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Abstract.
We investigate the physical properties of the protoneutron stars in the framework of a

relativistic mean-field model and we study the finite-temperature equation of state in β-stable
matter at fixed entropy per baryon, in the presence of hyperons, ∆-isobar resonances and trapped
neutrinos. In this context, we study the possible presence of thermodynamic instabilities and
a phase transition from nucleonic matter to resonance-dominated ∆-matter can take place.
Such a phase transition is characterized by both mechanical instability (fluctuations on the
baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration)
in asymmetric nuclear matter. We show that such statistical effects could play a crucial role in
the structure and in the evolution of the protoneutron stars.

1. Introduction
A protoneutron star (PNS) is formed in a stellar remnant after a successful core-collapse
supernova explosion of a star with a mass smaller than about 20 solar masses and in the first
seconds of its evolution it is a very hot (temperature of up to 50 MeV), lepton rich and β-stable
object and a lepton concentration typical of the pre-supernova matter [1].

The knowledge of the nuclear EOS of dense matter at finite temperature plays a crucial
role in the determination of the structure and in the macrophysical evolution of the PNS
[2]. The processes related to strong interaction should in principle be described by quantum
chromodynamics. However, in the energy density range reached in the compact stars, strongly
non-perturbative effects in the complex theory of QCD are not negligible [3]. In the absence
of a converging method to approach QCD at finite density one often turns to effective and
phenomenological model investigations.

In this article, we study a hadronic equation of state (EOS) at finite temperature and density
by means of a relativistic mean-field model with the inclusion ∆(1232)-isobars [4, 5, 6] and by
requiring the Gibbs conditions on the global conservation of baryon number and net electric
charge. Transport model calculations and experimental results indicate that an excited state
of baryonic matter is dominated by the ∆ resonance at the energies from the BNL Alternating
Gradien Synchrotron (AGS) to RHIC [7]. Moreover, in the framework of the nonlinear Walecka
model, it has been predicted that a phase transition from nucleonic matter to ∆-excited nuclear
matter can take place and the occurrence of this transition sensibly depends on the ∆-meson
coupling constants [8, 9, 10, 11, 12].

http://creativecommons.org/licenses/by/3.0
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2. Hadronic equation of state and stability conditions
In this section, we start by introducing the hadronic equation of state (EOS) in the framework
of a relativistic mean-field theory. In this investigation we include all the baryon octet in order
to reproduce the chemical composition of the PNS at high baryon chemical potential. We also
take into account of leptons particle by fixing the lepton fraction YL = Ye+Yνe = (ρe+ρνe)/ρB,
where ρe, ρνe and ρB are the electron, neutrino and baryon number densities, respectively. This
is because, in the first stage of PNS evolution, electrons and neutrinos are trapped inside the
stellar matter and, therefore, the lepton number must be conserved until neutrinos escape out
of the PNS [13].

The Lagrangian density can be written in term of the hadronic [4, 14] plus leptonic component,
as follow:

Ltot = LH + Ll =
∑
B

ψ̄B[iγµ∂
µ − (MB − gσBσ)

−gωBγµωµ − gρBγµ~τ · ~ρµ]ψB +
1

2
(∂µσ∂

µσ −m2
σσ

2)

−U(σ) +
1

2
m2
ωωµω

µ +
1

2
m2
ρ~ρµ · ~ρ µ −

1

4
FµνF

µν

−1

4
~Gµν ~G

µν +
∑
l

ψ̄l[iγµ∂
µ −ml]ψl , (1)

where the sums over B and l are over the baryon octet and lepton particles, respectively. The
field strength tensors for the vector mesons are given by the usual expressions Fµν ≡ ∂µων−∂νωµ,
~Gµν ≡ ∂µ~ρν − ∂ν~ρµ, and U(σ) is a nonlinear potential of σ meson

U(σ) =
1

3
aσ3 +

1

4
bσ4 , (2)

usually introduced to achieve a reasonable compression modulus for equilibrium nuclear matter.
The field equations in a mean field approximation are

