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Abstract

String theory gives S matrix elements from which is not possible to read any gauge information. Using 
factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested 
by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. 
The α′ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the 
three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead 
of three. They are written in the so called Gervais–Neveu gauge. The full Effective Field Theory is in a 
generalization of the Gervais–Neveu gauge with α′ corrections. Moreover a field redefinition is required to 
be mapped to the field used by string theory.

We also give an intuitive way of understanding why string choose this gauge in terms of the minimal 
number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and conclusions

String theory is a good candidate for describing all the interactions in Nature, gravity in-
cluded. This happens because in its spectrum there are both massless spin 1 and spin 2 particles. 
Nevertheless the presence of these particles does not mean that they can be identified with gauge 
bosons and the graviton. This can only be established when interactions are considered. There-
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Fig. 1. The usual Euclidean color ordered vertices vs the ones suggested by string theory. Each tree diagram must be 
then multiplied by gN−2 1

κ T r(Ta1 . . . TaN
) with g the Yang–Mills coupling constant, N the number of legs and Ta the 

unitary algebra matrix normalized as in Appendix B.

fore the study and the derivation of effective field theory (EFT) actions (to be understood as 1PI 
actions) from string theory is a very well studied subject starting already at the beginning of 70s 
([1–5]) and improved in the 80s (see for example [6]) but we want to approach it from a different 
point of view.

Usually the aim is to determine the gauge invariant effective field theory (see [7] for a nice 
approach).

Our main focus is slightly different since we are not mainly interested in the derivation of EFT 
action for gluons but we want to explore in agnostic way which is the gauge fixed EFT suggested 
by string theory and the connection between the fields used by string theory and the canonical 
ones usually used in defining EFT. Essentially we will derive and extend the gauge proposed in 
[8]. Our approach differs from the one used in [9] within the Witten open string field theory [10]
since we use plain old string theory and we are interested in finding the gauge fixing suggested 
by it. It differs also from [11] since we try to read the gauge and the fields suggested by string 
theory rather than try to verify that the gauge suggested in [8] (or more precisely an extension to 
the background field method in the case of [11] as first proposed in [12]) works.

Since all choices made by string theory are clever it is worth trying to read in the most direct 
way what it suggests. Actually it turns out that the suggested color ordered vertices by string 
theory [8] are more efficient than the usual ones since the three gluon color ordered vertex has 
three terms instead of the usual six and the four gluon one has one term instead of the usual 
three as shown in Fig. 1. The reason is that the usual color ordered vertices are obtained starting 
from the Feynman rules in Feynman gauge and then mimicking string by performing a color 
decomposition (see [13,14] and references therein), here we adopt a more radical point of view 
and we try to mimick string in all.

Our starting point is to notice that while computing the EFT one is actually using a gauge 
fixed EFT action. The gauge fixing is necessary in order to have a well defined propagator and 
a well defined propagator is needed in order to compute the S matrix elements which are then 
compared with the ones from string theory. This happens because the EFT is a 1-PI action and 
the S matrix elements are computed from truncated on shell Green functions.
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Fig. 2. The 4 state string S matrix is given by the sum of the product of two 3 state string amplitudes and a propagator 
where the intermediate state i∗ is not required to be physical.

Fig. 3. The 5 state string S matrix is given by the sum of the product of three 3 state string amplitudes and two propagators 
where the intermediate 3 state string amplitude has two states i∗, j∗ which are not required to be physical.

The S matrix elements of gauge invariant operators are obviously independent on the gauge 
fixing but the intermediate steps are not. So one could wonder how it is possible to extract any 
information on gauge fixing and fields comparing S matrices. In fact it is not possible. Never-
theless factorization of string amplitudes allows to have a glimpse on how string theory fixes the 
gauge since it yields amplitudes with off shell and unphysical states (see [15] for previous work 
on how to extend off shell the string amplitudes). For example Fig. 2 shows how it is possible 
to obtain a 3 state amplitude with one possibly unphysical state from a factorization of a 4 state 
physical one. In the same spirit it is possible to start with a 5 state amplitude and get an amplitude 
with one physical state and two possibly not physical ones as shown in Fig. 3.

Using these unphysical amplitudes we can try to understand which gauge fixing is suggested 
by string theory in the EFT computations. To find which gauge is chosen by string we have 
actually to introduce some other requirements. The reason is the following. The amplitude with 
two possibly non-physical states is Fig. 3 is not the full 3 point truncated Green function, i.e. 
the 3 vertex. It is only a part of it since Green functions are totally symmetric on the external 
legs and the amplitude we get is not. This means that either we compute the full 3 vertex or we 
compare with a color ordered vertex.

The first approach is not readily available since the off shell 3 point string partial amplitude 
treats in asymmetric way the off shell gluons.1 This means that if we want to construct a 3 vertex, 
that is required to be totally symmetric in the exchange of gluons, we should sum over all the 
permutations of the external states. This would require to reexam the way we are used to do 
string computations and it would lead too far away.

We are therefore left with to the latter approach, also for ease of computation. In doing this 
partial identification then we introduce an element of arbitrarily. Since each on shell string dia-
gram is cyclically invariant it is the natural to compare with a cyclically invariant color ordered 
vertex. It turns out that the 3 string truncated Green function we are dealing with is not cyclically 
invariant but it is up to gauge conditions. It follows then that we cannot identify the 3 state string 
truncated Green function with the cyclically invariant color ordered vertex but there is a left over, 
see eq. (21). This means that we cannot exactly match the naive off shell string amplitudes with 
an EFT but we can try to mimic them as close as possible. We are therefore left with the choice 
of how to choose the left over. Then the result on the gauge then depends on the assumption on 

1 This issue can be probably avoided using the twisted propagator at the price of having a non-canonical propagator 
(see [20] and references therein). The issue is under investigation.



132 I. Pesando / Nuclear Physics B 918 (2017) 129–161
what it means to mimic as close as possible the string truncated Green functions with the EFT 
vertices. Obviously we are not obliged to use the suggested gauge and use whichever gauge we 
want but trying to mimic as close as possible the string can give useful ideas. Our way of defin-
ing as close as possible is to try to minimize the number of left over terms in the 3 state vertex 
and then check that this implies that the number of terms in 4 point color ordered vertex, i.e. the 
contact terms, is also minimized. This is what done in this paper.

Using this approach we find that the gauge chosen is an α′ corrected version of the Gervais–
Neveu gauge [8] and that the field chosen by string theory to describe the gluon is not the gauge 
field used naturally in EFT but it is connected to it by a field redefinition. This kind of field re-
definition is natural and expected in string field theory but it is a kind of surprise in the plain old 
string theory. Since at the end we are comparing partial color ordered S matrix elements we can 
also use a gauge fixed EFT expressed using the usual gauge field and the usual Feynman gauge 
at the price of having a bigger difference between the vertices suggested by the string and the 
ones computed from EFT.

It would also be interesting to consider the color ordered vertices suggested by string theory 
in a magnetic background using the techniques developed in [21,22] and compare with the ones 
used in [11]. It is very likely that the string suggestion is of a non-commutative nature. Also 
considering the superstring could be interesting in order to see whether a field redefinition is 
necessary.

The rest of this article is organized as follows. In section 2 we describe in more details the idea 
on how to read the vertices and color ordered vertices from string theory and we compare with 
the usual approach in determining the EFT. We introduce the color ordered vertices in a slightly 
different way as usual (see [13,14] and references therein) since they are introduced as a tool to 
mimic string diagrams as close as possible. In section 3 we perform the actual computation of 
the 3 color ordered vertex. We discuss how it compares to the most general 3 vector Lagrangian 
and the field redefinition which is needed to map the string field to the usual one used in EFT. We 
also discuss the string color ordered vertex as result of the minimal information which is needed 
to reconstruct the gauge invariant EFT. Finally in section 4 we recover the 4 point color ordered 
vertex up to two derivatives and we show that choice performed for the 3 vertex is the one which 
minimize the number of terms in this 4 point vertex.

2. The basic idea

In this section we would like to summarize some well known facts and then explain in more 
detail the basic idea behind this paper. The first point to quickly review is how factorization works 
in the simplest setting and allows to extract string amplitudes where some states are not required 
to be physical. Then we review the connection between Lagrangian interactions and Feynman 
vertices and we discuss the color ordered vertices (see [13,14] for a different way of introducing 
them) which are then used in the rest of the paper for extracting the gauge fixing. Finally we 
exemplify the approach with the simplest computation, i.e. the derivation of the propagator or 
that is the same the kinetic term.

2.1. Simple factorization

In the old days of string theory the tree amplitude of N open string physical states φi (i =
1, . . .N ) was computed as (see Appendix A for conventions)
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A(φ1, . . . φN) = 〈〈φ1|V (1;φ2)
1

L
(X)
0 − 1

V (1;φ3) . . .
1

L
(X)
0 − 1

V (1;φN−1)|φN 〉. (1)

This amplitude is cyclically symmetric, i.e. A(φ1, . . . φN) = A(φN, . . . φ1). In the previous ex-
pression V (x; φ) is the vertex operator associated to the physical state φ of conformal dimension 
1, |φ〉 = V (x = 0, φ)|0〉SL(2,R). This expression roughly corresponds to a truncated Feynman di-

agram associated with a cubic theory and propagator 1/(L
(X)
0 − 1). Truncated diagram because 

the states are on shell and because of this there is not propagator immediately after (before) the 
bra(ket) state.

