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Docosahexaenoic Acid Is a Beneficial
Replacement Treatment for
Spinocerebellar Ataxia 38
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Objective: Spinocerebellar ataxia 38 (SCA38) is caused by mutations in the ELOVL5 gene, which encodes an elon-
gase involved in the synthesis of polyunsaturated fatty acids, including docosahexaenoic acid (DHA). As a conse-
quence, DHA is significantly reduced in the serum of SCA38 subjects. In the present study, we evaluated the safety
of DHA supplementation, its efficacy for clinical symptoms, and changes of brain functional imaging in SCA38
patients.
Methods: We enrolled 10 SCA38 patients, and carried out a double-blind randomized placebo-controlled study for
16 weeks, followed by an open-label study with overall 40-week DHA treatment. At baseline and at follow-up visit,
patients underwent standardized clinical assessment, brain 18-fluorodeoxyglucose positron emission tomography,
electroneurography, and ELOVL5 expression analysis.
Results: After 16 weeks, we showed a significant pre–post clinical improvement in the DHA group versus placebo,
using the Scale for the Assessment and Rating of Ataxia (SARA; mean difference [MD] 5 12.70, 95% confidence
interval [CI] 5 10.13 to 1 5.27, p 5 0.042). At 40-week treatment, clinical improvement was found significant by both
SARA (MD 5 12.2, 95% CI 5 10.93 to 1 3.46, p 5 0.008) and International Cooperative Ataxia Rating Scale
(MD 5 13.8, 95% CI 5 11.39 to 1 6.41, p 5 0.02) scores; clinical data were corroborated by significant improvement
of cerebellar hypometabolism (statistical parametric mapping analyses, false discovery rate corrected). We also
showed a decreased expression of ELOVL5 in patients’ blood at 40 weeks as compared to baseline. No side effect
was recorded.
Interpretation: DHA supplementation is a safe and effective treatment for SCA38, showing an improvement of clini-
cal symptoms and cerebellar hypometabolism.
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Spinocerebellar ataxias (SCAs) are a group of autoso-

mal dominant neurological disorders with a preva-

lence of 5.5 in 100,000.1 SCAs are phenotypically

characterized by gait and limb ataxia, incoordination of

eye movements, and speech disturbances. Cerebellar

hypometabolism is well documented and considered a

main diagnostic marker.2,3 More than 40 SCA subtypes

have been reported, and 34 genes have been identified so

far. Three main categories are defined on the basis of the

mutation type,4 namely those due to CAG-coding poly-

glutamine repeat expansion, noncoding repeat expan-

sions, and conventional mutations (http://neuromuscular.

wustl.edu/ataxia/domatax.html).

We recently identified SCA38 (Mendelian Inheri-

tance in Man 611805) as caused by mutations in the

ELOVL5 gene.5 The disease onset is in the fourth decade

of life, characterized by slowly progressive gait ataxia and

associated in most of the cases with pes cavus and hypo-

smia. The disease progresses with limb ataxia, dysarthria,

dysphagia, ophthalmoparesis, and, in the later stages, sen-

sory loss. Brain imaging documented cerebellar hypome-

tabolism with sparing of cerebral cortex.6

ELOVL5 encodes an elongase enzyme involved in

the synthesis of very long-chain fatty acids with a high

and specific expression in Purkinje cells.5 Its main prod-

ucts are the 22-carbon docosahexaenoic acid (DHA) and

eicosapentaenoic acid of the omega-3 polyunsaturated

fatty acid class. ELOVL5 mutations likely cause both an

altered function of the enzyme and a possible gain of

function. As a consequence, SCA38 patients have a

reduction of serum DHA, and increased ELOVL5 gene

expression and protein levels induced by transcriptional

feedback loop regulation.5

In the present work, we performed a clinical trial

on 10 SCA38 patients, and we demonstrated that oral

DHA supplementation is a safe and effective treatment,

exerting clinical efficacy and influencing cerebellar

metabolism.

Patients and Methods

Subjects
Ten subjects affected by SCA38 were evaluated at the Center

for Ageing Brain and Neurodegenerative Disorders, Department

of Clinical and Experimental Sciences, University of Brescia,

Italy. Genetic test confirmed the c.689G>T (p.Gly230Val) vari-

ant.5 Patients had already been included in a previous work on

clinical features of SCA38.6 Written informed consent was

obtained from all patients.

