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Abstract

Arbuscular mycorrhizal (AM) fungi experience oxidative stress during the plant-fungal interaction,

due to endogenous reactive oxygen species (ROS) produced by fungal metabolism and exogenous

ROS produced by plant cells. Here, we examine the responses to H2O2 in Gigaspora margarita, an

AM  fungus containing  the  endobacterial  symbiont  Candidatus Glomeribacter  gigasporarum

(CaGg). Previous studies revealed that  G. margarita with its endobacterium produces more ATP

and has higher respiratory activity compared to a cured line that lacks the endobacterium. This

higher bioenergetic potential leads to higher production of ROS, and to a higher ROS-detoxifying

capacity, suggesting a direct or indirect role of the endobacterium in modulating fungal anti-oxidant

responses. To test the hypothesis that the fungal-endobacterial symbiosis may enhance the fitness of

the  AM  fungus  in  the  presence  of  oxidative  stress,  we  treated  the  fungus  with  a  sublethal

concentration  of  H2O2 and  performed  RNA-seq  analysis.  Our  results  demonstrate  that:  i)

irrespective  of  the  endobacterium  presence,  G.  margarita  faces  oxidative  stress  by  activating

multiple metabolic processes (methionine oxidation, sulfur uptake, the pentose phosphate pathway,

activation  of  ROS-scavenger  genes),  ii)  in  the  presence  of  its  endobacterium,  G.  margarita

upregulates some metabolic pathways, like chromatin status modifications and iron metabolism; iii)

contrary to our hypothesis, the cured line responds to H2O2 by activating the transcription of specific

ROS scavengers. We confirmed the RNA-seq findings by measuring the glutathione and ascorbate

content, which was the same in both lines after H2O2 treatment. We conclude that both fungal lines

may face oxidative stress, but they activate alternative strategies.

Key words
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Introduction

As obligate biotrophs that colonize the roots of most land plants and enhance the host's ability to

acquire  nutrients,  arbuscular  mycorrhizal  (AM)  fungi have  important  roles  among the  plant

microbiota. Some AM fungi possess obligate endobacteria inside their cytoplasm, giving rise to an

endosymbiosis which is not essential for the fungal host (Bonfante and Desirò 2017; Olsson et al.

2017). The genome sequences of rod- and coccoid-shaped endobacteria revealed that both have a

reduced genome and a strong dependence on the fungal host (Ghignone et al. 2012; Torres-Cortés et

al. 2015). The rod-shaped bacterium,  Candidatus Glomeribacter gigasporarum (CaGg), has been

more deeply investigated: as an obligate endosymbiont of the AM fungus  Gigaspora margarita,

CaGg relies on its fungal host for nutrition, thus representing a physiological cost to the fungus.

However, the bacterial population has been maintained in the fungus over many generations in an

association that  is  believed to  be as ancient  as  the mycorrhizal  symbiosis  (Mondo et  al.  2012;

Bonfante and Desirò 2017).

The benefits that the endobacteria provide to the fungal partner remain largely unknown, although

recent studies on other fungal-bacterial interactions have given some hints (Uehling et al. 2017; Li

et al. 2017). In a previous study, we combined next-generation sequencing, molecular biology, and

cell physiology analyses to compare G. margarita containing CaGg (B+ line) with a “cured” line of

the fungus that lacks CaGg (B- line) obtained under laboratory conditions (Lumini et al. 2007). We

demonstrated that CaGg can enhance its host’s bioenergetic potential in terms of ATP production,

by increasing mitochondrial respiration rates in spores germinated in H2O (Salvioli et al. 2016). In a

comparison between B+ and B- germinating spores, RNA-seq data revealed that the B+ line showed

overall  higher  expression  of  genes  involved in  the  response  to  reactive  oxygen species  (ROS)

(Salvioli  et  al.  2016),  including  several  ROS-scavenging  enzymes.  The  results  pointed  to  a

relationship between cellular respiration and superoxide radical production (as a direct byproduct of

the electron transport chain). Taking in account the results discussed above, we argued that CaGg

may have a protective effect on G. margarita, making the fungal host more efficient in detoxifying

endogenous ROS. Consistent with this, proteomic data confirmed that the B- spores produced less

thioredoxin and other ROS-detoxifying proteins, and showed signs of oxidative damage (Vannini et

al. 2016). 

