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Using a data set of 2.93 fb−1 taken at a center-of-mass energy of 
√

s = 3.773 GeV with the BESIII detector 
at the BEPCII collider, we measure the process e+e− → J/ψγ → μ+μ−γ and determine the product 
of the branching fraction and the electronic width Bμμ · �ee = (333.4 ± 2.5stat ± 4.4sys) eV. Using the 
earlier-published BESIII result for Bμμ = (5.973 ± 0.007stat ± 0.037sys)%, we derive the J/ψ electronic 
width �ee = (5.58 ± 0.05stat ± 0.08sys) keV.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The electronic width of the J/ψ resonance �ee ≡ �ee( J/ψ) has 
been measured by BaBar [1] and CLEO-c [2], employing the tech-
nique of Initial State Radiation (ISR), in which one of the beam par-
ticles radiates a photon. Consequently, the invariant mass range be-
low the center-of-mass energy of the e+e− collider becomes avail-
able. Using a different method, the kedr experiment also measured 
its electronic width with improved precision [3]. In this paper, we 
study the process e+e− → μ+μ−γ using the ISR method with 
μ+μ− invariant mass m2μ between 2.8 and 3.4 GeV/c2, which 
covers the charmonium resonance J/ψ . The cross section σ J/ψγ ≡
σ(e+e− → J/ψγ → μ+μ−γ ) is proportional to �ee · Bμμ , where 
Bμμ ≡ B( J/ψ → μ+μ−) is the branching fraction of the muonic 
decay of the J/ψ resonance. With the precise measurement of 
Bμμ from BESIII [4], we have the opportunity to obtain �ee with 
high precision. The differential cross section of σ J/ψγ can be ex-
pressed in terms of the center-of-mass energy squared s as

dσ J/ψ (s,m2μ)

dm2μ
= 2m2μ

s
W (s,m2μ)BW (m2μ), (1)

where W (s, m2μ) is the radiator function, describing the probabil-
ity that one of the beam particles emits an ISR photon [5], and 
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BW (m2μ) is the Breit–Wigner function. W (s, m2μ) is calculated 
by the phokhara event generator, with an estimated accuracy of 
0.5% [6]. The Breit–Wigner function is

BW (m2μ) = 12πBμμ · �ee�tot

(m2
2μ − M2

J/ψ)2 + M2
J/ψ�2

tot

, (2)

[7] in which �tot and M J/ψ are the J/ψ full width and mass. Both 
values are taken from the world averages [7]. The cross section 
σ J/ψγ over a specified m2μ range can be expressed using:

σ J/ψγ (s) = N J/ψ

ε ·L = �ee · Bμμ · I(s), (3)

where N J/ψ is the number of signal events within the mass range 
after background subtraction, ε is the selection efficiency obtained 
from a Monte Carlo (MC) simulation, L is the integrated luminos-
ity of the data set, and I(s) is the integral

I(s) ≡
mmax∫

mmin

2m2μ

s
W (s,m2μ)b(m2μ)dm2μ, (4)

in which b(m2μ) ≡ BW (m2μ)/�ee · Bμμ . A mass range between 
mmin = 2.8 GeV/c2 and mmax = 3.4 GeV/c2 is chosen in which 
N J/ψ is determined.

The above equations do not take into account interference ef-
fects of the resonant μ+μ− production via J/ψ and the non-
resonant e+e− → μ+μ−γ QED production. At lowest order in 
the fine structure constant α, these can be included by replacing 
BW (m2μ) by [8]

BW ′(m2μ) = 4πα2

3m2
2μ

(∣∣1 − ζ(m2μ)
∣∣2 − 1

)
, (5)

with
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ζ(m2μ) = 3

α
·

√
Bμμ · �ee�totM J/ψ

M2
J/ψ − m2

2μ − iM J/ψ�tot
(6)

and b(m2μ) by its equivalent b′(m2μ) ≡ BW ′(m2μ)/�ee ·Bμμ . The 
interference is non-symmetrical around the peak; destructive be-
low and constructive above. The radiator function gives a larger 
weight to lower photon energies, corresponding to higher di-muon 
invariant masses. This changes the m2μ shape around the peak 
asymmetrically. Replacing b(m2μ) by b′(m2μ) in formula (4) and 
using the world average [7] for �ee · Bμμ enhances I(s) by about 
2.2%. The function b′(m2μ) depends on �ee ·Bμμ . Hence, an itera-
tive procedure is used for its extraction.