The previous expression gives part of the S matrix and the full S matrix is obtained by 
summing over all non-cyclically inequivalent permutations after having multiplied the previous 
expression for the Chan Paton contribution and having given a color a to all the physical states 
φ → φa , explicitly

S(φ1,a1 , . . . φN,aN
) =ı A(φ1,a1 , . . . φN,aN

), (2)

where A is the connected truncated Green function

A(φ1,a1 , . . . φN,aN
)

= α′ N−3

κ
C0NN

0

∑
non-cyclical perm.s σ

A(φσ(1),aσ(1)
, . . . φσ(N),aσ(N)

) tr(Taσ(1)...Taσ(N)
), (3)

where the factor α′ N−3 can be reabsorbed into the definition of the tree amplitude normaliza-
tion C0 [17] and the vertex normalization N0 but we prefer to make it clear since it makes the 
propagator canonical.2

The previous amplitude (1) can be recast in a more modern form by writing the propagator in 

an integral form 1/(L
(X)
0 − 1) = ∫ 1

0 dy yL
(X)
0 −2 and then moving all the terms involving L(X)

0 to 
the right and changing integration variables to get a correlator integrated over the moduli space 
as

A(φ1, . . . φN)

=
1∫

0

dx3

x3∫
0

dx4 . . .

xN−2∫
0

dxN−1 〈〈φ1|V (1;φ2)V (x3;φ3) . . . V (xN−1;φN−1)|φN 〉. (4)

For our purposes we need only the 3 point amplitude with two non-physical states and one 
physical which can be readily obtained by factorizing the N = 5 amplitude in the old form

A(φ1, . . . φ5) = 〈〈φ1|V (1;φ2)
1

L
(X)
0 − 1

V (1;φ3)
1

L
(X)
0 − 1

V (1;φ4)|φ4〉. (5)

We can now insert four times the partition of unity

I =
∫

dDk̂

(2π)D

[
|k̂〉 〈〈k̂| + α

μ
−1|k̂〉 〈〈k̂|αμ

1 + α
μ
−2√
2

|k̂〉 〈〈k̂| α
μ
2√
2

+ α
μ
−1α

ν
−1√

2! |k̂〉 〈〈k̂|α
μ
1 αν

1√
2! + . . .

]
=

∑
α

|α〉 〈〈α|, (6)

2 Explicitly we have with respect to [17] Chere
0 = Cthere

0 κα′ 3 and N here
0 = N there

0 /α′ when we consider the different 
trace normalizations tr there(TaTb) = 1 δab while we use the normalization given in eq. (69) which implies κ = 1 .
2 2



134 I. Pesando / Nuclear Physics B 918 (2017) 129–161
Fig. 4. The 6 states string S matrix is given by the sum of the product of four 3 states string amplitudes and three 
propagators where one of the 3 states vertices involves three i∗, j∗, k∗ states which are not required to be physical.

Fig. 5. The intuitive reason why we label the states in a counterclockwise fashion.

where k̂ is the dimensionless momentum and |α〉 is a generic basis element of the string Fock 
space which is eigenstate of L(X)

0 with eigenvalue l0(α). These states are normalized as 〈〈β|α〉 =
δα,β . We then immediately get the mathematical expression corresponding to Fig. 3

A(φ1, . . . φ5) =
∑
α,β

〈φ1|V (1;φ2)|α〉 1

l0(α) − 1
〈〈α|V (1;φ3)|β〉 1

l0(β) − 1
〈〈β|V (1;φ4)|φ4〉.

(7)

In this expression the sub-amplitude with two states which are not necessarily physical is 
〈〈α|V (1; φ3)|β〉 and corresponds to the part of the Fig. 3 with dotted lines. Notice however that 
this amplitude is not cyclically symmetric as the corresponding amplitude with physical states (it 
is however actually sufficient to have off shell but transverse states to get cyclicity).

Even more generally starting from a 6 state amplitude is possible to find a 3 state amplitude 
where all states are possible unphysical as shown in Fig. 4 and first derived in the seminal paper 
[16]. In the rest of the paper we are not going to use this more general vertex and therefore we 
do not write its expression.

In the following we depict the string amplitudes mostly as interactions on a disc. On a disc 
the states are labeled counterclockwise because this is the natural way of labeling starting from 
the intuitive strip picture as shown in Fig. 5 for the three gluon amplitude.

In the case of 3 gluons the string S matrix element can then be depicted as in Fig. 6.

2.2. Usual way of computing the EFT

To compute the gauge invariant EFT we proceed order by order in the number of fields AN , 
in power of derivatives ∂n and in the YM coupling constant gk . The Lagrangian of order N can 

be written schematically as L[N ] = √
2α′−D ×[√2α′2− 1

2 D
g]k ×[√2α′∂]m ×[√2α′ 1

2 D−1
A]N . 

Taking in consideration that gs originates efficaciously from cubic vertices in string we have the 
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Fig. 6. The 3 gluon string S matrix is given by the sum of the two cyclically inequivalent orderings.

usual relations 3k = 2I + N and I = L + k − 1 where I is the number of internal lines. We can 
then write L[N ] = √

2α′N+m−L(D−4)
gN−2+2L∂mAN where L is the number of loops. Since the 

Lagrangian is a scalar and we want it to be expressed using gauge invariant field strength (we 
do not consider Chern–Simons theories) we need an even number of Lorentz indices and we get 

finally L[N ] = √
2α′N+n−4−L(D−4)

gN−2+2L∂nFN .
In the following we are interested in the tree EFT, i.e. L = 0. If we are also only interested to 

up (2α′)n then only a finite number of terms are needed since N ≤ 1
2n + 2.

The usual procedure for computing the EFT is roughly as follows. Suppose we have computed 
the EFT to order N − 1 in the fields and order (2α′)n. In order to do so we have fixed a gauge 
since in order to compute the S matrix elements with k particles we need the k point Green 
functions and they are obtained from 1PI vertices also by joining some of them with inverse 
propagators. To compute the next order involving N fields then [6]:

• write down the most general gauge invariant Lagrangian with at least N fields;
• check that all terms are independent;
• consider all the field redefinitions with at most N fields which do not change the S matrix 

(see [6] for a discussion for the open string theory) and how these field redefinitions change 
the coefficients of the independent terms of the Lagrangian;

• determine which combinations of the coefficients are left invariant by field redefinitions;
• compute a number of S matrix elements with N fields sufficient to determine the independent 

combinations of the coefficients
• compare the previous S matrix elements with the corresponding ones from string theory in 

order to fix explicitly the independent combinations.

Consider the Euclidean Lagrangian up to N = 4 and (2α′)2 orders we have order by order 
in N3

SE [2] =
∫

dDx
1

κ
tr

[1

4
FμνFμν + (2α′)

(
+v[2]1DρFρμ Dσ Fσμ

)
+ (2α′)2

(
v[2]2DρDσ Fμν DρDσ Fμν

)]
(8)

3 Note that due to Bianchi identity we have [6] tr(DρFμν DρFμν) ≡ 2tr(DρFρμ Dσ Fσμ − 2Fρσ Fρλ Fσλ) up to 
total derivatives.
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SE [3] =
∫

dDx
1

κ
tr

[
(2α′)v[3]0FμνFνλFλμ

+ (2α′)2
(
v[3]1Fμν DρFμν Dσ Fσρ + v[3]2Fμν Dσ Fσρ DρFμν

+ v[3]1Fμν DρFρμ Dσ Fσν

)]
(9)

SE [4] =
∫

dDx
1

κ
tr

[
(2α′)2

(
v[4]0FμνFνλFλκFκμ + v[4]1FμρFμσ FλρFλσ

+ v[4]2FμνFμνFρσ Fρσ

)]
(10)

As usual there is an ambiguity on how to write the derivative terms since [Dμ, Dν] ∼ Fμν . Then 
we can also write the gauge fixing Lagrangian

SE gf =
∫

dDx
ξ

κ
tr

(
∂μAμ + (2α′)g0

ξ
∂2∂μAμ + (2α′)2−D/2 g1

ξ
AμAμ

+ (2α′)D/2
[g2

ξ
∂μAμ∂νAν + g3

ξ
∂νAμ∂μAν + g4

ξ
∂μAν∂μAν + g5

ξ
∂2AμAμ

+ g6

ξ
Aμ∂2Aμ

]
+ . . .

)2
. (11)

Finally we can consider the field redefinitions. We can consider field redefinitions which do 
no change the gauge transformations like

Aμ = A′
μ + rD′

ρF ′
ρμ + . . . (12)

or we can consider field redefinitions which do change the gauge transformations. If we are 
willing to change the gauge transformation then the only constraints are that all terms belong to 
the original algebra and that they do no change the S matrix elements. We will see that we need 
such more drastic field redefinitions in order to accomplish our program. They are like

Aμ =A′
μ + (2α′)

(
r1∂μ∂ρA′

ρ + r2∂ρ∂ρA′
μ

)
+ (2α′)D/2 (

r3[A′
μ, ∂ρA′

ρ] + r4[A′
ρ, ∂ρA′

μ] + r5[A′
ρ, ∂μA′

ρ]) + . . . (13)

The usual approach would then continue by finding the coefficients vs which are left un-
changed by field redefinitions and then fix them by comparing the S matrix elements. This 
comparison is obviously independent on the gauge fixing.

2.3. The approach and the propagator

Differently from the usual approach the idea we want to implement is first to write blindly the 
EFT vertices mimicking the amplitudes with off shell/unphysical states computed from the string. 
Then to map these vertices to a gauge fixed EFT and determine the necessary field redefinitions 
at the same time.

To see how this work let us consider the propagator, i.e. the case N = 2. From the previous 
discussion we know that the propagator is given by

〈〈k̂1,μ1| α′

L
(X)
0 − 1

|k̂2,μ2〉 = δμ1μ2

k̂2
1

δ
k̂1+k̂2

. (14)

It follows then that the N = 2 part of the EFT is
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SE [2] =
∫ 2∏

i=1

dDk̂i

(2π)D

1

2!ε
a
μ1

(k̂1)
(
δμ1μ2k2

1δ
k̂1+k̂2

)
εa
μ2

(k̂2). (15)

Comparing the previous expression with the EFT expressed using the canonical fields we get at 
this order in the number of fields A

v[2]i = 0, i = 0,1,2, ξ = −1

2
, g0 = 0, r1 = r2 = 0, (16)

and the gauge fixing action, always up to A2

SE [2],g.f. =
∫

dDx

[
−1

2
(∂μAa

μ)2
]

, (17)

and no field redefinition is needed. In order to describe how we proceed with interaction terms 
we have to discuss what happens with Feynman vertices.

2.4. Vertices and color ordered vertices

When we start with a field theory we can compute the Feynman vertices and then compute 
Green functions by summing all the corresponding Feynman diagrams. Using these Green func-
tions we can then compute the S matrix elements by using the LSZ reduction formula which 
amounts to put on shell the external legs after having truncated the legs.

In general given the part of the EFT action with N fields L[N ] the corresponding Feynman 
vertex can have up to N ! terms since it is built to be totally symmetric with respect the permuta-
tions of equal fields. For example in the case of the simplest φN(x) colorless scalar theory there 
is actually only 1 term in the vertex, while in the case of Yang–Mills for N = 3 we have 3! = 6
terms but for N = 4 we have only 1

2 4! = 12 terms.
Consider a generic field �A(x) with M components A = 1, . . .M where A stands for both 

color and space time indices. Its polarization is then �A(k). The totally symmetric Euclidean 
vertex V[N ] ≡ VA1...AN

(k1 . . . , kN) may have N ! terms and it is defined by

−SE [N ] =
∫ N∏

i=1

dDki

(2π)D

1

N !VA1...AN
(k1 . . . , kN) �A1(k1) . . .�AN

(kN), (18)

where the momentum conservation (2π)DδD(
∑

i ki) ≡ δ∑
i ki

is included into the definition of 
the vertex.

