(πM(Ṡ ))
is stationary for all Ṡ ∈ M �-name for a stationary subset of ω1.

We shall call correct M-generic filter for � any M-generic filter H as above.
The following is a well-known by-product of the ordinary consistency proofs of

MM which to my knowledge is seldom explicitly stated:

Theorem 2.11 (Foreman, Magidor, Shelah). MM++ is relatively consistent with re-
spect to the existence of a super compact cardinal.

A variaton of the proof of [21, Theorem 2.53] gives the following:

Theorem 2.12. Assume there are class many Woodin cardinals. Then the following
are equivalent:

1. MM++ holds.

2. For every Woodin cardinal δ and every stationary set preserving poset � ∈ Vδ

there is a complete embedding i : � → � where � = �(�ℵ2
δ � T ) for some

stationary set T ∈ Vδ such that

� �/i[�] is stationary set preserving.

Proof. This is a straightforward variation of the proof of Theorem 2.8. The proof that
the first item implies the second is based on the following observation:

Fact 2.13. For each M ∈ TP let HM be a correct M-generic filter for P. Then the map

i : P→ �δ � TP

which maps p to the set of M such that p ∈ HM is a complete embedding such that P
forces that (�δ � TP)/i[P] is stationary set preserving.

Proof. If G is V-generic for �δ � TP, then for any Ṡ ∈ VP P-name for a stationary
subset of ω1 the map fṠ : M 7→ σπM [HM ](Ṡ ) represents a stationary subset of ω1 in
Ult(V,G) as well as in V[G] (where πM is the transitive collapse mapping of M onto a
transitive set). Moreover we also have that if H = i−1[G] is the V-generic filter for P
induced by G and i,

[ fṠ ]G = σH(Ṡ )

holds in V[G]. This means that V[G] is a generic extension over V[H] for the forcing
σH((�δ � TP)/i[P]) which preserve the stationarity of the subsets of ω1 in V[H]. Since
G is an arbitrary V-generic filter for �δ � TP, the conclusion follows. �

The proof that the second item implies the first is a variation of the corresponding proof
in Theorem 2.8 which takes into account the extra features of the complete embedding
i : P→ �. �
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3 Woodin’s absoluteness results for Hℵ1

We shall motivate the results of the next section proving the following weak version of
Woodin’s original absoluteness theorem:

Theorem 3.1. Assume there are class many Woodin cardinals. Then the theory of Hℵ1

with parameters is invariant with respect to set forcing.

Proof. We prove by induction on n the following Lemma, of which the Theorem is an
immediate consequence:

Lemma 3.2. Assume V is a model of ZFC in which there are class many Woodin car-
dinals. Let P ∈ V be a forcing notion.

Then for all n, HV
ℵ1
≺Σn HVP

ℵ1
.

Proof. By Cohen’s absoluteness Lemma 1.2, we already know that for all models M
of ZFC and all forcing P ∈ M

HM
ℵ1
≺Σ1 HMP

ℵ1
.

Now assume that for all models M of ZFC+there are class many Woodin cardinals and
all P ∈ M we have shown that

HM
ℵ1
≺Σn HMP

ℵ1
.

First observe that MP is still a model of ZFC+there are class many Woodin cardinals.
Now pick V an arbitrary model of ZFC+there are class many Woodin cardinals and
P ∈ V a forcing notion.

Let δ ∈ V be a Woodin cardinal in V such that P ∈ Vδ.
To simplify the argument we assume V is transitive and there is a V-generic filter

G for �ℵ1
δ (we leave to the reader to remove these unnecessary assumptions).

Then, since FAℵ0 (P) holds in V and P ∈ Vδ, by Theorem 2.9.1 there is in V a
complete embedding i : P → �ℵ1

δ . Let G be V-generic for �ℵ1
δ and H = i−1[G]. Then

by our inductive assumptions applied to V (with respect to V[H]) and to V[H] (with
respect to V[G]) we have that:

HV
ℵ1
≺Σn HV[H]

ℵ1
≺Σn HV[G]

ℵ1
.

By Woodin’s work on the stationary tower forcing we also know that

HV
ℵ1
≺ HV[G]

ℵ1
.

Now we prove that
HV
ℵ1
≺Σn+1 HV[H]

ℵ1
.