ROS cause detrimental chemical changes in proteins, lipids, polysaccharides, DNA, RNA, and even

in  small  metabolites  (Winterbourn  2008).  Oxidative  stresses  can  produce  diverse  responses  in

filamentous  fungi,  ranging  from  mitochondria-mediated  ageing  and  programmed  cell  death

(Osiewacz 2011) to  signaling  that  may regulate  mycelial  development  and sexual  reproduction

(Breitenbach et al. 2015). Oxidative stresses can originate from endogenous or exogenous sources
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and may play different roles. On the one hand, H2O2 may act as a signal in response to injury in

fungi  such as  Trichoderma  and Rhizophagus irregularis,  suggesting  that  fungi  share  a  defense

mechanism based on ROS-related molecules,  as is  common in plants  and animals (Hernández-

Oñate et al. 2012; Fester and Hause 2005). On the other hand, environmental stimuli can lead to

oxidative stress; for example, a recent study reported that the glutathione peroxidase redox system

is  directly  involved  in  the  resistance  of  Alternaria  alternata to  the  fungicides  fludioxonil  and

vinclozolin  (Yang  et  al.  2016).  Current  information  on  how  AM  fungi respond  to  exogenous

oxidative stress is restricted to the intraradical stages of fungal development (Belmondo et al. 2016;

Lanfranco et al. 2005), and define a scenario in which host plant-produced ROS are part of a fine-

tuned signaling pathway necessary for fungal development.  Similar experiments have described

how Beauveria bassiana (an entomopathogenic fungus) responds to insect-produced ROS (Zhang et

al. 2015). 

Few studies have examined the response of  AM fungi to induced oxidative stress when the  AM

fungi are living in  the soil  as extraradical  hyphae.  A recent investigation (Tamayo et  al.  2016)

revealed that five  R. irregularis glutaredoxin genes respond to H2O2 and may have a role in iron

homeostasis. By using an omics approach, we wanted to test the hypothesis that G.. margarita can

respond to exogenous oxidative stress by activating specific anti-oxidants and that the presence of

its endobacterium enhances the fungal response to oxidative stress. Preliminary results (Salvioli et

al.  2016) suggested that both the bacterial  and fungal symbionts perceived the oxidative stress.

Here, we set up an RNA-seq approach to describe the response of an AM fungus to H 2O2 treatment,

validating  the  transcriptomic  data  with  antioxidant  measurements.  We  demonstrate  that  G.

margarita with its endobacterium is equipped to respond to environmental oxidative stresses, but

also the cured line successfully responds to H2O2 with the expression of genes involved in specific

ROS- related pathways.

Materials and Methods

Spore production 

Gigaspora  margarita Becker  and  Hall  (isolate  BEG  34,  deposited  at  the  European  Bank  of

Glomeromycota) was used in this study. This strain naturally contains endobacteria (Bianciotto et

al. 1996) and is identified here as the B+ line. The cured line, i.e. without the endobacterium (B-

line), was obtained from the B+ line as described in Lumini et al. 2007. To maintain and propagate

both lines, we used pot cultures with white clover (Trifolium repens) as a trap plant, inoculating
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100–150 spores for each pot. Second-generation spores were produced within 3 months, and were

then collected by the wet sieving technique (Gerdemann and Nicolson 1963).

Treatment with hydrogen peroxide

6000 B+ and  6000 B- spores were surface sterilized with a solution containing 3% P/V Chloramine

T and 0.03% P/V streptomycin sulphate, and subsequently washed with sterile water three times for

10 minutes each. The sterilized spores were divided into batches of 100 (each batch corresponding

to one biological replicate), placed in 10 wells of 12 multi-well plates, and incubated for 3 days at

30°C in the dark, for germination pre-conditioning. After this step, the B+ and B- spores of half of

the wells  were treated with 0.3 mM H2O2,  previously identified as the highest concentration at

which the fungus could successfully germinate (Salvioli et al. 2016). Sterile water was replaced in

the other half of the wells. After 3 hours of incubation at 30°C in the dark, 3 biological replicates

(300 spores) from each condition were collected and frozen in liquid nitrogen for RNA extraction.