Because of the way we build the vertices a S matrix element with N fields may have N !
terms only from the vertex V[N ]. To these terms we must then add all the others coming from 
connecting vertices with fewer legs.

Nevertheless the comparison between open string theory and its EFT can be made easier if we 
split the Feynman vertices into cyclically invariant color ordered vertices. This split is shown in 
Fig. 7 where the 3 gluon Feynman vertex is written as the sum of two cyclically invariant color 
ordered vertices which are pictured with a circle with a direction. Then we can compare one (out 
of (N − 1)!) string diagram with the corresponding color ordered Feynman diagram built using 
the color ordered color ordered vertices. In the case of the previous example with N = 3 this 
means comparing the first string diagram on the rhs in Fig. 6 with the first Feynman sub-diagram 
on the rhs in Fig. 7 (or that is the same the second ones in the same figures).

The same result applies when we compare Feynman diagrams involving more than one 
vertices. In general to a Feynman diagram build with N3 3 vertices corresponds 2N3 ordered 
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Fig. 7. The 3 point totally symmetric vertex V[3] is given as a sum of two cyclically symmetric ones V
(123)
[3] and V

(132)
[3] .

Fig. 8. The two Feynman diagrams of the first line are equal because vertices are totally symmetric under permutations 
while the 2 (out of 24 = 16) cyclically symmetric (color ordered) Feynman diagrams in the second line differ.

Feynman diagrams. For example in Fig. 8 we show how a Feynman graph built using the usual 3
vertex can be drawn in many different ways because of the permutation symmetry of the vertex. 
Nevertheless using the cyclically symmetric vertex there is only one way of drawing a graph. 
When we write all vertices in a Feynman diagram as sum of cyclically symmetric color ordered 
vertices and we expand this “product” we get a 1–1 correspondence between these color ordered 
Feynman diagrams built using the ordered color ordered vertices and the string color ordered 
diagrams.

Fig. 10 shows what happens when we compare the string diagrams of N = 4 gluons which 
have a pole in the s channel with the corresponding Feynman diagram with a pole in the s
channel.

2.5. Dealing with interaction terms

Since we can compare color ordered string amplitudes with EFT color ordered Feynman dia-
grams built using the cyclically symmetric color ordered vertices, it is natural to try to read the 
cyclically invariant Feynman vertices directly from string amplitudes with off shell/non-physical
states which can be obtained from factorization. This can be described in a more precise way. In 
the case of N = 3 we can read directly the V (123)

[3] while for N = 4 and greater N we need first to 
subtract the poles and then read the contact interactions.

However already for the N = 3 gluons case this does not work exactly. It turns out to be 
possible to identify the N = 3 gluon string amplitude with the cyclically symmetric color ordered 
vertex up to gauge conditions, i.e. up to terms proportional to ε · k as shown in eq. (21).

This difference between the off shell string vertex and the EFT cyclically invariant color 
ordered vertex is then at the origin of some contact terms in the quartic (and higher) coupling 
because of the Ward identity. Moreover this difference causes a more annoying fact that it is not 
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possible to compare off shell color ordered amplitudes but only on shell ones, i.e. pieces of an S
matrix element.4 We will discuss this point in section 4.1.

We read therefore the Feynman color ordered vertices as suggested by string theory by mim-
icking it as close as possible with a color ordered vertex. Then we can compute the totally 
symmetric Feynman vertices and compare these with the most general gauge fixed action. It 
turns out that they cannot be derived directly from a gauge fixed EFT written in terms of the 
canonical fields. In fact the resulting vertices are written using fields which are not the ones used 
to write the EFT but they are connected by to them by a field redefinition. Obviously one can use 
the canonical fields in the EFT but then the EFT vertices differ by more terms with respect to the 
string amplitudes.

3. String amplitudes: 3 points

We would now implement in practice what we have discussed in the previous section. In 
particular we would like to determine the 3 vertex suggested by string theory and then find the 
gauge fixing and the field redefinition necessary to map it to the EFT written the standard field.

3.1. Three gluons amplitude

It is standard matter (see for example [19]) to compute the three photons partial amplitude 
once we have given the photon vertex operator

V (x; k̂, ε̂) = +ıε̂ · ∂X̂(x, x)eık̂·X̂(x,x), (19)

where the hatted quantities are adimensional, for example k̂ = √
2α′k is the adimensional mo-

mentum. We compute the partial amplitude not requiring that the in and out state be on shell or 
transverse. The reason is that this is what we see by factoring the 5 point amplitude. The basic 
contribution to the truncated Euclidean Green function is then

A1∗23∗ = A(k̂∗
1 , ε̂∗

1 ; k̂2, ε̂2; k̂∗
3 , ε̂∗

3 ) = 〈〈k̂∗
1 , ε̂∗

1 | V (x = 1; k̂2, ε̂2) |k̂∗
3 , ε̂∗

3 〉
= 〈〈k̂∗

1 ,0|ε̂∗
1 · α1 V (x = 1; k̂2, ε̂2) ε̂∗

3 · α−1|k̂∗
3 ,0〉

= 〈〈k̂∗
1 ,0|ε̂∗

1 · α1 : ε̂2 · (α−1 + α0 + α1) eik̂2x0ek̂2·α−1e−k̂2·α1 : ε̂∗
3 · α∗−1|k̂3,0〉

= [−ε̂∗
1 · ε̂2 k̂2 · ε̂∗

3 + ε̂∗
3 · ε̂∗

1 ε̂2 · k̂∗
3 − ε̂∗

1 · k̂2 ε̂2 · k̂∗
3 ε̂∗

3 · k̂2 + ε̂2 · ε̂∗
3 k̂2 · ε̂∗

1 ]δ
k̂1+k̂2+k̂3

(20)

= [−ε̂∗
1 · ε̂2 k̂2 · ε̂∗

3 − ε̂2 · ε̂∗
3 k̂∗

3 · ε̂∗
1 − ε̂∗

3 · ε̂∗
1 k̂∗

1 · ε̂2

+ ε̂∗
1 · k̂2 ε̂2 · k̂∗

3 ε̂∗
3 · k̂∗

1

+ ε̂∗
1 · ε̂2 k̂∗

3 · ε̂∗
3 + ε̂∗

1 · k̂2 ε̂2 · k̂∗
3 ε̂∗

3 · k̂∗
3 ]δ

k̂1+k̂2+k̂3
, (21)

where the ∗ means that the corresponding starred quantity may not satisfy the physical conditions. 
It is the previous expression properly normalized, i.e. C0N 3

0 A1∗23∗ that we want to mimic with 
the color ordered vertex of the EFT. Few things are worth noticing. First eq. (20) is antisymmetric 
in the exchange of the two non-physical gluons 1 and 3. This makes impossible to interpret it 

4 All these problems may perhaps be avoided using the twisted propagator which allows for cyclically invariant vertices 
as the CSV vertex [18].
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as a piece of a usual EFT since the Feynman vertices are totally symmetric in the exchange of 
gluons. Secondly the last way of writing the partial amplitude A1∗23∗ in eq. (21) shows that the 
amplitude is cyclically invariant when we use the gauge condition ε̂∗

3 · k3 = 0 for the third state, 
i.e. A1∗23∗ is cyclically invariant when ε̂∗

3 is transverse but eventually off shell, since then the 
last line vanishes. Obviously it is possible to write an analogous expression where we require the 
transversality for the first state ε̂1 · k̂1 = 0.

Only when all states are physical, i.e. on shell and transverse the amplitude has on shell gauge 
invariance, i.e. it is invariant under ε̂ → ε̂ + k̂ with k̂2 = 0.

The S matrix element from string theory for non-abelian gluons can then be obtained from 
the amplitude as

A123(k̂1, ε̂μ1a1; k̂2, ε̂μ2a2; k̂3, ε̂μ3a3) = C0N 3
0

[
A123 tr(Ta1Ta2Ta3) + A132 tr(Ta1Ta3Ta2)

]
(22)

and it is obtained by taking all states physical, substituting the abelian polarizations ε̂i with 
their non-abelian ones ε̂ai

and multiplying by the Chan–Paton factors, explicitly in the previous 
expression we have

A123 = A(k̂1, ε̂a1; k̂2, ε̂a2; k̂3, ε̂a3), (23)

and there is no summation over the color indices. The full amplitude is depicted in Fig. 6.
Now because of the on shell condition k̂2

i = 0 it follows that all the momenta k̂i are parallel as 
can be easily seen since on shell k̂i · k̂j = 0 and we can choose any k̂ in the light cone direction. 
Therefore both the amplitude and the S matrix vanish

S123(k̂1, ε̂μ1a1; k̂2, ε̂μ2a2; k̂3, ε̂μ3a3) = 0. (24)

3.2. The general three gluons up to three derivatives Lagrangian

In order to reconstruct the gauge fixed EFT from the previous S matrix we write down the most 
general Lagrangian with 3 gluons and up to 3 derivatives. From the Lagrangian we deduce the 3
Feynman vertex and then we require that it yields a 3 point S matrix element vanishing on shell. 
Besides this constraints we have nevertheless to respect the pole structure of the 4 and higher 
point S matrix amplitudes, i.e. given the 4 point S matrix amplitude the result of subtracting the 
contribution from the reducible Feynman diagrams obtained by joining two 3 point vertices must 
be pole free.5

Nevertheless as discussed in the previous section 2.5 our main idea is to proceed in a different 
way and we use the off shell extension C0N 3

0 A1∗23∗ to read the 3 vertex suggested by string 
theory for a EFT. However we consider the most general Lagrangian in order to discuss how the 
string choice minimizes the number of terms in the 3 and 4 point vertices.

The general cubic effective action with up to three derivatives reads6

5 This requirement is not true when dealing with Green functions as we show in section 4.1 since the stringy off shell 
amplitude cannot be interpreted as a piece of a usual Feynman vertex.

6 The easiest way to obtain it is to work in momentum space. The terms with one momentum are immediate to find. 
The terms with three momenta fall into two categories either (ε · k)3 or (ε · ε)(ε · k)(k · k).