In the Table, patients’ demographic and clinical features

are reported. Mean age was 48.7 6 10.8 years, and the mean

age at onset was 38.4 6 6.8 years; 6 patients were females, 4

males.

The study was approved by the ethics committee of Bre-

scia Hospital, Italy (NP1821) and conformed to the Declara-

tion of Helsinki principles.

Study Drug
The study drug was a algal oil derived-DHA (Sofedus, Milan,

Italy) administered as sachets dosed at 600mg/day. Algal DHA

contains approximately 75% of DHA by weight and does not

contain eicosapentaenoic acid. The DHA dose was established

considering a meta-analysis on several reported trials.7 The

intake of 600mg/day of DHA was the highest dose employed

in the majority of the studies without side effects. DHA and

placebo sachets were indistinguishable and produced by the

same company.

Study Design
The study design is shown in Figure 1. We performed a 2-

phase trial: (1) a randomized double-blind placebo-controlled

phase of 16 weeks and (2) an open-label phase of 40-week

DHA supplementation in each patient.

Patients were initially randomly assigned (1:1) to treat-

ment with 600mg/day DHA (n 5 5) or placebo (n 5 5) for 16

weeks (see T0 and T1 in Fig 1).

Following the double-blind phase, all patients (n 5 10)

underwent the 600mg/day DHA treatment for a total of 40

weeks (see Fig 1).

At enrollment (T0), 16-week follow-up (T1), and after

40-week DHA supplementation (T2), each patient underwent

standardized clinical assessment (ie, Scale for the Assessment

and Rating of Ataxia [SARA]8 and the International Coopera-

tive Ataxia Rating Scale [ICARS]9, brain 18-fluorodeoxyglucose

FIGURE 1: Study design. We conducted a 2-phase trial con-
sisting of a randomized double-blind placebo-controlled
phase of 16 weeks, and an open-label phase of 40-week
docosahexaenoic acid (DHA) supplementation. White bar 5
placebo treatment; gray bars 5 DHA treatment. Black blocks
indicate the time points of clinical assessment (brain 18-
fluorodeoxyglucose positron emission tomography [FDG-
PET], electromyography/electroneurography [ENG], and
blood sampling [blood]). w 5 weeks.
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[FDG] positron emission tomography [PET] scan, electromyog-

raphy [EMG]/electroneurography [ENG], and blood sampling

for biological analyses).

INCLUSION CRITERIA. Inclusion criteria were: (1) symptom-

atic p.Gly230Val mutation carriers, (2) age> 18 years old, and

(3) ambulant (SARA score at baseline< 23).

EXCLUSION CRITERIA. Exclusion criteria were: (1) reported

poor compliance with drug regimen, (2) uncontrolled diabetes

(exclusion criterion to perform FDG-PET scan), (3) serum cre-

atinine levels> 2.0mg/dl, (3) alcohol abuse (equivalent

to> 12g/day) over the 30 days prior to screening, and (4) evi-

dence of drug abuse within 6 months prior to screening.

BLINDNESS. To ensure blindness in the clinical assessment

scoring, at each time point (T0, T1, and T2) neurological exam-

ination was video-recorded and analyzed blind by A.A., who

was unaware of both time point and treatment (DHA or pla-

cebo), as the videos were presented randomly. Brain FDG-PET

analyses were carried out by Statistical Parametric Mapping

(SPM), which is fully automated, unbiased, and operator-

independent software. Biological analyses were conducted by

E.D.G., N.M., and D.C. without knowledge of time point and

treatment intervention.

OUTCOME MEASURES. As primary efficacy measure, we

evaluated the significant mean change from enrollment/baseline

to endpoint on the clinical scales (SARA and ICARS). Second-

ary efficacy measures included change from baseline to end-

point on brain FDG-PET imaging and on DHA and ELOVL5

levels in blood.

SAFETY ASSESSMENTS. Safety assessments were conducted

at screening and at each visit. Adverse events were elicited by

questioning the patient throughout the study and through

direct observation by the clinical team.

Clinical Assessment, Instrumental Evaluation,
and Molecular Analyses
At each time point, videotapes of the SARA (range 5 0–40)8

and the ICARS (range 5 0–100)9 were employed to evaluate

cerebellar deficits. Intra-assay variability of SARA and ICARS

scores was evaluated between 2 independent neurologists (A.A.

and M.M., SARA and ICARS alpha-Cronbach 5 0.983 and

0.995, respectively).