Since this argument holds for any V , P ∈ V and G V-generic for P, the proof will be
completed.

We have to prove the following for any Σn-formula φ(x, z) and any Πn-formula
ψ(x, z):
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1. If
HV
ℵ1
|= ∀xφ(x, p)

for some p ∈ �V , then also

HV[H]
ℵ1
|= ∀xφ(x, p).

2. If
HV
ℵ1
|= ∃xψ(x, p)

for some p ∈ �V , then also

HV[H]
ℵ1
|= ∃xψ(x, p).

To prove 1 we note that, since HV
ℵ1
≺ HV[G]

ℵ1
, we have that

HV[G]
ℵ1
|= ∀xφ(x, p).

In particular we have that for any q ∈ HV[H]
ℵ1

we have that HV[G]
ℵ1

models that φ(q, p).
Now, since by inductive assumptions

HV[H]
ℵ1
≺Σn HV[G]

ℵ1
,

we get that
HV[H]
ℵ1
|= φ(q, p)

for all q ∈ HV[H]
ℵ1

, from which the desired conclusion follows.
To prove 2 we note that for some q ∈ HV

ℵ1
we have that

HV
ℵ1
|= ψ(q, p).

Then, since by inductive assumptions we have that

HV
ℵ1
≺Σn HV[H]

ℵ1
,

we conclude that
HV[H]
ℵ1
|= ψ(q, p).

The conclusion now follows.
The lemma is now completely proved. �

The Theorem is proved. �

Remark 3.3. Theorem 3.1 has a weaker conclusion than [11, Theorem 3.1.12] where
from the same assumptions it is drawn the conclusion that the first order theory of
L(�) is invariant with respect to set forcing. We had to weaken the conclusion of
Theorem 3.1 with respect to [11, Theorem 3.1.12] since it is not clear whether we can
replace Hℵ1 with L(�) in the proof of the above Lemma. The reason is given by the
different range of the quantifiers, since an element of Hℵ1 is essentially a real while an
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element of L(�) is essentially determined by a real and an arbitrary large ordinal. Now
in the notation of the Lemma our inductive assumption to generalize it to L(�) would
be that

〈L(�)V , ∈,�V〉 ≺Σn 〈L(�)V[H], ∈,�V〉,

and
〈L(�)V[H], ∈,�V[H]〉 ≺Σn 〈L(�)V[G], ∈,�V[H]〉.

If a Πn+1 formula ∀xφ(x,~r) relativized to L(�) with parameters in �V holds in V we
can infer that it holds in L(�V[G]) and thus that for any real r ∈ V[H] φ(r,~r) holds in
in L(�V[H]). However this is not sufficient to infer that ∀xφ(x,~r) holds in in L(�V[H])
since we do not have control on the elements of V[H] which are not reals.

4 Π2-absoluteness of the theory of Hω2 in models of MM++

In this section we prove Theorem 1.4. We leave to the reader to convert it into a proof
of Theorem 1.5.

Theorem 4.1. Assume MM++ holds in V and there are class many Woodin cardinals.
Then the Π2-theory of Hℵ2 with parameters cannot be changed by stationary set pre-
serving forcings which preserve BMM.

Proof. Assume V models MM++ and let P ∈ M be such that VP models BMM.
Let δ be a Woodin cardinal larger than |P|. By Theorem 2.12 there is a complete

embedding i : P→ Q = �δ � TP for some stationary set TP ∈ Vδ such that

P Q/i[P] is stationary set preserving.

Now let G be V-generic for Q and H = i−1[G] be V generic for P. Then V ⊂
V[H] ⊂ V[G] and V[G] is a generic extension of V[H] by a forcing which is stationary
set preserving in V[H]. Moreover by Woodin’s theorem on stationary tower forcing 2.4,
we have that HV

ℵ2
≺ HV[G]

ℵ2
.

We show that
HV
ℵ2
≺Σ2 HV[H]

ℵ2
.

This will prove the Theorem, modulo standard forcing arguments.
We have to prove the following for any Σ0-formula φ(x, y, z):

1. If
HV
ℵ2
|= ∃y∀xφ(x, y, p)

for some p ∈ HV
ℵ2

, then also

HV[H]
ℵ2
|= ∃y∀xφ(x, y, p).