Let us consider the first class. Using cyclicity we have 33 terms ε1 · ki ε2 · kj ε3 · kl since i, j, k ∈ {1, 2, 3}. Using 
momentum conservation we can consider only 23 terms, i.e. those with i �= 1, j �= 2, l �= 3. Then using again cyclicity 
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SE [3] =
∫

dDx
1

κ
tr[ + c1∂μAν Aμ Aν + c2∂μAν Aν Aμ

+ c3∂μAν ∂νAλ ∂λAμ + c4∂λ∂νAμ ∂μAν Aλ

+ c5∂λ∂νAμ ∂μAν Aλ + c6∂νAμ ∂λ∂μAν Aλ

+ c7∂
2∂λAμ Aμ Aλ + c8∂λAμ ∂2Aν Aλ

+ c9∂ρ∂λAμ ∂ρAν Aλ

+ c10∂
2Aμ ∂λAμ Aλ + c11Aμ ∂2∂λAμ Aλ

+ c12∂ρAμ ∂ρ∂λAν Aλ ]. (25)

Notice that all these terms give a vanishing 3 point S matrix. This can be more easily looking 
at the corresponding Feynman vertex in eqs. (28), (29). In particular it is necessary to remember 
that all ki are parallel on shell and hence εi · kj = 0.

Interpreting this cubic interaction as coming from a gauge invariant action with a non-linear
gauge fixing as eq. (11) and a field redefinition as in eq. (13) (assuming a canonical kinetic term 
which implies g0 = v[2]1 = v[2]2 = 0) requires7

c1 = −ig − 2g1, c2 = +ig − 2g1,

c3 = +v[3]0 − 2g2, c4 = −v[3]0 − 2g2,

c5 = −2g3 − 6g2, c6 = −2g3 − 6g2,

c7 = −2g5 − r3 − r5, c10 = −3v[3]0 − 2g5 − r3 − r4 + r5,

c8 = 3v[3]0 − 2g6 + r3 + r4 − r5, c11 = −2g6 + r3 + r5,

c9 = 3v[3]0 − 2g4 − 2r5, c12 = −3v[3]0 − 2g4 + 2r5. (26)

In particular the previous vertex can not become the usual three vertex in the linear Lorentz 
gauge unless c2 = −c1, 3c3 = −3c4 = c8 = c9 = −c10 = −c12 and c5,6,7,11 = 0. This happens 
because the usual three vertex involves the commutator of the algebra elements tr(Ta[Tb, Tc])
which is totally antisymmetric in the exchange of a, b, c. When these conditions are not satisfied 
the cubic interaction does not originate from a gauge invariant action with linear gauge fixing 
and we must interpret it as originating from a gauge fixed action with non-linear gauge fixing 
and a field redefinition.

The previous cubic interaction gives raise to the Euclidean Feynman cubic vertex defined by

−SE [3] =
∫ 3∏

i=1

dDki

(2π)D

1

3!Vμ1a1,μ2a2,μ3a3(k1, k2, k3) εμ1
a1

(k1)ε
μ2
a2

(k2)ε
μ3
a3

(k3). (27)

As discussed in section 2.4 it is convenient to write this cubic vertex as the sum of two cyclically 
invariant color ordered vertices as shown in Fig. 7 as

we are left with 4 terms, those with coefficients c3, . . . c6 in eq. (29). An example of the use of cyclicity is the fact that 
the term with (i, j, k) = (2, 3, 2) is equivalent to (i, j, k) = (2, 1, 1).

Now consider the second class. Using cyclicity we have 33 terms like ε1 · ε2 ε3 · kl ki · kj . Again momentum 
conservation allows us to consider the cases i, j, l �= 3. They are 6 and are the terms with coefficients c7, . . . c12 in 
eq. (29).

7 The dependence of coefficients c1 . . . c4 on g and v[3]0 can be immediately read by expanding the Lagrangian, the 
other requires a little more work.



142 I. Pesando / Nuclear Physics B 918 (2017) 129–161
Vμ1a1,μ2a2,μ3a3(k1, k2, k3) = 1

κ

[
V

(123)
μ1; μ2; μ3

(k1, k2, k3) tr(Ta1Ta2Ta3)

+V
(123)
μ1; μ3; μ2

(k1, k3, k2) tr(Ta1Ta3Ta2)
]
, (28)

where8

V
(123)
μ1; μ2; μ3

εμ1
a1

εμ2
a2

εμ3
a3

= (+ı)
[
−c1(εa1 · εa2 εa3 · k2 + cycl) − c2(εa1 · εa2 εa3 · k1 + cycl)

+3c3 εa1 · k2 εa2 · k3 εa3 · k1 + 3c4 εa1 · k3 εa2 · k1 εa2 · k2

+c5(εa1 · k2 εa2 · k1 εa3 · k1 + cycl) + c6(εa1 · k2 εa2 · k1 εa2 · k2 + cycl)

+c7(εa1 · εa2 εa3 · k1 k2
1 + cycl) + c8(εa1 · εa2 εa3 · k1 k2

2 + cycl)

+c9(εa1 · εa2 εa3 · k1 k1 · k2 + cycl)

+c10(εa1 · εa2 εa3 · k2 k2
1 + cycl) + c11(εa1 · εa2 εa3 · k2 k2

2 + cycl)

+c12(εa1 · εa2 εa3 · k2 k1 · k2 + cycl)
]
δk1+k2+k3 .

(29)

Matching the structure of cyclical color ordered vertex as close as possible to the off shell ampli-
tude (21) gives

c1 = −2ıg, c2 = 0,

c3 = 2v[3]0, c4 = 0,

c5,6,7,8,9,10,11,12 = 0

g1 = 1

2
ıg,

g2 = −1

2
v[3]0, g3 = −3g2

g4 = 3

2
v[3]0, g5 = −g6 = r3 + r5

r4 = 0, r5 = 3

2
v[3]0. (30)

A rapid look to eqs. (26) reveals that these coefficients cannot be reproduced simply using a 
gauge fixing and that we therefore need a field redefinition. We find the gauge fixed Lagrangian

SE [3]gauge f ixed =
∫

dDx
1

κ
tr

(
−2ig∂μAν Aμ Aν + 2v[3]0∂μAν ∂νAλ ∂λAμ

)
, (31)

the gauge fixing Lagrangian

SE gf =
∫

dDx
ξ

κ
tr

(
∂μAμ + ı

g

2ξ
AμAμ

− v[3]0
2ξ

∂μAμ∂νAν + 3v[3]0
2ξ

∂νAμ∂μAν − v[3]0 + 2r3

2ξ
[∂2Aμ,Aμ] + . . .

)2
,

(32)

8 The coefficients 3c3 and 3c4 come from the fact that the corresponding structures are cyclically symmetric. The 
different signs from the different momentum powers ik vs (ik)3.
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with ξ = − 1
2 as from eq. (17) and the field redefinition

Aμ =A′
μ + r3[A′

μ, ∂ρA′
ρ] + 3v[3]0

2ξ
[A′

ρ, ∂μA′
ρ] + . . . . (33)

If we want to match also the coefficient we need to match the previous color ordered vertex with 
C0N 3

0 A1∗23∗ and set

c1 = −2ıg = −ıC0N 3
0 (2α′)2− 1

2 D, c3 = 2v[3]0 = −1

3
ıC0N 3

0 (2α′)3− 1
2 D, (34)

thus finding the usual result

v[3]0 = −1

3
ı(2α′)g. (35)

If we do not want to use field redefinition we have more possibilities on the closest possible 
vertex has gauge fixed Lagrangian. One possibility is given by the gauge fixed Lagrangian

SE [3]gauge f ixed =
∫

dDx
1

κ
tr

(
−2ig∂μAν Aμ Aν + 2v[3]0∂μAν ∂νAλ ∂λAμ

+ 3v[3]0∂μAν [∂λAμ, ∂λAν]
)
, (36)

and the gauge fixing Lagrangian

SE gf =
∫

dDx
ξ

κ
tr

(
∂μAμ + ı

g

2ξ
AμAμ − v[3]0

2ξ
∂μAμ∂νAν + 3v[3]0

2ξ
∂νAμ∂μAν + . . .

)2
.

(37)

Another possibility is given by the gauge fixed Lagrangian

SE [3]gauge f ixed =
∫

dDx
1

κ
tr

(
−2ig∂μAν Aμ Aν + v[3]0FμνFνλFλμ

)
, (38)

and the gauge fixing Lagrangian

SE gf =
∫

dDx
ξ

κ
tr

(
∂μAμ + ı

g

2ξ
AμAμ + . . .

)2
. (39)

3.3. The abelian limit and intuitive explanation of the Gervais–Neveu gauge

Looking to the possible terms in the color ordered vertex V (123) it is clear that some om them 
become exchanged under non-cyclical permutations. For example c1 and c2 are exchanged when 
1 ↔ 2. In more formal way c(123)

2 = c
(213)
1 . This means that we can know c(123)

2 if we know 

c
(123)
1 since by exchanging 1 ↔ 2 we can compute c(213)

1 . Therefore c(123)
2 is redundant and can 

be likely set to zero by choosing a gauge. In facts string theory chooses c2 = 0 (or equivalently 
c1 = 0). It seems that string theory be choosing the minimal number of terms from which we can 
reconstruct both the abelian and non-abelian theory. Because of this also the abelian theory has 
non-vanishing 3 vertex.
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Fig. 9. The six diagrams contributing to the N = 4 amplitude with the indication of the channels to which each diagram 
contributes. The horizontal channel is the obvious one from the old way of writing the amplitude. The vertical channel is 
the obvious one when using the cyclicity of the amplitude.

4. Four gluons amplitude, propagator and contact terms

The basic partial amplitude (and not correlator since this is already the integrated correlator) 
is9

A1234 = A(k̂1, ε̂1; . . . k̂4, ε̂4)

= 〈〈k̂1, ε̂1| V (x = 1; k̂2, ε̂2)
1

L
(X)
0 − 1

V (x = 1; k̂3, ε̂4) |k4, ε̂4〉. (40)

The full S matrix is then obtained from (see Fig. 9)

A1234 = α′

κ
C0N 4

0

{
[A1234 tr(Ta1Ta2Ta3Ta4) + A1243 tr(Ta1Ta2Ta4Ta3)]

+[A1342 tr(Ta1Ta3Ta4Ta2) + A1324 tr(Ta1Ta3Ta2Ta4)]
+[A1423 tr(Ta1Ta4Ta2Ta3) + A1432 tr(Ta1Ta4Ta3Ta2)]

}
, (41)

where we substitute the abelian polarizations ε̂i with their non-abelian ones ε̂iai
. In the previous 

equation the first line gives poles in the s and u channels, the second to the s and t ones and the 
last to the t and u ones where we defined

9 Notice that this expression is naive since it is divergent as it stands because of the sum over infinite intermediate 
states (this divergence seemed to be well known in 1971, see [20] after eq. (4.40)). This is easily seen in the four tachyons 
amplitude 

∫ 1
0 dx xk̂3·k̂4 (1 − x)k̂2·k̂3 where the term (1 − x)k̂2·k̂3 can be expanded around x = 0 inside the integral and 

this gives the s channel poles Nevertheless the infinite summation cannot be exchanged with the integral because the 
series is not uniformly convergent.