Brain PET image-processing procedures were carried out

using MATLAB (http://it.mathworks.com/products/matlab/;

MathWorks, Sherborn, MA) and SPM (http://www.fil.ion.ucl.

ac.uk/spm/software/spm12/) software. Details on image prepro-

cessing are given elsewhere.10 Cerebellar metabolism changes

were evaluated by nonparametric permutation test (10,000-per-

mutation Statistical NonParametric Mapping; T0 vs T1 and

baseline vs T2), and the threshold was set at p< 0.05, false dis-

covery rate (FDR) cluster level corrected.11

EMG and ENG were performed according to standard

procedures.

Blood sampling was performed at fast, between 8 and

9 AM. Each patient had undergone a poor-DHA diet, as recom-

mended by an expert dietician, for 2 weeks before each blood

sampling, to avoid possible confounders on blood analyses. We

measured serum DHA levels and ELOVL5 expression, as previ-

ously published.5

Statistical Analysis
Comparison of clinical characteristics between groups (placebo

vs DHA treatment) was carried out using Mann–Whitney test

or chi-square test, as appropriate. To assess the effect of DHA

treatment on clinical scores over time, in the double-blind

phase we used 2-way mixed analysis of variance (ANOVA) with

TIME (T0 vs T1) as within-subject factor and TREATMENT

(placebo vs DHA) as between-subjects factor; in the open-label

phase, we applied 1-way mixed ANOVA with TIME (baseline

vs T2) as within-subject factor. Mauchly test was used to test

for assumption of sphericity, whereas Greenhouse–Geisser epsi-

lon determination was used to correct in case of sphericity

violation.

Correlation between functional scores and demographic

or clinical characteristics was assessed using Spearman rank-

order correlations. Statistical analyses were performed using

SPSS version 21 (SPSS, Chicago, IL).

Results

Randomized Double-Blind Placebo-Controlled
Phase
No significant differences in demographic characteristics

or SARA and ICARS scores between patients who

received DHA or placebo were found. Clinical evaluation

by SARA scores of the DHA versus placebo groups after

16 weeks (T0 vs T1) showed a statistically significant

TIME 3 TREATMENT interaction (T0 vs T1, mean 6

standard error, DHA group: 10.8 6 1.0 vs 7.8 6 0.9; pla-

cebo group: 9.7 6 3.2 vs 9.4 6 4.0; F1;8 5 5.88,

p 5 0.042; Fig 2A).

The pre–post effect (T0 vs T1) of the DHA group

exhibited a non-null mean difference (MD) in SARA

scores (MD 5 13.00, 95% confidence interval

[CI] 5 11.46 to 1 4.65) as compared to the placebo

group (MD 5 10.30, 95% CI 5 21.25 to 1 1.84).

Accordingly, the TIME 3 TREATMENT mean difference

was non-null (3.00 2 0.30 5 12.70, 95% CI 5 10.13

to 1 5.27).

On ICARS scores, there was also an improvement,

but not statistically significant TIME 3 TREATMENT

interaction (T0 vs T1, DHA group: 22.0 6 3.3 vs

17.0 6 2.5; placebo group: 20.6 6 8.1 vs 21.0 6 9.2;

F1;8 5 4.25, p 5 0.073; see Fig 2A). The coverage interval

of the TIME 3 TREATMENT mean difference included

the null value (5.02[20.4] 5 15.4, 95% CI 5 -0.64

to 1 11.4), although the DHA group had a non-null

pre–post effect (MD 5 15.0, 95% CI 5 11.37
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to 1 8.63) as compared to the placebo group

(MD 5 20.4, 95% CI 5 24.03 to 1 3.23).

In both DHA and placebo groups, no significant

differences of cerebellar metabolism at the preestablished

threshold between T0 and T1 (T0<T1) were reported.

EMG/ENG parameters were unchanged in both groups.

Serum DHA levels and ELOVL5 expression did not

show any significant TIME 3 TREATMENT interaction.