RNA seq experiments

RNA extraction,  library  preparation,  and  sequencing  were  performed  according  to  previously

described protocols (Salvioli et al. 2016). Total RNA was extracted using the RNeasy Microarray

Tissue Mini Kit  (Qiagen,  Germany).  To measure the concentration and quality  of the extracted

samples, we used the Nanodrop1000 (Thermo Scientific, Wilmington, NC, USA) and RNA integrity

was assessed with the Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA, USA). Three

Illumina single-end libraries, corresponding to three biological replicates, were generated for each

condition (B+ control spores, B- control spores, B+ treated spores, and B- treated spores, for a total

of  12 libraries).  Illumina  HiScanSQ sequencing (50-bp single-end reads)  was performed at  the

Genomic  facility  of  the  HuGeF  (http://www.hugef-torino.org/site/index.php?id=102&t=articolo)

and  of  DBios,  University  of  Torino  http://www.dbios.unito.it/do/home.pl/View?

doc=servizi_esterno/analisi_genomica.html)  following  ENCODE  project  standard  protocols

(http://encodeproject.org/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.p

df). Libraries were processed with Trimmomatic V.0.36 (settings: LEADING:10, TRAILING:10,

SLIDINGWINDOW:4:25, MINLEN:25, Q32, ILLUMINACLIP:TruSeq3-PE.fa:2:30:10) to remove

low-quality reads and Illumina adapters (Bolger et al. 2014). Raw reads were then mapped to  G.

margarita assembled  transcripts  (Salvioli  et  al.  2016)  using  Bowtie2  (Langmead  and  Salzberg

2012).
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Differential expression analysis 

DESeq2 1.12.4 Bioconductor package was used for the identification of differentially expressed

genes  (DEGs),  setting  local  fit  and  betaPrior  parameters  to  TRUE.  Independent  filtering  was

enabled  (Anders  and Huber  2010;  Love et  al.  2014).  A threshold  of  0.05 was applied to  false

discovery rates (FDR) to filter for significant DEGs. An additional filter was applied on log2 fold

changes, and only genes with a |log2 FC| higher than 1.5 where selected for each comparison. The

following  4  comparisons  were  investigated:  treated  spores  vs control  spores  (regardless  of  the

endobacterial presence); B+ treated spores  vs B+ control spores; B- treated spores  vs B- control

spores;  and B+ treated spores  vs B- treated spores.  Gene Onthology (GO) enrichment for each

comparison was performed with the AgriGO web platform (http://bioinfo.cau.edu.cn/agriGO/) and

visualized  with  Goplot  v.1.0.2  (Walter  et  al.  2015).  BLAST searches  were  performed with  the

BLAST+ suite (Camacho et al. 2009).

Extraction and analysis of ascorbate and glutathione

A new set of B+ and B- control and treated spores was obtained as described in the “Treatment with

hydrogen  peroxide”  section.  For  each  condition  ascorbate  and  glutathione  were  measured  in

independent  experiments  by using three biological  replicates of  1000 spores.  The material  was

ground in liquid nitrogen and homogenized with 1 mL of cold 5% meta-phosphoric acid at 4°C in a

porcelain  mortar.  The  homogenate  was  centrifuged  at  20,000  g  for  15  min  at  4°C,  and  the

supernatant was collected for analysis of glutathione and ascorbate (or its analogues) according to

de Pinto et al. (1999).

The dipyridyl assay was used for the measurement of all the ascorbate-like reductants (Spickett et

al. 2000). Briefly, total content of ascorbate or its analogues was determined after reduction of the

oxidized forms (DHA) with DTT, and the concentration of DHA was estimated from the difference

between total pool of ascorbate and its analogues (ASC+DHA) and the reduced forms (ASC). The

reaction mixture for ASC+DHA determination contained a 0.1 ml aliquot of the supernatant, 0.25

ml of 150 mM phosphate buffer (pH 7.4) containing 5 mM EDTA, and 0.05 ml of 10 mM DTT.