To give a proper meaning we need to use a regularized propagator as �r(ε) = e−εN/(L
(X)
0 − 1) as well as consider 

a contribution from the A2341 amplitude like what happens in string field theory where the infinite sum is naturally 
performed. For the time being we do not consider this and take the previous expression as the integral of a correlator 
which is well defined.
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s = −(k1 + k2)
2, t = −(k1 + k3)

2, u = −(k1 + k4)
2. (42)

4.1. Factorizing the N = 4 amplitude on the gluons and constraints on the ci coefficients

In order to discuss how the string minimize the number of terms in the vertices we would now 
find the constraints on the constants c1,...12 which arise in order to cancel the physical poles. In 
the following subsection we use these constraints to show that the string solution is minimal in 
ensuing that the 4 vertex has the minimal number of terms.

The cancellation of poles can be checked by comparing the ordered string diagrams with a 
pole in the s channel (all the other channels would do the same) with the Feynman diagram from 
EFT which has a pole in the same s channel. In order to do so we must see which of the six terms 
has a pole in the s channel. It is obvious that A1234 and A1243 have such a pole but because of 
the cyclicity also A1342 ≡ A2134 and A1432 ≡ A2143 have therefore

A1234 ∼s→0
α′

κ
C0N 4

0

{
[A1234 tr(Ta1Ta2Ta3Ta4) + A1243 tr(Ta1Ta2Ta4Ta3)]

+[A1342 tr(Ta1Ta3Ta4Ta2)] + [A1432 tr(Ta1Ta4Ta3Ta2)] + O(1)
}
.

(43)

To these ordered diagrams corresponds the Feynman diagram

εμ1
a1

εμ2
a2

1

κ

[
V

(123)
μ1; μ2; μ

(k1, k2, q
∗) tr(Ta1Ta2Tb) + V

(132)
μ1; μ; μ2

(k1, q
∗, k2) tr(Ta1TbTa2)

]

×δbcP (q∗)μν

q∗2

× 1

κ

[
V

(123)
ν; μ3; μ4

(−q∗, k3, k4) tr(TcTa3Ta4)

+ V
(132)
ν; μ4; μ3

(−q∗, k4, k3) tr(TcTa4Ta3)
]

εμ4
a4

εμ3
a3

δ∑
ki

, (44)

with k1 +k2 +q∗ = −q∗+k3 +k4 = 0. The request is then that the expressions (43) and (44) have 
the same pole. As shown in Fig. 10 and discussed above in section 2.5 the computation can be 
simplified since to any ordered string diagram corresponds a piece of the Feynman diagram built 
using the cyclically symmetric color ordered vertices. Because of this we only need to compute 
the expression graphically depicted in Fig. 11. Then the expression which corresponds to figure 
this is given by

α′

κ
C0N 4

0 A1234 tr(Ta1Ta2Ta3Ta4)

− 1

κ
εμ1
a1

εμ2
a2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗) tr(Ta1Ta2Tb)

δbcδμν

q∗2

× 1

κ
V

(123)
ν; μ3; μ4

(−q∗, k3, k4) εμ3
a3

εμ4
a4

tr(TcTa3Ta4)δ
∑

ki
(45)

= α′C0N 4
0 A1234 −

[
εμ1
a1

εμ2
a2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗)δ

μν

q∗2
V

(123)
ν; μ3; μ4

(−q∗, k3, k4) εμ3
a3

εμ4
a4

]
δ∑

ki

1

κ
tr(Ta1Ta2Ta3Ta4), (46)
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Fig. 10. The ordered string diagrams with poles in the s channel and the Feynman diagram with a pole in the same 
channel. To any ordered string diagram corresponds a part of the Feynman diagram computed with the ordered Feynman 
vertices.

Fig. 11. Single diagram subtraction.

where we have already used the first suggestion which comes from string, i.e. to use the propa-
gator in Feynman gauge.10 We have also used

tr(X Ta) δab tr(Tb Y ) = κ tr(X Y) X,Y ∈ u(N). (47)

The pole in the s channel of the string partial amplitude can be exposed by simply inserting 
twice the unity at level N = 1 in the string amplitude A1234 and get

A1234 ∼s→0

∫
q∗

〈〈k̂1, ε̂1| V (x = 1; k̂2, ε̂2)α
μ
−1|q∗〉 δμν

α′q∗2
〈〈q∗|αν

1 V (x = 1; k̂3, ε̂4) |k̂4, ε̂4〉.

(48)

Comparing this expression with the EFT one in eq. (45) suggests to set11√
−C0N 4

0 〈〈k̂1, ε̂1| V (x = 1; k̂2, ε̂2)α
μ
−1|q̂∗〉 = εμ1

a1
εμ2
a2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗)√

−C0N 4
0 〈〈q̂∗|αν

1 V (x = 1; k̂3, ε̂4) |k̂4, ε̂4〉 = V
(123)
ν; μ3; μ4

(−q∗, k3, k4) εμ3
a3

εμ4
a4

. (49)

As discussed in the previous section this is not possible since the string truncated Green function 
is not cyclically invariant while the color ordered vertex is, the proper expressions are

10 This does not mean that the gauge fixing is the usual Lorentz gauge but only that the linear part of the gauge fixing is 
the usual Lorentz gauge.
11 At first sight the choice of 

√
−C0N 4

0 seems quite odd and the choice 
√

+C0N 4
0 would seem more natural but it is 

the proper one when considering the results of the comparison of the 3 vertex 34.
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√
−C0N 4

0 〈〈k̂1, ε̂1| V (x = 1; k̂2, ε̂2)αμ −1|q̂∗〉
= εμ1

a1
εμ2
a2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗) + O(q∗

μ) + O(q∗2)√
−C0N 4

0 〈〈q̂∗|αν1 V (x = 1; k3, ε4) |k4, ε4〉
= V

(123)
ν; μ3; μ4

(−q, k3, k4) εμ3
a3

εμ4
a4

+ O(q∗
μ) + O(q∗2), (50)

where the terms in V (123) proportional to k1 · k2 contribute as q∗2 because of momentum 
conservation. It is possible to use the previous less restrictive identification since for example 
q∗μV

(123)
ν; μ3; μ4

(−q∗, k3, k4) ε
μ3
a3 ε

μ4
a4 ∝ q∗2 so that the propagator pole is canceled. This happens 

because q∗μV
(123)
ν; μ3; μ4

= 0 when we take ε = q∗ and the gluon physical, i.e. q2 = 0 because of 
gauge invariance.

Finally we get the constraints12

c1 − c2 = 3c3 − 3c4 + 3c5 − 3c6

(2α′)
= −ıC0N 3

0 (2α′)2− 1
2 D =

√
−C0N 4

0 (2α′)2− 1
2 D. (51)

No constraints are obtained on the other coefficients since all of them contribute terms propor-
tional to q∗2.

It is also interesting and consistent with the previous line of thought to consider what happens 
when the gluons 1 and 4 are not physical. In this case the difference in eq. (46) must be a sum of 
terms proportional to one of the following factors k̂2

1, k̂2
4 , ε̂1 · k̂1 or ε̂4 · k̂4 since these are vanishing 

when the particles are physical. A direct computation reveals that all of these terms are actually 
present. This means that the string truncated partially off shell N = 4 Green function when 
subtracted the Feynman diagrams still has poles. This seems wrong but it is not so. The reason is 
that using the naive factorization we cannot compare directly the truncated Green functions since 
the N = 3 truncated Green functions do not match perfectly between string theory and the usual 
EFT. Nevertheless the S matrix elements must match and not only the full S matrix but also the 
color ordered sub-pieces.

4.2. Computing the contact terms up to k2 order

In order to compute the N = 4 color ordered vertices we need to compute the usual string 
amplitude and then expand in momentum powers. We write the basic amplitude as

A1234 =
1∫

0

dy 〈〈k̂1, ε̂1| V (x = 1; k̂2, ε̂2) yL0−2 V (x = 1; k̂3, ε̂4) |k̂4, ε̂4〉

=
1∫

0

dy 〈〈k̂1, ε̂1| V (x = 1; k̂2, ε̂2) yL0−2 V (x = 1; k̂3, ε̂4) |k̂4, ε̂4〉

=
1∫

0

dy 〈〈k̂1, ε̂1| V (1; k̂2, ε̂2) y(k̂2
3+1)−2 V (y; k̂3, ε̂4) yL0 |k̂4, ε̂4〉 (52)

12 From these equations and eq. (34) it follows that C0N 2
0 = (2α′)

1
2 D−1 and then N0 = g

α′ and C0 =
1/(2g)2(2α′)

1
2 D+1.
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The explicit expression for this contribution to the amplitude is given

A1234 = +
[(

1 − 1

2
ŝ − 1

2
û

)
C(0,0) + 1

−ŝ/2
C(1,0) + 1

−û/2
C(0,1)

−
(

1 − û

ŝ

)
1

1 − ŝ/2
C(2,0) −

(
1 − ŝ

û

)
1

1 − û/2
C(0,2)

]

×
�

(
1 − 1

2 ŝ
)

�
(

1 − 1
2 û

)
�

(
1 − 1

2 ŝ − 1
2 û

) δ∑
k̂
, (53)

where the coefficients C(·,·) are given in eqs. (88), (84), (80), (82), (86) in Appendix C. In order 
to compare with the EFT we need to expand the previous expression in momentum powers, 
explicitly we get

A1234 = +
{

+
[
− C(2,0)|k0

u

s
− C(0,2)|k0

s

u
+ C(1,0)|k2

1

−s/2
+ C(0,1)|k2

1

−u/2

− C(2,0)|k0 − C(0,2)|k0 + C(0,0)|k0

]
+

[
− C(2,0)|k2

u

s
− C(0,2)|k2

s

u
+ C(1,0)|k4

1

−s/2
+ C(0,1)|k4

1

−u/2

+ (−C(2,0)|k0 − C(0,2)|k0 + C(0,0)|k0

)(
−1

2
s − 1

2
u

)