Open-Label Phase
Each subject underwent DHA treatment (600mg/day) in

the open-label phase for 40 weeks, and the differences

between baseline and 40-week follow-up (T2) were evalu-

ated. We found a significant improvement in clinical

symptoms, with significantly reduced SARA scores at T2

compared to baseline (baseline: 10.1 6 1.9, T2:

7.9 6 1.7; MD 5 12.2, 95% CI 5 10.93 to 1 3.46;

F1;9 5 11.4, p 5 0.008; see Fig 2B). The same pre–post

effect was shown for ICARS scores (baseline: 21.5 6 4.6,

T2: 17.9 6 4.2; MD 5 13.8, 95% CI 5 11.39

to 1 6.41; F1;9 5 7.96, p 5 0.020; see Fig 2B).

A significant difference in cerebellar metabolism

between baseline and T2 was observed, with an increase

in cerebellar metabolism at T2 as compared to baseline

in the left posterior cerebellar lobe (x, y, z 5 32, 279,

223; T 5 8.56; p 5 0.03, cluster size 5 558) and in the

right posterior cerebellar lobe (x, y, z 5 22, 284, 217;

T 5 7.74; p 5 0.03, cluster size 5 475; Fig 3). No signifi-

cant differences in the opposite contrast (baseline>T2)

were found at the preestablished threshold.

On EMG/ENG, motor and sensory conduction

velocities did not worsen during 40-week DHA

treatment.

No differences in serum DHA levels before and

after 40-week treatment were found. We showed a slight

but significant reduction of ELOVL5 expression in blood

comparing T2 with baseline (reduction to 88% from

baseline, 95% CI 5 74% to 94%; F1;9 5 5.48,

p 5 0.044).

There was no significant correlation between the

change in SARA and ICARS scores (T2 minus baseline

scores) and age, gender, age at disease onset, duration of

disease, SARA and ICARS scores at baseline, change of

ELOVL5 expression, and change of cerebellar metabolism

as measured by brain FDG-PET (Spearman rank-order

correlation, all p> 0.05).

Safety Assessment
No side effects or adverse events were reported during

DHA supplementation in either the double-blind or the

open-label phase.

Discussion

No effective treatment is currently available for most

hereditary ataxias, and management remains supportive

and symptomatic.12,13 The rationale of this study

stemmed from the observation that SCA38 is character-

ized by an increased amount of ELOVL5 protein with a

mislocalization of the aberrant form in the Golgi appara-

tus and by a decrease of its final products, in particular

DHA, in patients’ serum.5

Because ELOVL5 is strictly regulated by the

amount of arachidonic acid and DHA via a transcrip-

tional feedback loop,14 we reasoned that the administra-

tion of DHA might have exerted a double goal:

compensating the decrease of very long chain fatty acids

FIGURE 2: Clinical assessment in the double-blind random-
ized placebo-controlled phase and the open-label phase.
(A) Scale for the Assessment and Rating of Ataxia (SARA)
and International Cooperative Ataxia Rating Scale (ICARS)
scores in the docosahexaenoic acid (DHA)-treated group
and in the placebo-treated group before (T0, dark gray
bars) and after 16-week DHA/placebo treatment (T1, light
gray bars) in spinocerebellar ataxia 38 (SCA38) patients. (B)
SARA scores and ICARS scores at baseline (dark bars) and
after 40-week DHA treatment (T2, white bars) in SCA38
patients. *p < 0.05.
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and lowering ELOVL5 aberrant protein.5 The endoge-

nous synthesis of DHA within the brain is low compared

with its uptake from dietary and/or liver sources.15,16

DHA is a well-known dietary supplement, well tolerated

at high dosage and with the ability to cross the blood–

brain barrier by passive and active transport.17–19

In recent years, polyunsaturated fatty acids like

DHA have gained much attention due to promising

results in a number of neurodegenerative conditions.20,21

Moreover, polyunsaturated fatty acids are required for the

normal development of the central nervous system and

their deficiency can impair cerebral function in mice.22

FIGURE 3: Improvement of cerebellar hypometabolism after 40-week docosahexaenoic acid (DHA) treatment in spinocerebellar
ataxia 38 (SCA38) patients. Pattern of cerebellar metabolism in SCA38 patients at baseline versus 40-week DHA treatment
(baseline < 40-week DHA treatment, p < 0.05, false discovery rate corrected). See Results for details. The results are superim-
posed on a 3-dimensional standardized template and axial magnetic resonance imaging template. L 5 left; R 5 right;
Z 5 Montreal coordinates.