After incubation for 10 min at room temperature, 0.05 ml of 0.5% N-ethylmaleimide was added to

remove excess DTT. ASC was determined in a similar reaction mixture except that 0.1 ml H2O was

added rather than DTT and N-ethylmaleimide. Colour was developed in both reaction mixtures after

addition  of  the  following  reagents:  0.2  ml  of  10% trichloroacetic  acid,  0.2  ml  of  44% ortho-

phosphoric  acid,  0.2  ml  of  4%  ,‘-dipyridyl  in  70%  ethanol  and  0.3%  (w/v)  FeCl3.  After

vortexing, the mixture was incubated at 40°C for 40 min and the A525 was read. A standard curve

was developed based on ascorbate in the range 0-50 g ml-1.
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The glutathione pool was assayed utilizing 0.4 ml aliquots of supernatant neutralized with 0.6 ml of

0.5 M phosphate buffer pH 7.5. For glutathione disulphide (GSSG) assay, the reduced form of glu-

tathione (GSH) was masked adding to the neutralized supernatant 20 l of 2-vinylpyridine, whereas

20 l H2O were added in the aliquots utilized for total glutathione pool assay. Tubes were mixed un-

til an emulsion was formed. Glutathione content was measured in a 1 ml reaction mixture contain-

ing 0.2 mM NADPH, 100 mM phosphate buffer pH 7.5, 5 mM EDTA, 0.6 mM 5,5’-dithiobis(2-ni-

trobenzoic acid) and 0.1 ml of sample obtained as described above. The reaction was started by

adding 3 units of glutathione reductase and was monitored by measuring the change in absorbance

at 412 nm for 1 min. GSH was estimated as the difference between the amount of total glutathione

and that of GSSG. A standard curve in the range 0-30 M ml-1 GSSG was prepared. Ascorbate and

glutathione data were expressed as the average of three independent experiments. After checking for

normality and homoscedasticity with Shapiro-Wilk and Levene's mean tests, respectively, the differ-

ences between groups were assessed by using one-way analysis of variance (ANOVA) with a post-

hoc Tukey’s test, assuming  P<0.05 as statistically significant.  The statistical analyses were per-

formed using Sigma Plot software 12.0 (Systat Software, Inc., CA, USA).

Results

A previous  study assessed the tolerance of the B+ and B- lines of  G. margarita to a range of

concentrations of hydrogen peroxide (Salvioli et al. 2016) from 0.2 to 2 mM. The study identified

0.3 mM H2O2 as the highest concentration at which the fungus could successfully germinate. To

describe  the  mechanisms  that  allow  G.  margarita to  face  exogenous  oxidative  stress,  and  to

determine whether the presence of  CaGg affects these dynamics, we selected the 0.3 mM H2O2

concentration to treat B+ and B- germinating spores for the RNA-seq experiment.

RNA-seq quantitative data: the overall response of G. margarita to hydrogen peroxide

To examine the response to  H2O2 on the transcriptional level,  we first  conducted transcriptome

analysis by RNA-seq. To this end, we generated twelve Illumina single-end libraries, which yielded

~10 to 17 million filtered reads (Table S1), giving a ~93% overall mapping rate on the G. margarita

reference transcriptome (Salvioli et al. 2016). For each set of differentially expressed genes (DEGs),

we applied a ±1.5 log2 fold change filter, and a total  of 12527 genes among all the considered

comparisons (of the 35029 currently predicted G. margarita genes) passed the filter. DEGs for each

comparison are listed in Table S2, while Table S3 shows only the most up- or down- regulated

genes.
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To examine the effect of the endobacterium (B+ and B-) and the treatment (with and without H2O2)

in  shaping  the  fungal  transcriptome,  we  performed  Principal  Component  Analysis  (PCA)  and

Variance Partitioning Analysis (VPA) on the whole dataset of normalized read counts (Fig. 1a and b,

respectively).  PCA analysis  highlighted a  strong differentiation between the control  and treated

samples (PC1, H2O2 treatment), but the separation between the data for the B+ and B- lines (PC2,

endobacterial presence) was lower in both control and treated conditions. The lowest degree of

separation  was  observed  between  the  B+  and  B-  treated  lines.  Indeed, the  direct  comparison

between the treated B+ fungus versus the treated B- fungus showed the fewest DEGs among all the

comparisons (2423). The distance between the control and treated B- fungal samples was lower

than  the  distance  between  the  control  and  treated  B+  fungal  samples.  This  observation  was

consistent with the number of DEGs from the two comparisons (5543 vs 8291, respectively). VPA

revealed the treatment with H2O2 as the factor mostly influencing the overall variability (~65%),

while the presence/absence of the bacterium explained ~6% of the overall  variability (Fig.1 b).

These results confirm the PCA results, where the PC1 axis represents 72% of the variance vs the

18% represented by the PC2 axis.