(iγµ∂
µ − (M − gσBσ)− gωBγ0ω − gρBγ0τ3ρ)ψ = 0 , (3)

m2
σσ + aσ2 + bσ3 = gσB < ψ̄ψ >= gσBρS , (4)

m2
ωω = gωB < ψ̄γ0ψ >= gωBρB , (5)

m2
ρρ = gρB < ψ̄γ0τ3ψ >= gρBρI , (6)

where σ = 〈σ〉, ω = 〈ω0〉 and ρ = 〈ρ0
3〉 are the nonvanishing expectation values of mesons fields,

ρI is the total isospin density, ρB and ρS are the baryon density and the baryon scalar density,
respectively. They are given by

ρB = 2
∑
i=B

∫
d3k

(2π)3
[ni(k)− ni(k)] , (7)

ρS = 2
∑
i=B

∫
d3k

(2π)3

M∗
i

E∗
i

[ni(k) + ni(k)] , (8)

where ni(k) and ni(k) are the fermion particle and antiparticle distributions.

The nucleon effective energy is defined as Ei
∗(k) =

√
k2 +Mi

∗2, where Mi
∗ = Mi − gσBσ.

The effective chemical potentials µ∗i are given in terms of the meson fields as follows

µ∗i = µi − gωBω − τ3iBgρBρ , (9)
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where µi are the thermodynamical chemical potentials (µi = ∂ε/∂ρi).
The further conditions, required for the β-stable chemical equilibrium and charge neutrality,

can be written as

µΛ = µΣ0 = µΞ0 = µn , (10)

µΣ− = µΞ− = µn + µe , (11)

µp = µΣ+ = µn − µe ; (12)

ρp + ρΣ+ − ρΣ− − ρΞ− − ρe = 0 . (13)

In the case of trapped neutrinos, the new equalities are obtained by the replacement of
µe → µe − µνe . The total entropy per baryon is calculated using s = (SB + Sl)/(TρB), where
SB = PB + εB −

∑
i=B µiρi and Sl = Pl + εl −

∑
i=l µiρi, and the sums are extended over all the

baryons and leptons species.
The thermodynamical quantities can be obtained from the thermodynamic potential in the

standard way. More explicitly, the baryon pressure PB and the energy density εB can be written
as

PB =
2

3

∑
i

∫
d3k

(2π)3

k2

E∗
i (k)

[ni(k) + ni(k)]− 1

2
m2
σσ

2

−U(σ) +
1

2
m2
ωω

2 +
1

2
m2
ρρ

2 , (14)

εB = 2
∑
i

∫
d3k

(2π)3
E∗
i (k)[ni(k) + ni(k)] +

1

2
m2
σσ

2

+U(σ) +
1

2
m2
ωω

2 +
1

2
m2
ρρ

2 . (15)

Here and in the following, we focus our investigation by considering the so-called GM3 [4] and
the SFHo parameter sets [15]. The implementation of hyperon degrees of freedom comes from
determination of the corresponding meson-hyperon coupling constants that have been fitted to
hypernuclear properties.

Concerning the stability conditions, we are dealing with the study of a multi-component
system at finite temperature and density with two conserved charges: baryon number and
electric charge. For such a system, the Helmholtz free energy density F can be written as [16]

F (T, ρB, ρC) = −P (T, µB, µC) + µBρB + µCρC , (16)

with

µB =

(
∂F

∂ρB

)
T,ρC

, µC =

(
∂F

∂ρC

)
T,ρB

. (17)

In a system with N different particles, the particle chemical potentials are expressed as the
linear combination of the two independent chemical potentials µB and µC and, as a consequence,∑N
i=1 µiρi = µBρB + µCρC .
Assuming the presence of two phases (denoted as I and II, respectively), the system is stable

against the separation in two phases if the free energy of a single phase is lower than the free
energy in all two phases configuration. The phase coexistence is given by the Gibbs conditions

µIB = µIIB , µIC = µIIC , (18)

P I(T, µB, µC) = P II(T, µB, µC) . (19)