TABLE. Demographic and Clinical Characteristics of Enrolled Patients according to Treatment Group

DHA Group Placebo Group
SCA38

Overall

Variable 1 2 3 4 5 6 7 8 9 10 Group,

n 5 10a

Gender M M F F F F M M F F 40% M

Age at

onset, yr

38 46 35 38 36 50 44 34 37 26 38.4 6 6.8

Age at

evaluation, yr

46 49 51 49 39 73 47 40 58 35 48.7 6 10.8

SARA

score, T0

13.5 9.0 13.0 10.0 8.5 17.5 5.0 6.0 17.5 2.5 10.2 6 5.1

ICARS

score, T0

32.0 18.0 28.0 17.0 15.0 36.0 6.0 13.0 44.0 4.0 21.3 6 13.2

First

symptom

Gait

ataxia

Gait

ataxia

Gait

ataxia

Gait

ataxia

Gait

ataxia

Gait

ataxia

Gait

ataxia

Gait

ataxia

Gait

ataxia

Gait

ataxia

—

aMean 6 standard deviations, otherwise specified.

DHA 5 docosahexaenoic acid; F 5 female; ICARS 5 International Cooperative Ataxia Rating Scale; M 5 male; SARA 5 Scale for the Assessment

and Rating of Ataxia; SCA38 5 spinocerebellar ataxia 38; T0 5 time at enrollment.

Manes et al: DHA for SCA38

October 2017 619



In this study, we showed that DHA supplementa-

tion ameliorates clinical symptoms and cerebellar metab-

olism in SCA38 patients. Our data are in agreement

with the hypothesis that DHA intake, acting directly on

ELOVL5 expression, reduces mutant ELOVL5 cellular

levels, as indicated by a decrease of ELOVL5 expression

in patients’ blood after 40-week DHA treatment. Fur-

thermore, a general neuroprotective effect of DHA may

occur, by promoting brain cell survival and repair

through neurotrophic, antiapoptotic, and anti-

inflammatory signaling.23 As expected, DHA administra-

tion was safe and no side effect was reported.

The rationale of our study was similar to that

described for X-linked adrenoleukodystrophy and Lor-

enzo oil treatment, the administration of which was able

to normalize very long chain fatty acids in plasma and to

provide a clinical benefit.24

We conducted the present phase II study in 2

stages. We had already demonstrated a clinical improve-

ment in the double-blind randomized placebo controlled

phase, although the low number of subjects (5 DHA vs

5 placebo) and the short-term follow-up prevented us

from reporting significant changes of cerebellar metabo-

lism and ELOVL5 expression. In the open-label phase

presented here, in which we considered the 10 patients

longitudinally, we reported significant clinical improve-

ment, especially of posture and gait, along with a marked

increase in cerebellar hypometabolism and restored

ELOVL5 expression.

We acknowledge that the small number of patients

and the lack of one of primary efficacy measure outcome

(ie, ICARS) in the double-blind placebo-controlled phase

are limitations of the study. Moreover, we did not find

any significant change of serum DHA levels before and

after treatment, and this might give rise to concerns

regarding the robustness of the effect. Larger phase III

studies addressing long-term efficacy and administration

in still asymptomatic subjects with ELOVL5 mutations

are warranted to prove DHA supplementation to be an

effective therapy for SCA38. All patients included in this

study carry the same mutation in ELOVL5. Therefore,

only the effect of DHA on this single mutation has been

assessed in this trial and generalization to all SCA38

patients is not possible, requiring further studies.

Possible benefits of DHA supplementation in other

SCAs with reduced brain fatty acids and phospholipids,

such as SCA1 and Friedreich ataxia, also need to be con-

sidered.25 Based on this observation, we may speculate

that supplementation with DHA, the main component

of brain phospholipids, might be beneficial in the early

stage of such diseases.

The treatment is a relatively inexpensive (approxi-

mately $500 per patient per year), well tolerated, and

easy to administer as a dietary intervention. We propose

that this evidence-based strategy started early in life

might delay disease onset and slow the progression of

symptoms in SCA38. Thanks to replacement treatment,

a delayed dependency in these patients may sensibly

reduce direct and indirect costs on national health

systems.
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