Since the H2O2  treatment seemed to be the driving parameter, all the control fungal samples (B+

control  and  B-  control)  were  compared  with  the  treated  samples  (B+  treated  and  B-  treated),

irrespective of the presence of  CaGg. This comparison identified 5458 DEGs, corresponding to

about 15% of the G. margarita transcriptome (2398 up-regulated vs 3060 down-regulated genes).

Hydrogen peroxide treatment: identification of the main Gene Ontology categories

The results of GO enrichment analysis on this data set are shown in Fig 2. Among the enriched

categories,  the  pentose-phosphate  shunt,  nicotinamide  metabolic  process,  zinc  ion  transport,

methionine metabolic process, and sulfur metabolic process categories were up-regulated overall in

the treated samples.

The up-regulation of metabolic processes relative to sulfur and methionine is not surprising, since

methionine containing proteins directly participate in defense against oxidative stress. Several types

of  ROS react  with methionine,  forming methionine  sulfoxide,  which  is  reduced by methionine

sulfoxide reductase (Luo and Levine 2009). We previously demonstrated that under normal growth

conditions, the B- line contains a higher quantity of carbonylated proteins (Vannini et al. 2016),

which are considered a major hallmark of oxidative damage (Fedorova et al. 2014) and specifically

involve  methionine  oxidation.  The  gene  coding  for  methionine  sulfoxide  reductase  showed  a

significant up-regulation in our data set upon H2O2 treatment (comp18281_c1, log2 fold change:

2.69). Consistent with this, sulfur metabolism was among the enriched and up-regulated categories.

8

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271



The re-routing of carbon flux to the pentose-phosphate pathway has been described as a conserved

response to oxidative stress (Ralser et al. 2007). In yeast, the pentose phosphate pathway is essential

for sulfur assimilation, being the main reservoir of NADPH used by the cell for sulfite to sulfide

conversion (Slekar et al. 1996). In  G. margarita both the absence of  CaGg (Salvioli et al. 2016;

Vannini  et  al.  2016)  and  the  H2O2 treatment  seemed  to  induce  the  shift  towards  the  pentose

phosphate pathway. Taken in the whole, the GO enrichment analysis reveals that the H2O2 treatment

pushes  G.  margarita to  deeply  change  its  transcriptome  profile,  shifting  towards  alternative

metabolic pathways that are directly linked to mitigation of oxidative stress. 

To describe the oxidative stress response of G. margarita more in depth, DEGs from the treated vs

control  comparison (pooling  results  for  B+ and B-)  were  further  divided on the  basis  of  their

functional  annotation,  and  we  manually  selected  some  genes  known  to  be  involved  in  ROS

detoxification in fungi (Table 1). Among them, genes encoding glutathione peroxidase, glutathione

reductase,  and glutathione s-transferase,  as well  as a peroxiredoxin and a thioredoxin reductase

were strongly up-regulated after the hydrogen peroxide treatment. Notwithstanding the central role

that  the  gluthatione  cycle  plays  as  a  cellular  redox  buffer  in  yeasts  and  filamentous  fungi,

knowledge of its role and regulation in AM fungi is still limited (Benabdellah et al. 2009; Tamayo et

al. 2016). Four glutaredoxin genes of R. irregularis have been characterized and demonstrated to be

upregulated  in  the  extraradical  and  intraradical  mycelium  following  exposure  to  H2O2.  The

homologues of glutaredoxin RiGRX1 (Benabdellah et al. 2009), RiGRX4 and RiGRX6 (Tamayo et

al.  2016),  were  found  in  the  G.  margarita  transcriptome  (E-values:  3e-25,  9e-105  and  3e-63,

respectively) and seemed to respond to H2O2. The homologue for RiGRX5 was also found (E-value:

2e-48), but its expression did not change significantly after H2O2 treatment.  G. margarita catalase

was also up-regulated upon treatment, but its expression level was not above the applied log2 fold

change threshold. Other players of the ROS-scavenging system, such as thioredoxin reductase, have

already been identified as markers of G. margarita endogenous oxidative stress response (Salvioli

et al. 2016; Vannini et al. 2016). Taken as a whole, these observations indicate that  G. margarita

modulates the expression levels of many redox enzymes in a way comparable to other filamentous

fungi,  as  well  as  the  model  AM  fungus  R.  irregularis.  Moreover,  given  the  number  and  the

expression of the genes reported in Table 1, the glutathione/thioredoxin systems could be identified

as key players in the oxidative stress response of G. margarita.