Therefore, at a given baryon density ρB and at a given net electric charge density ρC = y ρB
(with y = Z/A), the chemical potentials µB are µC are univocally determined. An important
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feature of this conditions is that, unlike the case of a single conserved charge, the pressure
in the mixed phase is not constant and, although the total ρB and ρC are fixed, baryon and
charge densities can be different in the two phases. For such a system in thermal equilibrium,
the possible phase transition can be characterized by mechanical (fluctuations in the baryon
density) and chemical instabilities (fluctuations in the electric charge density) [9, 16]. As usual
the condition of the mechanical stability implies

ρB

(
∂P

∂ρB

)
T, ρC

> 0 . (20)

By introducing the notation µi,j = (∂µi/∂ρj)T,P (with i, j = B,C), the chemical stability for
a process at constant P and T can be expressed with the following conditions [9]

ρB µB,B + ρC µC,B = 0 , (21)

ρB µB,C + ρC µC,C = 0 . (22)

Whenever the above stability conditions are not respected, the system becomes unstable and
the phase transition takes place. The coexistence line of a system with one conserved charge
becomes in this case a two dimensional surface in (T, P, y) space, enclosing the region where
mechanical and diffusive instabilities occur.

By increasing the temperature and the baryon density during the high energy heavy ion
collisions (T ≈ 50 MeV and ρB ≥ ρ0), a multi-particle system with ∆-isobar and pion degrees
of freedom may take place.

In analogy with the liquid-gas case, we are going to investigate the existence of a possible
phase transition in the nuclear medium by studying the presence of instabilities (mechanical
and/or chemical) in the system. The chemical stability condition is satisfied if [9]

(
∂µC
∂y

)
T,P

> 0 or



(
∂µB
∂y

)
T,P

< 0 , if y > 0 ,

(
∂µB
∂y

)
T,P

> 0 , if y < 0 .

(23)

In the Fig. 1, we report the baryon and electric charge chemical potential isobars as a function
of y, at fixed temperature T = 50 MeV and xσ∆ ≡ gσ∆/gσN = 1.3 (the ratio related to the
scalar σ meson-∆ coupling constants) in the GM3 parameters set [4].

From the analysis of the above chemical potential isobars, we are able to construct the binodal
surface relative to the nucleon-∆ matter phase transition. In Fig. 2, we show the binodal section
at T = 50 MeV and xσ∆ = 1.3.

The right branch (at lower density) corresponds to the initial phase (I), where the dominant
component of the system is given by nucleons. The left branch (II) is related to the final phase
at higher densities, where the system is composed primarily by ∆-isobar degrees of freedom (∆-
dominant phase). In presence of ∆-isobars the phase coexistence region results very different
from what obtained in the liquid-gas case, in particular it extends up to regions of negative
electric charge fraction and the mixed phase region ends in a point of maximum asymmetry with
y = −1 (corresponding to a system with almost all ∆−-particles, being antiparticles and pions
contribution almost negligible in this regime). We analyze the phase evolution of the system
during the isothermal compression from an arbitrary initial point A, indicated in Fig. 2. In this
point the system becomes unstable and starts to be energetically favorable the separation into
two phases, therefore an infinitesimal ∆-dominant phase appears in B, at the same temperature
and pressure. Let us observe that, although in B the electric charge fraction is substantially
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Figure 1. Baryon (right panel) and electric charge (left panel) chemical potential isobars as
a function of y at T = 50 MeV and xσ∆ = 1.3. The curves labeled a through g have pressure
P=9,7,6,5,4,3,2 MeV/fm3, respectively.
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Figure 2. Binodal section at T = 50
MeV and xσ∆ = 1.3.

negative, the relative ∆− abundance must be weighed on the low volume fraction occupied
by the phase II near the point B. During the phase transition, each phase evolves towards
a configuration with increasing y, in contrast to the liquid-gas case, where each phase evolves
through a configuration with a decreasing value of y (with the exception of the gas phase after
the maximum asymmetry point). We will see in the next section how the presence of such
features are relevant in the structure and in the evolution of the PNS.

3. Results and discussion
We investigate the relevance ∆-isobar degrees of freedom and the stability conditions in the bulk
properties of compact star and PNS.