2. If
HV
ℵ2
|= ∀y∃xφ(x, y, p)

for some p ∈ HV
ℵ2

, then also

HV[H]
ℵ2
|= ∀y∃xφ(x, y, p).
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To prove 1 we note that for some q ∈ HV
ℵ2

we have that

HV
ℵ2
|= ∀xφ(x, q, p).

Then, since
HV
ℵ2
≺ HV[G]

ℵ2
,

we have that
HV[G]
ℵ2
|= ∀xφ(x, q, p).

In particular, since q, p ∈ HV[H]
ℵ2

and HV[H]
ℵ2

is a transitive substructure of HV[G]
ℵ2

, we get
that

HV[H]
ℵ2
|= ∀xφ(x, q, p)

as well. The conclusion now follows.
To prove 2 we note that, since

HV
ℵ2
≺ HV[G]

ℵ2
,

we have that
HV[G]
ℵ2
|= ∀y∃xφ(x, y, p).

In particular we have that for any q ∈ HV[H]
ℵ2

we have that

HV[G]
ℵ2
|= ∃xφ(x, q, p).

Now, since V[H] models BMM and V[G] is an extension of V[H] by a stationary set
preserving forcing, we get that

HV[H]
ℵ2
≺Σ1 HV[G]

ℵ2
.

In particular we can conclude that

HV[H]
ℵ2
|= ∃xφ(x, q, p)

for all q ∈ HV[H]
ℵ2

, from which the desired conclusion follows.
The proof of the theorem is completed. �

We conclude this section with the a variation of the above result. Recall that
BMM++ asserts that

〈Hω2 , ∈,NSω1〉 ≺Σ1 〈H
VP

ω2
, ∈,NSVP

ω1
〉

for any stationary set preserving poset P, where NSω1 is a unary predicate for the non-
stationary ideal on ω1.

A straightforward variation of the above proof shows also that:

Theorem 4.2. Assume MM++ holds in V and there are class many Woodin cardinals.
Then the Π2-theory of the structure 〈Hℵ2 , ∈,NSω1〉 with parameters cannot be changed
by stationary set preserving forcings which preserve BMM++.
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5 Resurrection axioms vs generic absoluteness for the
theory of MM++

There is a close analogy between the line of research pursued in this paper and in
its sequels [19] “Category forcings, MM+++ and generic absoluteness for strong forc-
ing axioms” and [1] “Absoluteness via resurrection” and a line of research initiated
by unpublished work of Chalons and Veličković and which has brought Hamkins and
Johnstone to the formulation of the resurrection axioms [7] and Tsaprounis to the for-
mulation of the unbounded resurrection axioms [17].

Hamkins and Johnstone state that the weak resurrection axiom wRA(Γ) holds for a
class of posets Γ if for any P ∈ Γ there is Q̇ ∈ VP such that Hc ≺ HP∗Q̇

c . RA(Γ) holds if
the witness Q̇ ∈ VP of the fact that Hc ≺ HP∗Q̇

c can also be found so that P forces Q̇ to
be in Γ as well.

Tsaprounis formulate URA(Γ) as the statement that for all P ∈ Γ and for all regular
θ there is Q̇ ∈ VP which is forced by P to be in Γ as well so that, whenever G ∗ H is
V-generic for P ∗ Q̇, there is in V[G ∗ H] an elementary embedding j : HV

θ → HV[G∗H]
λ

with critical point c.
We can define wURA(Γ) by dropping the requirement that the name Q̇ ∈ VP used

to obtain the map j : HV
θ → HV[G∗H]

λ is forced by P to be in Γ.
A close inspection of Woodin’s proof of [21, Theorem 2.53] actually shows that

in the presence of class many Woodin cardinals FAω1 (Γ) is equivalent to wURA(Γ).
Tsaprounis and Asperò show that under the same large cardinal assumptions MM++ is
equivalent to URA(SSP) essentially arguing along the same lines of Theorem 2.12 of
the present paper.

We can translate our proof of the Σ2-absoluteness result for models of MM++ to the
resurrection axioms setting and use it to separate RA(SSP) and RA(proper) as follows:

Theorem 5.1. Assume CH fails and Γ is a definable class of posets such that RA(Γ)
holds. Then

HV
c ≺Σ2 HVP

c

for every P ∈ Γ which forces BFA<c(Γ).