To gather information on how G. margarita senses oxidative stress, we specifically searched for

DEGs  annotated  as  mitogen-activated  protein  kinases  (MAPK)  and  transcription  factors.  This

identified 14 DEGs encoding transcription factors and 160 encoding MAPKs (73 up-regulated vs 87

down-regulated). Thirteen of these kinases possessed a PAS domain, which is common to bacteria,
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fungi,  and animals and is associated with osmotic and redox sensing (Taylor and Zhulin 1999;

Moye-Rowley 2003). We then performed a BLAST search to find putative components of the High

Osmolarity Glycerol Pathway (HOG), which is important for the response to oxidative stress in

yeasts  and  filamentous  fungi  (Duran  et  al.  2010).  Four  top  scoring G.  margarita  transcripts  were

differentially expressed upon H2O2 treatment, but without a clear expression pattern (Table S4). Given the

high number of putative redox sensing elements whose expression is modulated by the treatment in

a relatively short time (3h), we suggest that G. margarita evolved some specific mechanisms to

perceive ROS also when growing outside the plant. Indeed, previous works demonstrated that AM

fungi  are  exposed to  H2O2 produced by the plant  during the symbiotic  phase,  and that  H2O2

concentrations  could  change  the  outcome  of  the  symbiosis  by  being  perceived  as  a  signaling

molecule (Kiirika et al. 2012; Arthikala et al. 2014; Belmondo et al. 2016).

The effect of CaGg on the response of G. margarita to hydrogen peroxide

PCA (Fig. 1a) revealed that the treatment with H2O2 reduced the differences between the B+ and the

B- fungal line. Since the B- transcriptional profile seemed to be “triggered” by H2O2 becoming

closer to the treated B+ profile, we analyzed the fungal B+ and B- responses in more detail. The

Venn diagram (Fig. 3) highlighted a subset of 1716 genes that were identified as DEGs in all the

three comparisons (all treated vs all control, B+ treated vs B+ control, B- treated vs B- control). This

subset can be referred to as the ‘core’ response of G. margarita to H2O2. Among this common gene

core, the transcripts directly involved in ROS- related metabolism are listed in Table 1. Additionally,

the B+ and B- lines had a non-shared set of genes responding to H2O2. In more detail, 3386 DEGs

responded to the H2O2 uniquely in the B+ line, but fewer DEGs (2054) responded uniquely in the B-

line.

Assuming that  the  areas  of  the  Venn diagram (3386 B+ and 2054 B-  non shared  DEGs) may

efficiently summarize a part of the variability explained by the fungal-bacterium interaction, GO

enrichment was performed on both the subsets (Figs. 4 and 5).  The analyses revealed that among

the  enriched  categories  of  the  B+  treated  vs B+  control  comparison  there  was  a  tendency  to

upregulation,  while  the  B-  treated  vs B-  control comparison  had  prevalently  down  regulated

categories.  Phosphate  and phosphorus  metabolic  processes  were highly represented  in  both the

enriched GO sets, but were up-regulated in the B+ and down-regulated in the B- treated spores.

Interestingly, response to other organism (GO:0051707) was among the enriched terms only for the

B+ line upon treatment. Similarly, in the B+ treated line two processes associated with DNA and

chromatin conformation changes were well represented and up-regulated, while proton transport
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and electron transport chain were down-regulated. It has already been demonstrated that, at least in

Candida, the exposure to H2O2 triggers a conformational chromatin change that finely modulates

the antioxidant responses (da Silva Dantas et al. 2015).

Two functional categories associated with sporulation (GO:0043937 and GO:0034306) were down-

regulated in the B- line after treatment. Nitrate assimilation and metabolism were enriched uniquely

for the B- line, as well as the response to iron ion. An iron transporter was reported to be one of the

most upregulated transcripts in the B+ control line vs the B- control line (Salvioli et al. 2016.). We

could thus hypothesize an active role of  CaGg in  regulating the fungal iron homeostasis: in the

absence  of  the  endobacterium,  and  in  particular  under  oxidative  stress,  this  process  could  be

strongly impaired.

Processes involved in modification of proteins and macromolecules were also enriched in the B+

line: since chaperones, heat shock proteins, and ubiquitination/proteasome related genes belong to

this category, the activation of such pathways suggests that fungal proteins were indeed damaged by

oxidative stress, and that these processes were essential to maintain the functionality of the cell.