We use e+e− collision data collected at the Beijing Spectrom-
eter III (BESIII) experiment. The BESIII detector [9] is located at 
the double-ring e+e− Beijing Electron Positron Collider (BEPCII). 
The cylindrical BESIII detector covers 93% of the full solid angle. It 
consists of the following detector systems: (1) A Multilayer Drift 
Chamber (MDC) filled with a Helium-based gas, composed of 43 
layers, providing a spatial resolution of 135 μm and a momentum 
resolution of 0.5% for charged tracks at 1 GeV/c in a magnetic field 
of 1 T. (2) A Time-of-Flight system (TOF), composed of 176 plastic 
scintillator counters in the barrel part, and 96 counters in the end-
caps. The time resolution in the barrel is 80 ps and 110 ps in the 
endcaps. For momenta up to 1 GeV/c a 2σ K/π separation is ob-
tained. (3) A CsI(Tl) Electro-Magnetic Calorimeter (EMC), with an 
energy resolution of 2.5% in the barrel and 5% in the endcaps at 
an energy of 1 GeV. (4) A Muon Chamber (MUC) consisting of nine 
barrel and eight endcap resistive plate chamber layers with a 2 cm 
position resolution.

We analyze 2.93 fb−1 [10] of data taken at 
√

s = 3.773 GeV
in two separate runs in 2010 and 2011. A Geant4-based [11,12]
Monte Carlo (MC) simulation is used to determine efficiencies and 
study backgrounds. To simulate the ISR process e+e− → μ+μ−γ , 
we use the phokhara event generator [6,13]. It includes ISR and 
final state radiation (FSR) corrections up to next-to-leading order 
(NLO). Hadronic ISR production is also simulated with phokhara. 
Bhabha scattering is simulated using the babayaga 3.5 event gen-
erator [14]. Continuum MC is produced with the kkmc genera-
tor [15].

We require the presence of at least two charged tracks in the 
MDC with net charge zero. The points of closest approach from the 
interaction point (IP) for these two tracks are required to be within 
a cylinder of 1 cm radius in the transverse direction and ±10 cm
of length along the beam axis. In case of three-track events, we 
choose the track pair with net charge zero which is closest to 
the IP. The polar angle θ of the tracks is required to be found in 
the fiducial volume of the MDC, 0.4 rad < θ < π − 0.4 rad, where 
θ is the polar angle of the track with respect to the beam axis. We 
require the transverse momentum pt to be greater than 300 MeV/c
for each track. To enhance statistics and to suppress non-ISR back-
ground, we investigate untagged ISR events, where the ISR pho-
ton is emitted under a small angle θγ , almost collinear with the 
beam, and therefore does not end up in the fiducial volume of the 
EMC. This is a new approach with respect to BaBar and CLEO-c 
(both used tagged ISR photons), which has been proved to be valid 
and effective by using the phokhara event generator [16]. A one-
constraint (1C) kinematic fit is performed under the hypothesis 
e+e− → μ+μ−γ , using as input the two selected charged track 
candidates as well as the four-momentum of the initial e+e− sys-
tem. The constraint is a missing massless particle. The fit imposes 
overall energy and momentum balance. The χ2

1C value returned 
by the fit is required to be smaller than 10. In addition, the pre-
dicted missing photon angle with respect to the beam axis, θγ , has 
to be smaller than 0.3 radians or greater than π − 0.3 radians in 
the lab frame. Radiative Bhabha scattering e+e−γ (γ ) has a cross 
Table 1
Total number of non-muon background events between 
2.8 ≤ m2μ ≤ 3.4 GeV/c2 obtained with MC samples, 
which are normalized to the luminosity of the data set.

Final state Background events

e+e−(γ ) negl.
π+π−γ 8.4 ± 2.9
π+π−π0γ 3.3 ± 1.8
π+π−π0π0γ 0.3 ± 0.6
π+π−π+π−γ negl.
K + K −γ 1.7 ± 1.3

K 0 K 0γ negl.
ppγ negl.
Continuum 1.7 ± 1.3
ψ(3770) → D+ D− negl.

ψ(3770) → D0 D0 negl.
ψ(3770) → non D D 11.2 ± 3.4
J/ψ → non μμ 11.8 ± 3.5

section that is up to three orders of magnitude larger than the sig-
nal cross section. Therefore, electron tracks need to be suppressed. 
An electron particle identification (PID) algorithm is used for this 
purpose, employing information from the MDC, TOF and EMC [17]. 
The probabilities for the track being a muon P (μ) or an electron 
P (e) are calculated, and P (μ) > P (e) is required for both charged 
tracks, which leads to an electron suppression of more than 96%. 
To further suppress hadronic background, an Artificial Neural Net-
work (ANN) built on the TMVA package [18] is used. The ANN is 
described in detail in Ref. [10]. Both charged tracks are required to 
have a classifier output value yANN of this method smaller than 0.3 
to be treated as muons, leading to a signal loss of less than 30% 
and a background rejection of more than 99%.