− C(2,0)|k2 − C(0,2)|k2 + C(0,0)|k2

]
+

[
− C(2,0)|k4

u

s
− C(0,2)|k4

s

u
− C(2,0)|k4 − C(0,2)|k4 + C(0,0)|k4

+ (−C(2,0)|k2 − C(0,2)|k2 + C(0,0)|k2

+ (�′(1)2 − �′′(1))C(0,1)|k2

) −s

2
+ (−C(2,0)|k2 − C(0,2)|k2 + C(0,0)|k2

+ (�′(1)2 − �′′(1))C(1,0)|k2

) −u

2

−
(
C(2,0)|k0 + (�′(1)2 − �′′(1))C(0,2)|k0

)(−s

2

)2

−
(
C(0,2)|k0 + (�′(1)2 − �′′(1))C(2,0)|k0

)(−u

2

)2

−
(
(�′(1)2 − �′′(1) + 1)

(−C(2,0)|k0 − C(0,2)|k0 + C(0,0)|k0

)
− C(0,0)

) −s

2

−u

2

]
+O(k6)

}
δ∑

k̂
, (54)

where C(·,·)|kn stands for the part with n momentum powers in the coefficient C(·,·).
Since now we are considering the string amplitude for all possible values of the momenta 

we must subtract all the Feynman diagrams built with color ordered vertices which have the 
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proper color ordering and poles in the same channels of the string amplitude, both s and u for 
the amplitude A1234. When canceling the poles we get again eqs. (51). The explicit computation 
gives at k0 order

α′C0N 4
0 A1234|k0

−εμ1
a1

εμ2
a2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗)|k1

δμν

q∗2
V

(123)
ν; μ3; μ4

(−q∗, k3, k4)|k1 εμ3
a3

εμ4
a4

δ∑
ki

− εμ4
a4

εμ1
a1

V
(123)
μ4; μ1; μ

(k4, k1, q
∗)|k1

δμν

q∗2
V

(123)
ν; μ2; μ3

(−q∗, k2, k3)|k1 εμ2
a2

εμ3
a3

δ∑
ki

=
[
−c1 c2 (ε1 · ε2 ε3 · ε4 + ε1 · ε4 ε2 · ε3 )

− 1

2
(c1 − c2)

2ε1 · ε3 ε2 · ε4

]
δ∑

ki
, (55)

along with the constraint from pole cancellation

(c1 − c2)
2 = −C0N 4

0 (2α′)3− 1
2 D. (56)

Notice that the previous expression is cyclically invariant therefore we can interpret it as the 
quartic color ordered vertex at order k0.

From this expression it is then clear that the choice c2 = 0 (or c1 = 0) is the most economical. 
This is exactly the choice suggested by the string.

The previous color ordered vertex at order k0 then becomes in the gauge suggested by the 
string

V
(1234)
1234 (k1, k2, k3, k4)|k0 = +2g2

{
ε1 · ε3 ε2ε4

}
δ∑

ki
, (57)

which is the color ordered vertex depicted in Fig. 1.
The quartic vertex at k0 order reads in general

V[4](k1, k2, k3, k4)|k0 ={
+εa1 · εa2 εa3 · εa4

[
− c1 c2 tr

({
Ta1 , Ta2

}{
Ta3 , Ta4

})
− 1

2
(c1 − c2)

2tr
(
Ta1 Ta4 Ta2, Ta3 + Ta1 Ta3 Ta2, Ta4

) ]
+ εa1 · εa3 εa2 · εa4

[
− c1 c2 tr

({
Ta1 , Ta3

}{
Ta2 , Ta4

})
− 1

2
(c1 − c2)

2tr
(
Ta1 Ta4 Ta3, Ta2 + Ta1 Ta2 Ta2, Ta4

) ]
+ εa1 · εa4 εa2 · εa3

[
− c1 c2 tr

({
Ta1 , Ta4

}{
Ta2 , Ta3

})
− 1

2
(c1 − c2)

2tr
(
Ta1 Ta3 Ta4, Ta2 + Ta1 Ta2 Ta4, Ta3

) ]}
δ∑

ki
.

(58)

The explicit computation at k2 order requires

(c1 − c2)(−3c3 + 3c4 + 3c5 − 3c6) = C0N 4
0 (2α′)4− 1

2 D (59)

because of pole cancellation and gives
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α′C0N 4
0 A1234|k2 −δμν

q∗2

[
εμ1
a1

εμ2
a2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗)

× V
(123)
ν; μ3; μ4

(−q∗, k3, k4) εμ3
a3

εμ4
a4

]∣∣∣
k4

δ∑
ki

−κ δμν

q∗2

[
εμ4
a4

εμ1
a1

V
(123)
μ4; μ1; μ

(k4, k1, q
∗)

× V
(123)
ν; μ2; μ3

(−q∗, k2, k3) εμ2
a2

εμ3
a3

]∣∣∣
k4

δ∑
ki

=
{

− 1

2
[c1(−3c4 − c5 + 2c6) + c2(−3c3 + 2c5 − c6)]

× [ε1 · ε2 ε3 · k4 ε4 · k3 + 3 terms obtained by cycling (1234) in the

previous term]

+
{

+ 1

2
ε1 · ε2 ε3 · ε4

[(
1

2
(2α′)4− 1

2 DC0N 4
0

)
s

+
(

1

2
(2α′)4− 1

2 DC0N 4
0 + c1c9 + c2c12

)
u

+
(

1

2
(2α′)4− 1

2 DC0N 4
0 + c1c12 + c2c9

)
t
]

+ 1 term obtained by cycling (1234) in the previous term

}

−1

2
ε3 · ε1 ε2 · ε4

[(
1

2
(2α′)4− 1

2 DC0N 4
0

)
u +

(
1

2
(2α′)4− 1

2 DC0N 4
0

)
s

]

+
{
+ε1 · ε2 ε3 · k1 ε4 · k1

1

2

[
(2α′)4− 1

2 DC0N 4
0 + c1(−3c4 − c5 + 2c6)

+ c2(−3c3 + 2c5 − c6 − 2c7 + 2c8 + 2c10 − 2c11)
]

+ ε1 · ε2 ε3 · k1 ε4 · k2
1

2

[
(2α′)4− 1

2 DC0N 4
0 + c1(−3c4 − c5 + 2c6

+ 2c8 − 2c11) + c2(−3c3 + 2c5 − c6 − 2c7 + 2c10)
]

+ ε1 · ε2 ε3 · k1 ε4 · k2
1

2

[
(2α′)4− 1

2 DC0N 4
0

+ c1(−3c4 − c5 + 2c6 − 4c7 − 2c8 + 4c9 + 2c10

+ 2c11 − 2c12) + c2(−3c3 + 2c5 − c6 + 2c7

+ 4c8 − 2c9 − 2c10 − 4c11 + 4c12)
]

+ ε1 · ε2 ε3 · k2 ε4 · k2
1

2

[
(2α′)4− 1

2 DC0N 4
0

+ c1(−3c4 − c5 + 2c6 − 2c7 + 2c8)

+ c2(−3c3 + 2c5 − c6)
]
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+ 3*4 terms obtained by cycling (1234) in the previous 4 terms

}

+
{
+ε1 · ε3 ε2 · k1 ε4 · k1

[
− 1

2
(2α′)4− 1

2 DC0N 4
0

]

+ε1 · ε3 ε2 · k1 ε4 · k3

[
− 1

2
(2α′)4− 1

2 DC0N 4
0

− (c1 − c2)(−2c7 + c9 + 2c10 − c12)
]

+ε1 · ε3 ε2 · k3 ε4 · k1

[
− 1

2
(2α′)4− 1

2 DC0N 4
0

+ (c1 − c2)(+2c7 − c9 − 2c11 + c12)]
]

+ε1 · ε3 ε2 · k3 ε4 · k3

[
− 1

2
(2α′)4− 1

2 DC0N 4
0

]

+ 4 terms obtained by cycling (1234) in the previous 4 terms

}}
δ∑

ki
.

(60)

Again the previous result can be interpreted as the N = 4 gluon color ordered vertex since it is 
cyclically invariant.

Moreover the suggestion of string theory is the more economical since all terms coming from 
color ordered vertices vanish when only c1 and c3 are different from zero. This can also be 
understood by the fact that the 3 gluon color ordered vertex suggested by the string has the 
minimal contain to cancel the poles in the 4 gluons amplitude.

The previous color ordered vertex at order k2 becomes in the gauge suggested by the string

V
(1234)
1234 (k1, k2, k3, k4)|k2 = −4α′g2

{

+
[
ε1 · ε2 ε3ε4 + 1 term from cycling (1234)

] t

2

+
[
ε1 · ε3 ε2 · ε4

] t

2

−
[
+ ε1 · ε2 ε3 · k4 ε4 · k3 + 4 terms from cycling (1234)

]
+

[
+ ε1 · ε3 ε2 · k4 ε4 · k2 + 1 term from cycling (1234)

]}
δ∑

ki
. (61)

Finally the full the quartic vertex at k2 order in string gauge reads

V[4]|k2 ={
+ V (1234)

a1a2a3a4
tr

(
Ta1 Ta4 Ta2, Ta3 + Ta1 Ta3 Ta2 , Ta4

)
+ V (1234)

a1a4a2a3
tr

(
Ta1 Ta4 Ta3 , Ta2 + Ta1 Ta2 Ta2, Ta4

)
+ V (1234)

a1a3a4a2
tr

(
Ta1 Ta3 Ta4 , Ta2 + Ta1 Ta2 Ta4, Ta3

)}
δ∑

ki
(62)
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because V (1234)
1234 = V

(1234)
1432 . We have also substituted εi → εai

. This expression is by far simpler 
than the one obtained in the usual Feynman gauge where a lot of c.s are different from zero in 
eq. (60).
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A. Conventions

We write the open string expansion for the dimensionless field X̂ = √
2α′X as

X̂μ(u, ū) = 1

2
(X̂

μ
L(u) + X̂

μ
R(ū)) (63)

with

u = eτE+iıσ ∈ H

and

X̂L(u) = x̂0 + ŷ0 − ıα0 ln(u) + ı
∑
n�=0

αn

n
u−n

X̂R(ū) = x̂0 − ŷ0 − ıα0 ln(ū) + ı
∑
n�=0

αn

n
ū−n (64)