Proof. First of all it is not hard to check that RA(Γ) + ¬CH implies BFA<c(Γ) (see the
proof of [7, Observation 3] and check that the same argument would work with RA(Γ)
in place of wRA(Γ)). Given some P ∈ Γ which forces BFA<c(Γ) we can follow the same
pattern of the proof of Theorem 4.1 recalling that RA(Γ) grants that there is Q̇ ∈ VP

such that:

• HV
c ≺ HVP∗Q̇

c ,

• P forces Q̇ ∈ Γ.

Now we can use that BFA<c(Γ) holds in V and VP to argue that:

HV
c ≺Σ1 HVP

c ≺Σ1 HVP∗Q̇

c .

We can now follow the usual pattern to reach the desired conclusion. �
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We remark the following:

Fact 5.2. Assume there is a reflecting cardinal. Then RA(proper) + ¬CH implies that
the canonical functions on ωω1

1 are not a dominating family modulo the club filter.

Proof. First of all we have already pointed out that RA(proper) + ¬CH implies BPFA
(by which we abbreviate BFA<c(proper)). Now the proof relies on the following:

Fact 5.3. Assume Q̇ ∈ VColl(ω1,ω1) is a name for the usual proper iteration of length a
reflecting cardinal δ which gives a model of BPFA. Then the canonical functions are
not dominating in VP∗Q̇.

We roughly sketch why this is the case, this argument has been explained to me by
Asperò.

Proof. We can assume that Coll(ω1, ω1) is the poset which shoots a new function in
ωω1

1 using countable initial segments. Now let α < δ be an ordinal and let M ≺ Hδ+

be a countable model such that α ∈ M. Let g : M ∩ ω1 → M ∩ ω1 be M-generic for
Coll(ω1, ω1) and use the properness of Q̇ in VColl(ω1,ω1) to find q̇ such that 〈g, q̇〉 is an
M-generic condition for Coll(ω1, ω1) ∗ Q̇. Now we extend g to

g′ = g ∪ {〈M ∩ ω1, otp(M ∩ α)〉}.

This gives that whenever 〈g′, q̇〉 ∈ f ∗G for some f ∗G V-generic for Coll(ω1, ω1) ∗ Q̇
we have that

M[ f ∗G] ≺ Hδ+ [ f ∗G]

is a countable substructure with α, f ∈ M[ f ∗ G], M[ f ∗ G] ∩ δ+ = M ∩ δ+ and
f (M ∩ ω1) = otp(M ∩ α). α has size ω1 in V[ f ∗ G] since the latter models that δ is
ω2. Since α ∈ M, we have that in M[ f ∗ G] there is a continuous chain of countable
sets {Xi : i < ω1} such that α =

⋃
i<ω1

Xi. This chain can be used to define the α-th
canonical function by gα(i) = otp(Xi). We can now check that M ∩ α = XM∩ω1 and that

f (M ∩ ω1) = otp(M ∩ α) = otp(XM∩ω1 ) = gα(M ∩ ω1).

A standard reflection argument gives that M[ f ∗G] models that the set of i < ω1 such
that f (i) ≥ gα(i) is stationary. Since M[ f ∗G] ≺ Hδ+ [ f ∗G], we get that this set is really
stationary in Hδ+ [ f ∗G]. Since this argument can be repeated for all α < δ we get that
f is a function which is not dominated by any canonical function in V[ f ∗G].

Thus VColl(ω1,ω1)∗Q̇ models that the canonical functions are not a dominating family
modulo the club filter. �

This is a Σ2-statement in Hω2 which holds in VColl(ω1,ω1)∗Q̇ which is a model of BPFA.
The previous theorem grants that it holds also in V . �

The above shows that (under mild large cardinal assumptions) RA(SSP) and RA(proper)
give a different Π2-theory of Hℵ2 , since it is well known that BMM (which follows from
RA(SSP) +¬CH) gives that the canonical functions are dominating in ωω1

1 modulo the
club filter.
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We finally remark that the forcing axioms RAα(Γ) formulated in [1] are the natural
outcome of the further investigations of the connection between resurrection axioms
and generic absoluteness results outlined in this last section. Moreover the forcing
axiom MM+++ introduced in [19] is actually equivalent to a strengthening of URA(SSP)
(in the final section of [19] this equivalent formulation is spelled out in detail).
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