Background beyond the radiative processes μ+μ−γ is studied 
with MC simulations. Table 1 lists the number of events remain-
ing after all previously described requirements in the mass range 
between 2.8 and 3.4 GeV/c2. About 4.8 × 105 events are found in 
the data within this range. The background fraction is found to be 
smaller than 0.04% for each of the 150 m2μ mass bins. We subtract 
it from the data bin by bin.

The selection efficiency ε is determined based on signal MC 
events. It is obtained as the ratio of the measured number of 
events after all selection requirements Ntrue

measured to all generated 
ones Ntrue

generated only. The true MC sample of J/ψ decays with the 
full θγ range, which does not contain the detector reconstruction, 
is used here by applying efficiency corrections to each track for 
muon tracking reconstruction, electron-PID, and ANN efficiency. 
These corrections have been derived in Ref. [10]. We find ε to be 
(32.04 ± 0.09)%, where the error is due to the size of the signal 
MC sample.

The number of J/ψ events N J/ψ is determined from a binned 
maximum likelihood fit to data. The fit function f (x) used is

f (x) = N J/ψ
[
M(x) ⊗ G(x)

] + (
Ntotal − N J/ψ

)
p(x), (7)

where M(x) describes the shape of the MC-simulated J/ψ peak. 
We extract the shape from a MC simulation of the J/ψ produc-
tion using a certain �ee · Bμμ value as an input, together with 
QED μ+μ−γ production (including interference effects) as sim-
ulated with the phokhara event generator. Then, the histogram 
M(x) is obtained by subtracting a pure QED μ+μ−γ MC sample. 
It is shown in Fig. 1, using the world average [7] for �ee · Bμμ

as input. To take into account differences in mass resolutions be-
tween data and MC simulation, M(x) is convolved (denoted by the 
operator ⊗) with a Gaussian distribution G(x) with mean x̄ and 
width σ , whose parameters are determined by the fit to data. To 
describe the non-resonant QED production in the fit, a polynomial 
of fourth order is used,
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Fig. 1. MC histogram from the phokhara generator after full detector simulation 
used for the fit. The value of �ee ·Bμμ used for generation is the one from Ref. [7].

Fig. 2. Fit to the data using the final value of �ee · Bμμ from Table 3 in the MC 
histogram for the fit.

p(x) =
4∑

i=0

ai x
i . (8)

Ntotal is the constant number of data events between 2.8 and 
3.4 GeV/c2. Free parameters in the fit are N J/ψ , x̄, σ , and the co-
efficients ai (i = 1, . . . ,4). Hence, N J/ψ can be obtained directly 
by the fit. The fit result is shown in Fig. 2; we find x̄ = (2.6 ±
0.1) MeV/c2, σ = (10.5 ± 0.2) MeV/c2, and χ2/ndf = 149.8/143.

Equation (3) is used to determine �ee ·Bμμ in an iterative pro-
cess. In each iteration, we simulate the histogram M(x) and cal-
culate I(s) (including interference corrections), using a �ee · Bμμ

input value, and extract the �ee ·Bμμ output with Eq. (3). This re-
sult is used as input for the next iteration. We choose the PDG 
value [7] as the starting value. The results of each iteration are 
summarized in Table 3. After three iterations the result becomes 
stable within four decimal places, which corresponds to the exper-
imental uncertainty. As the final value we find

�ee · Bμμ = (333.4 ± 2.5stat ± 4.4sys) eV,

where the first error is the statistical uncertainty from the fit pro-
cedure, and the second error is the systematic uncertainty.

All systematic uncertainties are summarized in Table 2. They 
are summed up in quadrature to be 1.3%. They are derived as fol-
lows:
Table 2
Summary of the systematic uncertainties.

Source Uncertainty 
(%)

Background subtraction negl.
Muon tracking efficiency 0.5
Muon ANN efficiency 0.5
Muon e-PID efficiency 0.5
1C kinematic fit 0.5
Angular acceptance 0.1
Luminosity 0.5
Radiator function 0.5
Parametrizing the interference 0.2
Variation of fit range 0.3

Sum 1.3

Table 3
Results of the iteration steps. As the starting value, the PDG 2014 one is used. The 
errors are the statistical ones.