The commutation relations read

[αμ
n , αν

m] = n δμν δm+n,0. (65)

The mass shell condition reads

L
(X)
0 |phys〉 = (

1

2
α2

0 +
∞∑

n=1

α−n · αn)|phys〉 = |phys〉. (66)

The momentum states are defined as

eik̂·x̂0 |0〉 = |k〉, 〈0|e−ik̂·x̂0 = 〈〈k| = 〈−k|. (67)

B. YM conventions

The Euclidean YM Lagrangian reads

LE = + 1

4κ
tr(FμνFμν) = +1

4
Fa

μνF
a
μν, (68)

since we normalize the generators T a = T a† as

tr(TaTb) = κδab, [Ta,Tb] = ifabcT
c. (69)

It then follows that tr(Ta[Tb, Tc]) = iκfabc . We define the field strength of the gauge field A =
Aμdxμ = Aa

μT adxμ as
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F = dA − igA ∧ A = 1

2
Fμνdxμ ∧ dxν

Fμν = ∂μAν − ∂νAμ − ig[Aμ,Aν]
Fa

μν = ∂μAa
ν − ∂νA

a
μ + gfabcA

b
μAc

ν. (70)

The Lagrangian then becomes

LE = 1

2κ
tr

(
∂μAν(∂μAν − ∂νAμ)

)
+ −ig

κ
tr

(
∂μAν[Aμ,Aν]

)

+ (−ig)2

4κ
tr

(
[Aμ,Aν][Aμ,Aν]

)
. (71)

Let us rewrite the cubic interaction term in momentum space

−SE [3] = −
∫ 3∏

i=1

dDki

(2π)D
(2π)DδD(k1 + k2 + k3) × ig

κ
tr(Ta1 [Ta2 , Ta3 ])(ik1μ2)δμ2μ3

× εa1μ1(k1)εa2μ2(k2)εa3μ3(k3)

=
∫ 3∏

i=1

dDki

(2π)D
δ∑

k × 1

3!
−g

κ
tr(Ta1 [Ta2 , Ta3 ])

× [(k1μ2 − k3μ2)δμ3μ1 + (k3μ1 − k2μ1)δμ2μ3 + (k2μ3 − k1μ3)δμ1μ2]
× εa1μ1(k1)εa2μ2(k2)εa3μ3(k3), (72)

then it follows that

Va1μ1;a2μ2;a3μ3(k1, k2, k3) =V
(123)
a1μ1;a2μ2;a3μ3

(k1, k2, k3) + V
(123)
a1μ1;a3μ3;a2μ2

(k1, k3, k2)

= −g

κ
tr(Ta1 [Ta2 , Ta3 ])

× [(k1μ2 − k3μ2)δμ3μ1 + (k3μ1 − k2μ1)δμ2μ3

+ (k2μ3 − k1μ3)δμ1μ2]δ∑
k, (73)

and

V
(123)
a1μ1;a2μ2;a3μ3

(k1, k2, k3) = −g

κ
tr(Ta1Ta2Ta3)

× [(k1μ2 − k3μ2)δμ3μ1 + (k3μ1 − k2μ1)δμ2μ3

+ (k2μ3 − k1μ3)δμ1μ2]δ∑
k. (74)

Similarly we write the quartic action as

−SE [4] = −
∫ 4∏

i=1

dDki

(2π)D
(2π)DδD(k1 + k2 + k3 + k3)

× (−ig)2

tr([Ta1 , Ta2][Ta3 , Ta4 ])δμ1[μ3δμ4]μ2
4κ



154 I. Pesando / Nuclear Physics B 918 (2017) 129–161
× εa1μ1(k1)εa2μ2(k2)εa3μ3(k3)εa4μ4(k4), (75)

the using the symmetries 1 ↔ 2, 3 ↔ 4 and (1, 2) ↔ (3, 4) we sum over the remaining 4!/23 = 3. 
Using the previous symmetries we can always set 1 in the first place of the permutation and then 
we are left with 1234, 1342 and 1423. So we get

V a1μ1;a2μ2;a3μ3;a4μ4(k1, k2, k3, k4) =
=V

(1234)
a1μ1;a2μ2;a3μ3;a4μ4

(k1, k2, k3, k4) + V
(1234)
a1μ1;a3μ3;a4μ4;a2μ2

(k1, k3, k4, k2)

+ V
(1234)
a1μ1;a4μ4;a2μ2;a3μ3

(k1, k4, k2, k3)

=2g2

κ

[
tr([Ta1 , Ta2 ][Ta3 , Ta4 ])δμ1[μ3δμ4]μ2 + tr([Ta1 , Ta3][Ta4 , Ta2])δμ1[μ4δμ2]μ3

+ tr([Ta1 , Ta4 ][Ta2 , Ta3 ])δμ1[μ2δμ3]μ4

]
δ∑

k, (76)

from which it follows

V
(1234)
a1μ1;a2μ2;a3μ3;a4μ4

(k1, k2, k3, k4) =

= g2

κ
tr(Ta1Ta2Ta3Ta4)

[
2δμ1μ3δμ4μ2 − δμ1μ2δμ3μ4 − δμ1μ4δμ2μ3

]
δ∑

k. (77)

C. Details on N = 4 gluons correlator

In this section we do not write the hat explicitly in order to make the notation lighter, i.e. k̂ is 
simply written as k.

The direct computation of the correlator gives the following result

A1234 = +
1∫

0

dy Cδk1+k2+k3+k4

C = C(0,0) + 1

y
C(1,0) + 1

y2
C(2,0) + 1

1 − y
C(0,1) + 1

(1 − y)2
C(0,2), (78)

after we write the rational expressions involving y as sum of simple factors, e.g. y/(1 − y) =
1 − 1/(1 − y). The different contributions are given as follows.

Terms proportional to y−1:

C(1,0) = − ε1 · k3 ε2 · k4 ε3 · k4 ε4 · k3

− ε1 · k3 ε2 · k3 ε3 · k4 ε4 · k3

− ε1 · k2 ε2 · k3 ε3 · k4 ε4 · k3

+ ε1 · k2 ε2 · k4 ε3 · k2 ε4 · k3

+ ε1 · k2 ε2 · k3 ε3 · k2 ε4 · k3

− ε1 · k2 ε2 · k4 ε3 · k4 ε4 · k2

− ε1 · k2 ε2 · k3 ε3 · k4 ε4 · k2

− ε1 · ε2 ε3 · k4 ε4 · k2
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+ ε1 · ε2 ε3 · k2 ε4 · k3

− ε1 · ε3 ε2 · k4 ε4 · k3

− ε1 · ε3 ε2 · k3 ε4 · k3

+ ε1 · ε4 ε2 · k3 ε3 · k4

+ ε1 · ε4 ε2 · k4 ε3 · k4

− ε1 · k2 ε2 · ε3 ε4 · k3

+ ε1 · k2 ε2 · ε4 ε3 · k4

+ ε1 · k3 ε2 · k4 ε3 · ε4

+ ε1 · k3 ε2 · k3 ε3 · ε4

+ ε1 · k2 ε2 · k3 ε3 · ε4 (79)

This can be simplified to13

C(1,0) = + ε1 · k3 ∧ k4 · ε2 ε3 · k3 ∧ k4 · ε4

+ ε1 · k1 ∧ k2 · ε2 ε3 · k1 ∧ k2 · ε4

+ ε1 · ε2 ε3 · k1 ∧ k2 · ε4

+ ε1 · ε3 ε2 · k1 ε4 · k3

− ε1 · ε4 ε2 · k1 ε3 · k4

− ε2 · ε3 ε1 · k2 ε4 · k3

+ ε2 · ε4 ε1 · k2 ε3 · k4

+ ε3 · ε4 ε1 · k3 ∧ k4 · ε2 (80)

Terms proportional to y−2:

C(2,0) = − ε1 · k2 ε2 · k4 ε3 · k4 ε4 · k3

− ε1 · k2 ε2 · k3 ε3 · k4 ε4 · k3

− ε1 · ε2 ε3 · k4 ε4 · k3

+ ε1 · k2 ε2 · k4 ε3 · ε4

+ ε1 · k2 ε2 · k3 ε3 · ε4

+ ε1 · ε2 ε3 · ε4 (81)

This can be simplified to

C(2,0) = + ε1 · k2 ε2 · k1 ε3 · k4 ε4 · k3

− ε1 · ε2 ε3 · k4 ε4 · k3

− ε3 · ε4 ε1 · k2 ε2 · k1

+ ε1 · ε2 ε3 · ε4 (82)

13 We use ε1 · k3 ∧ k4 · ε2 = ε1 · k3 k4 · ε2 − ε1 · k4 k3 · ε2.



156 I. Pesando / Nuclear Physics B 918 (2017) 129–161
Terms proportional to (1 − y)−1:

C(0,1) = − ε1 · k3 ε2 · k3 ε3 · k4 ε4 · k3

− ε1 · k2 ε2 · k3 ε3 · k4 ε4 · k3

+ ε1 · k3 ε2 · k4 ε3 · k2 ε4 · k3

+ ε1 · k2 ε2 · k4 ε3 · k2 ε4 · k3

+ ε1 · k2 ε2 · k3 ε3 · k2 ε4 · k3

− ε1 · k3 ε2 · k3 ε3 · k4 ε4 · k2

− ε1 · k2 ε2 · k3 ε3 · k4 ε4 · k2

+ ε1 · k3 ε2 · k4 ε3 · k2 ε4 · k2

+ ε1 · k2 ε2 · k4 ε3 · k2 ε4 · k2

− ε1 · k3 ε2 · k3 ε3 · k2 ε4 · k2

+ ε1 · ε2 ε3 · k2 ε4 · k3

+ ε1 · ε2 ε3 · k2 ε4 · k2

− ε1 · ε3 ε2 · k3 ε4 · k2

− ε1 · ε3 ε2 · k3 ε4 · k3

+ ε1 · ε4 ε2 · k3 ε3 · k4

− ε1 · ε4 ε2 · k4 ε3 · k2

− ε1 · k2 ε2 · ε3 ε4 · k3

+ ε1 · k3 ε2 · ε3 ε4 · k2

− ε1 · k3 ε2 · ε4 ε3 · k2

− ε1 · k2 ε2 · ε4 ε3 · k2

+ ε1 · k3 ε2 · k3 ε3 · ε4

+ ε1 · k2 ε2 · k3 ε3 · ε4 (83)