Finally, some of the transcripts encoding for ROS scavengers illustrated in Table 1, and mainly

upregulated in the all treated vs all control comparison were down-regulated in the treated B+, when

compared  to  the  treated  B-  line.  These  data  were  consistent  with  glutathione  S-transferase,

peroxiredoxin, and glutathione peroxidase (Table 2). This result may be explained by considering

that  the expression of these ROS scavengers is  already higher  in  the B+ control fungus,  when

compared to the B- control (B+ control vs B- control comparison). A similar expression pattern has

already been described for glutathione S-transferase and peroxiredoxin, which were shown to be

specifically  up-regulated  at  transcript  and  protein  levels  in  the  B+  line  under  normal  growth

conditions (Salvioli et al. 2016; Vannini et al. 2016). Thus, given that G. margarita B+ efficiently

elicits the ROS scavengers, it potentially needs a lower activation of these genes when compared to

the less-efficient B- line upon H2O2 treatment.

Glutathione and ascorbate content analysis

To test whether the response observed at the transcriptional level allows the B+ and  B- lines to

maintain  their  redox  homeostasis,  we  measured  total  glutathione  and  ascorbate,  and  ascorbate

analogues, in control and treated fungal lines (Fig. 6). The B- control  spores contained significantly

less GSH than the B+ control spores but had more comparable GSSG content. As a consequence,

the GSH/GSSG ratio was increased by the presence of the endobacterium (Fig. 6a), confirming

previous observations that  CaGg can influence the redox balance of its  fungal host (Salvioli  et

al.2016; Vannini et al.2016). The H2O2 treatment led to an increase in total glutathione contents for
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both  lines.  The  transcript  encoding  for  glutamate-cysteine  ligase  (comp33867_c0),  an  enzyme

participating in the first steps of glutathione biosynthesis, showed a tendency to up-regulation in the

all treated vs all control comparison. The same trend was observed while considering the B- and the

B+ treated lines separately (log2 fold change: 1.20 for the B- treated line and 0.82 for the B+ treated

line). Despite the increase in total glutathione, the GSH/GSSG ratio was only slightly changed in

the treated B+  vs the control B+ samples. By contrast, the increase in glutathione content in the

treated B- fungus deeply affected the GSH/GSSG ratio, which reached values comparable to those

of the B+ line. In treated conditions, the maintenance or the increase of GSH/GSSG ratios in B+

and B- lines, respectively, seem to be due to the increase in the transcript encoding glutathione

reductase (Table 1).

In plants, ascorbate plays a critical role in protecting cells against damaging ROS produced by the

chloroplast  during  photosynthesis  (Wheeler  et  al.  2015);  however,  our  knowledge  of  the

biosynthesis  and role  of  ascorbate  in  fungi  is  much more limited.  Fungi  synthesize a  range of

ascorbate  analogues,  including  6-deoxy-L-ascorbate,  ascorbate  glycosides,  and  the  five-carbon

analogue,  D-erythroascorbate  (Loewus  1999).  However,  molecular  information  on the  involved

genes is limited to yeast, and the description of the pathways leading to the different fungal ASC

analogues is incomplete (Wheeler et al. 2015). Since at least two enzymes, D-arabinono-1,4-lactone

oxidase (ALO1) and L-gulonolactone oxidase (GULO), are  known to be involved in  ascorbate

biosynthesis  in  fungi,  as  a  first  step  we  used  TBLASTN  to  look  for  homologues  in  the

transcriptome of R. irregularis (Tisserant et al. 2013; Lin et al. 2014) and of G. margarita (Salvioli

et al.2016). We found that  G. margarita has distinct transcripts as homologues for the two genes,

but  R. irregularis has one homologue that  matched both GULO and ALO1 (Table S5).  In  our

datasets, the expression of the two G. margarita putative homologues did not show an expression

pattern that can clearly suggest their involvement in the response to hydrogen peroxide.

The dipyridyl assay, which measures all the ascorbate-like reductants (Spickett et al. 2000), showed

that the B- control spores had an higher content of ascorbate or its analogues (hereafter, collectively

indicated as ASC in the reduced form, and DHA in the oxidized form) than the B+ control spores;

this indicates that the presence of CaGg is involved in the decrease of these compounds (Fig. 6b).