Step �ee ·Bμμ

input value
�ee ·Bμμ

output value [eV]

1 PDG value [7] 333.9 ± 2.5
2 result of step 1 333.3 ± 2.5
3 result of step 2 333.4 ± 2.5
4 result of step 3 333.4 ± 2.5

(1) Integral I(s): The difference in I(s), when enhancing or de-
creasing the value of �ee · Bμμ within five standard deviations of 
the error, claimed by Ref. [7], is smaller than 0.2%. This deviation 
is considered as the systematic uncertainty of accommodating the 
interference effects in I(s).

(2) Background subtraction: A conservative uncertainty of 100% 
is assumed for the MC samples. Hence, the systematic uncertainty 
due to background subtraction is smaller than 0.04% per bin and 
can therefore be neglected.

(3) Efficiency ε: The data-MC efficiency corrections have been 
studied in Ref. [10]. The corresponding systematic uncertainties are 
listed in Table 2. They are found to be smaller than 0.5% in each 
case.

(4) To estimate the uncertainty introduced by the requirements 
on θγ and χ2

1C , the resolution differences between data and MC 
simulation in these variables are obtained. In case of θγ , we find 
the resolution difference to be (66 ± 3) × 10−5 radians, by com-
paring an ISR photon tagged clean μ+μ−γ sample both from data 
and MC simulation. In case of χ2

1C , we determine the efficiency 
of the applied requirement χ2

1C < 10 in data and MC simulation. 
We vary this requirement in data such that the efficiencies in data 
and MC simulation are the same. The difference to the actually 
used requirement is taken as resolution difference, which we find 
to be (1.1 ± 0.1) units in χ2

1C . To achieve a better description of ε , 
both variables are smeared in the signal MC sample with a Gaus-
sian with a mean value of zero and a width corresponding to the 
resolution difference. To estimate the contribution to the system-
atic uncertainty, these variables are also varied with a ±1 standard 
deviation, and the difference in ε is taken as the systematic uncer-
tainty, which is found to be less than 0.5% for χ2

1C and negligible 
for θγ .

(5) The chosen mass range between 2.8 and 3.4 GeV/c2 is varied 
within 0.1 GeV/c2, using the final value of �ee ·Bμμ after the iter-
ation procedure. The difference in �ee · Bμμ is smaller than 0.3%, 
and is used as a systematic uncertainty.

(6) The luminosity has been measured in Refs. [19,10] with an 
uncertainty of 0.5%.

(7) The radiator function is extracted from the phokhara event 
generator [13] and has an uncertainty of 0.5%.
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Table 4
Results of the BaBar [1], CLEO-c [2] and KEDR [3] measurements compared to this work.

Measurement �ee ·Bμμ [eV] Used Bμμ value [%] �ee [keV]

BaBar 330.1 ± 7.7stat ± 7.3sys 5.88 ± 0.10 [20] 5.61 ± 0.20
CLEO-c 338.4 ± 5.8stat ± 7.1sys 5.953 ± 0.056stat ± 0.042sys [21] 5.68 ± 0.11stat ± 0.13sys

KEDR 331.8 ± 5.2stat ± 6.3sys 5.94 ± 0.06 [22] 5.59 ± 0.12
This work 333.4 ± 2.5stat ± 4.4sys 5.973 ± 0.007stat ± 0.037sys [4] 5.58 ± 0.05stat ± 0.08sys
(8) The angular acceptance of the charged tracks is studied by 
varying this requirement by more than three standard deviations 
of the angular resolution, and studying the corresponding differ-
ence in the final result. An uncertainty of less than 0.1% is found.

With Bμμ = (5.973 ± 0.007stat ± 0.038sys)% from an indepen-
dent BESIII measurement [4], our measurement yields

�ee = (5.58 ± 0.05stat ± 0.08sys) keV.

Our measurement of �ee · Bμμ is consistent with the results from 
BaBar [1], CLEO-c [2] and KEDR [3]. The measured value for �ee is 
more precise, as summarized in Table 4.

In summary, we have used the ISR process e+e− → J/ψγ →
μ+μ−γ to measure �ee ·Bμμ = (333.4 ± 2.5stat ± 4.4sys) eV with 
a total relative uncertainty of 1.5%. Combined with the BESIII mea-
surement of Bμμ , we obtain �ee = (5.58 ± 0.05stat ± 0.08sys) keV
with a relative precision of 1.7%.
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