This can be simplified to

C(0,1) = − ε1 · k4 ε4 · k1 ε2 · [k4 ∧ k1] · ε3

− ε2 · k3 ε3 · k2 ε1 · [k3 ∧ k2] · ε4

− ε1 · ε2 ε3 · k2 ε4 · k1

+ ε1 · ε3 ε2 · k3 ε4 · k1

− ε1 · ε4 ε2 · [k1 ∧ k4] · ε3

− ε2 · ε3 ε1 · [k2 ∧ k3] · ε3

+ ε2 · ε4 ε1 · k4 ε3 · k2

− ε3 · ε4 ε1 · k4 ε2 · k3 (84)

Terms proportional to (1 − y)−2:
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C(0,2) = + ε1 · k3 ε2 · k3 ε3 · k2 ε4 · k3

+ ε1 · k2 ε2 · k3 ε3 · k2 ε4 · k3

+ ε1 · k3 ε2 · k3 ε3 · k2 ε4 · k2

+ ε1 · k2 ε2 · k3 ε3 · k2 ε4 · k2

− ε1 · ε4 ε2 · k3 ε3 · k2

− ε1 · k3 ε2 · ε3 ε4 · k2

− ε1 · k3 ε2 · ε3 ε4 · k3

− ε1 · k2 ε2 · ε3 ε4 · k3

− ε1 · k2 ε2 · ε3 ε4 · k2

+ ε1 · ε4 ε2 · ε3 (85)

This can be simplified to

C(0,2) = + ε1 · k4 ε2 · k3 ε3 · k2 ε4 · k1

− ε1 · ε4 ε2 · k3 ε3 · k2

− ε2 · ε3 ε1 · k4 ε4 · k1

+ ε1 · ε4 ε2 · ε3 (86)

Terms proportional to 1:

C(0,0) = − ε1 · k3 ε2 · k4 ε3 · k4 ε4 · k2

− ε1 · k3 ε2 · k4 ε3 · k2 ε4 · k2

− ε1 · ε3 ε2 · k4 ε4 · k2

+ ε1 · k3 ε2 · ε4 ε3 · k4

+ ε1 · k3 ε2 · ε4 ε3 · k2

+ ε1 · ε3 ε2 · ε4 (87)

This can be simplified to

C(0,0) = + ε1 · k3 ε2 · k4 ε3 · k1 ε4 · k2

− ε1 · ε3 ε2 · k4 ε4 · k2

− ε2 · ε4 ε1 · k3 ε3 · k1

+ ε1 · ε3 ε2 · ε4 (88)

D. Details on the computation of V[4]

The first step is to compute the color ordered vertices with two on shell legs

−εμ1
1

εμ2
2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗) =ı

{
+[c2ε1 · ε2]k1μ + [c1ε1 · ε2]k2μ

+ [(c1 − c2)ε2 · k1]ε1μ + [−(c1 − c2)ε1 · k2]ε2μ

}
+ı3

{
+[(−3c3 + 2c5 − c6)ε1 · k2ε2 · k1 + c9ε1 · ε2k1 · k2]k1μ
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+ [(−3c4 − c5 + 2c6)ε1 · k2ε2 · k1 + c12ε1 · ε2k1 · k2]k1μ

+ [(−2c7 + c9 + 2c10 − c12)ε2 · k1k1 · k2]ε1μ

+ [(+2c8 − c9 − 2c11 + c12)ε1 · k2k1 · k2]ε2μ

}
δ∑

ki
q∗μ,

(89)

and

−V
(123)
μ; μ3; μ4

(−q∗, k3, k4)ε
μ3
3

εμ4
4

=ı
{
+[c2ε3 · ε4]k3μ + [c1ε3 · ε4]k4μ

+ [(c1 − c2)ε4 · k3]ε3μ + [−(c1 − c2)ε3 · k4]ε4μ

}
+ı3

{
+[(−3c3 + 2c5 − c6)ε3 · k4ε4 · k3 + c9ε3 · ε4k3 · k4]k3μ

+ [(−3c4 − c5 + 2c6)ε3 · k4ε4 · k3 + c12ε3 · ε4k3 · k4]k1μ

+ [(−2c7 + c9 + 2c10 − c12)ε4 · k3k3 · k4]ε3μ

+ [(+2c8 − c9 − 2c11 + c12)ε3 · k4k3 · k4]ε4μ

}
δ∑

ki
(−q∗)μ. (90)

The computation of the color ordered vertex at k0 order is

α′C0N 4
0 A1234|k0

−εμ1
1

εμ2
2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗)|k1

δμν

q∗2
V

(123)
ν; μ3; μ4

(−q∗, k3, k4)|k1 εμ3
3

εμ4
4

δ∑
ki

− εμ4
4

εμ1
1

V
(123)
μ4; μ1; μ

(k4, k1, q
∗)|k1

δμν

q∗2
V

(123)
ν; μ2; μ3

(−q∗, k2, k3)|k1 εμ2
2

εμ3
3

δ∑
ki

, (91)

and it can be split into three pieces. The first piece contains the pole in the s channel

−α′C0N 4
0

1

s

[
C(2,0)|k0u + 2C(1,0)|k2

]
δ∑

k̂i

−εμ1
1

εμ2
2

V
(123)
μ1; μ2; μ

(k1, k2, q
∗)|k1

δμν

q∗2
V

(123)
ν; μ3; μ4

(−q∗, k3, k4)|k1 εμ3
3

εμ4
4

δ∑
ki

= − 1

2
(c2

1 + c2
2)ε1 · ε3 ε2 · ε4, (92)

when the constraint (56) 14

(c1 − c2)
2 = −C0N 4

0 (2α′)3− 1
2 D (93)

is satisfied. The second piece contains the pole in the u channel and can be obtained from the 
first one by a cyclic permutation (1234). Finally the third piece come from the string amplitude 
without poles, i.e.

α′C0N 4
0 A1234|k0 = α′C0N 4

0

[−C(2,0)|k0 − C(0,2)|k0 + C(0,0)|k0

]
δ∑

k̂i

= − (2α′)3− 1
2 D

2
C0N 4

0 [ε1 · ε2 ε3 · ε4 + ε4 · ε1 ε2 · ε3 − ε1 · ε3 ε2 · ε4] δ∑
ki

. (94)

14 The powers of (2α′) come from the fact that k̂ = √
2α′k and ε̂ = √

2α′ε.
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Assembling all pieces gives the result (55).
The computation of the color ordered vertex at k2 order proceeds in the same way. The first 

term is given by the terms with a pole in the s channel

α′C0N 4
0

1

s

[
C(2,0)|k2u − 2C(1,0)|k4

]
δ∑

k̂i

−
[
V

(123)
μ1; μ2; μ

(k1, k2, q
∗)V (123)

ν; μ3; μ4
(−q∗, k3, k4)

]
|k4ε

μ1
1

εμ2
2

δμν

q∗2
εμ3

3
εμ4

4
δ∑

ki

= − 1

2
[c1(−3c4 − c5 + 2c6) + c2(−3c3 + 2c5 − c6)]

× [ε1 · ε2 ε3 · k4 ε4 · k3 + ε3 · ε4 ε1 · k2 ε2 · k1] (95)

when the constraint

(c1 − c2)(−3c3 + 3c4 + 3c5 − 3c6) = C0N 4
0 (2α′)4− 1

2 D (96)

is satisfied. The second piece contains the pole in the u channel and can be obtained from the first 
one by a cyclic permutation (1234). The third piece come from the string amplitude without poles 
and from the Feynman diagram obtained from color ordered vertices without poles. Explicitly 
we have that the terms of the form (ε · ε)2k · k are{

+ 1

2
ε1 · ε2 ε3ε4

[(
1

2
(2α′)4− 1

2 DC0N 4
0

)
s +

(
1

2
(2α′)4− 1

2 DC0N 4
0 + c1c9 + c2c12

)
u

+
(

1

2
(2α′)4− 1

2 DC0N 4
0 + c1c12 + c2c9

)
t
]

+ 1 term obtained by cycling (1234) in the previous term

}

− 1

2
ε3 · ε1 ε2ε4

[(
1

2
(2α′)4− 1

2 DC0N 4
0

)
u +

(
1

2
(2α′)4− 1

2 DC0N 4
0

)
s

]
(97)

The terms of the form (ε · ε)(ε · k)2 in a canonical form where the indices of the momenta are 
taken from the indices of (ε · ε) are

+
{
+ε1 · ε2 ε3 · k1 ε4 · k1

1

2

[
(2α′)4− 1

2 DC0N 4
0 + c1(−3c4 − c5 + 2c6)

+ c2(−3c3 + 2c5 − c6 − 2c7 + 2c8 + 2c10 − 2c11)
]

+ε1 · ε2 ε3 · k1 ε4 · k2
1

2

[
(2α′)4− 1

2 DC0N 4
0 + c1(−3c4 − c5 + 2c6 + 2c8 − 2c11)

+ c2(−3c3 + 2c5 − c6 − 2c7 + 2c10)
]

+ε1 · ε2 ε3 · k1 ε4 · k2
1

2

[
(2α′)4− 1

2 DC0N 4
0 + c1(−3c4 − c5 + 2c6 − 4c7 − 2c8

+ 4c9 + 2c10 + 2c11 − 2c12)

+ c2(−3c3 + 2c5 − c6 + 2c7 + 4c8 − 2c9

− 2c10 − 4c11 + 4c12)
]
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+ε1 · ε2 ε3 · k2 ε4 · k2
1

2

[
(2α′)4− 1

2 DC0N 4
0 + c1(−3c4 − c5 + 2c6 − 2c7 + 2c8)

+ c2(−3c3 + 2c5 − c6)
]

+ 3*4 terms obtained by cycling (1234) in the previous 4 terms

}

+
{
+ε1 · ε3 ε2 · k1 ε4 · k1

[
− 1

2
(2α′)4− 1

2 DC0N 4
0

]

+ε1 · ε3 ε2 · k1 ε4 · k3

[
− 1

2
(2α′)4− 1

2 DC0N 4
0 − (c1 − c2)(−2c7 + c9 + 2c10 − c12)

]
+ε1 · ε3 ε2 · k3 ε4 · k1

[
− 1

2
(2α′)4− 1

2 DC0N 4
0 + (c1 − c2)(+2c7 − c9 − 2c11 + c12)]

]
+ε1 · ε3 ε2 · k3 ε4 · k3

[
− 1

2
(2α′)4− 1

2 DC0N 4
0

]
+ 4 terms obtained by cycling (1234) in the previous 4 terms

}
(98)
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