Let us start by considering β-stable and electric-charge neutral nuclear matter at T = 0.
In Fig. 3, we report the mass-radius relations in absence (no ∆) and in presence of ∆-isobars
with different scalar coupling ratios (xσ∆ = 1.0 and xσ∆ = 1.2) in the GM3 model [4]. The
presence of ∆-isobar degrees of freedom smooths the equation of state enlarging the effect of
thermodynamic instabilities and reduces the maximum gravitational mass. On the other hand
very compact object with smaller radii can be formed.

In Fig. 4, we show the temperature as a function of the baryon density (in units of the
saturation nuclear density), in absence (np) and in presence (npH) of hyperons in the SFHo
model [15, 17]. We limit our analysis in the first two phases: in the left panel, the first
leptonic rich state (s = 1, YL = 0.4) and, in the right panel, the maximum heating phase
(s = 2, Yνe = 0). Indeed in the cold-catalyzed phase (s = 0, Yνe = 0), the temperature is
very low (fews MeV), and the above statistical effects due to thermodynamical instabilities
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Figure 3. Mass-radius relations in
absence (no ∆) and in presence of ∆-
isobars with different scalar coupling
ratios (xσ∆ = 1.0 and xσ∆ = 1.2).

and Delta-isobar formation may be neglected. In both previous cases, we observe a reduction
in temperature in presence of hyperons and Delta-isobar degrees of freedom. Note also that,
when hyperons are present, for s = 1 and YL = 0.4, the system evolves in a quasi isothermal
configuration above ρB = (2.5 ÷ 6) ρ0. The different behavior in the stellar temperature
have important consequences in the PNS evolution and in its particles concentration. Finite
temperature properties of matter at high density influence the diffusion of neutrinos, being the
neutrino mean free paths strongly temperature dependent [13]. In particular, neutrino opacity
is very sensitive to the inner temperature (in general proportional to T 2) and, therefore, this
would affect sensibly the cooling of the PNS.

SFHo
s=1, YL=0.4

np

npH

npHD

xΣD=1.0 xΣD=1.1

2 4 6 8 10 12
ΡB�Ρ00

10

20

30

40
T@MeVD

SFHo

s=2; YΥe=0

np

npH

xΣD=1.1
xΣD=1.0

0 2 4 6 8
ΡB�Ρ00

20

40

60

80

T@MeVD

Figure 4. Temperature as a function of the baryon density (in units of the saturation nuclear
density ρ0) in the SFHo model and for different value of the Delta coupling constant xσ∆. Left
panel: entropy per baryon and neutrino fraction s = 1, YL = 0.4, right panel: s = 2, Yνe = 0.
The labels np and npH stand for nucleons and nucleons plus hyperons.

In Fig. 5, we show the variation of the maximum baryonic mass in units of solar mass
M� as a function of the central baryon density ρc, for pure nucleonic (np) and hyperonic plus
Delta-isobars (npH) stars in the first leptonic rich state (left panel, s = 1, YL = 0.4) and in the
maximum heating phase (right panel, s = 2, Yνe = 0). For a comparison, in the figure we have
considered the two models GM3 and SFHo model in presence of ∆-isobars with different scalar
coupling ratios (xσ∆ = 1.0 and xσ∆ = 1.1).

Let us note the strong reduction of the maximum baryonic mass with the introduction of
hyperons and Delta-isobar degrees of freedom. This effect is remarkable stronger in the maximum
heating phase (s = 2, Yνe = 0) and for a greater value of the xσ∆ coupling due also to the presence
of thermodynamical instabilities conditions.

In the presence of hyperons, when the stellar core contains non-leptonic negative charges,
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Figure 5. Maximum baryonic mass MB in units of solar mass M� as a function of the central
baryon density ρc (in units of the nuclear saturation density ρ0) for nucleons (np) and hyperons
stars (npH) stars in the case s = 1 and YL = 0.4 (left panel) and during the maximum heating
phase s = 2 and Yν = 0 (right panel).

the maximum masses of neutrino-trapped stars result to be significantly larger than for low
temperatures and for lepton poor matter. Hence, there exists a window of initial masses for
which the star becomes unstable to gravitational collapse during deleptonization and a black
hole can take place [13]. We can see that the formation of such a metastable phase strongly
depends on the presence of statistical effects and the window of metastability grows with the
value xσ∆.
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