Treatment with H2O2 decreased ASC and DHA levels in the cured lines and had no effect on the

content  of  these  metabolites  in  the  B+  lines.  As  for  glutathione,  H2O2  treatment  reduced  the

differences between the two lines, which after the treatment had the same ASC and DHA levels.

Discussion 
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To verify whether the fungal-endobacterial symbiosis established between G. margarita and CaGg

may enhance the fitness of the fungus in the presence of environmental oxidative stress, we treated

the germinating fungus with a sublethal hydrogen peroxide concentration and performed a detailed

RNA-seq  analysis.  Our  transcriptomic  results  indicate  that  G.  margarita  may  efficiently  face

exogenous oxidative stress, and in the presence of its endobacterium upregulates many metabolic

pathways. However, and contrary to our hypothesis, the cured line responds to H2O2  by activating

the transcription of genes encoding specific ROS scavengers. We confirmed the efficacy of this

strategy by measuring the glutathione content and redox state of cured and uncured lines, finding

that, at the end of the treatment, these were the same for both lines.

We  further  suggest  that  glutathione  could  constitute  the  main  antioxidant  molecule  for  G.

margarita, making the role of ascorbate secondary. Indeed, although the ASC and DHA contents in

the B+ and B- lines subjected to H2O2 treatment are lower than in the control B- line, no changes in

the redox state of these metabolites has been observed, suggesting that in  G. margarita ascorbate

and  its  analogues  could  play  different  metabolic  roles  from the  antioxidative  one,  as  already

suggested for yeast (Spickett et al. 2000).

Gigaspora margarita has adaptive mechanisms to face oxidative stress

Hydrogen peroxide has often been used to mimic environmental oxidative stress in many model

organisms. Our experiments reveal that G. margarita is highly sensitive to H2O2 treatment, leading

to a consistent number of DEGs (5458 out of 35029 potential G. margarita genes) that respond to

the treatment, irrespective of the presence of the endobacterium. G. margarita therefore is similar to

yeast  and  many  other  filamentous  fungi,  where  H2O2 treatment  induces  a  strong  detoxifying

response with the activation of glutathione and thioredoxin metabolism, but can also trigger cellular

differentiation and development (Breitenbach et al. 2015). Some activated genes in the treated AM

fungus were expected,  such as the genes encoding ROS-detoxifying enzymes listed in Table 1,

some of which have already been characterized in R.. irregularis (Tamayo et al. 2016). Other genes

coding  for  reducing  enzymes  linked  to  glutathione  and  thioredoxin,  and  known  as  the  most

important redox buffers for eukaryotic cells, were up-regulated upon H2O2 treatment. The changes

observed in the expression of several genes coding for iron/heme-binding enzymes and for other

mitochondrial proteins confirm the role of this organelle in the bacterial-fungal interaction (Salvioli

et al.  2016). By contrast, the HOG pathway, which is considered a marker for  H2O2 response in

yeast (Alonso-Monge et  al.  2003),  was weakly activated,  suggesting that symbiotic filamentous

fungi  have probably elaborated different  mechanisms.  The upregulation of  the gene coding for

methionine  sulfoxide  reductase  has  significance,  since  methionine-containing  proteins  directly
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participate in oxidative stress responses and methionine itself is often described as a defense against

oxidative stress in eukaryotic cells (Luo and Levine 2009). Together with the upregulation of sulfur

metabolism and the pentose phosphate pathway, which is essential for sulfur assimilation, being the

main source of reducing power (Slekar et al. 1996), we can conclude that the main actors involved

in detoxification are at work when  G. margarita is exposed to H2O2 (Fig.7). Given the relatively

high number of MAPKs regulated by H2O2 in  our  data  set,  we also suggest  that  G. margarita

strongly relies on this type of signal transduction to face the oxidative stress, as seen for Candida

albicans (de Dios et al. 2010) and other filamentous fungi (Ding et al. 2015; Jacob et al. 2014).

Curiously, a comparable succession of events (activation of pentose phosphate pathway, production

of reducing power, recycling of GSSG to GSH, and relief of oxidative damage) has been described

when pollinators ingest nectar (Martinez del Rio and Dillon 2017; Levin et al. 2017). This could

suggest that the use of the ancient pentose phosphate pathway to avoid oxidative damage may be a

conserved strategy for living organisms.

The fungal responses to H2O2 change depending on the presence of the endobacterium

The variance  partitioning analysis  revealed  a  small  effect  of  the  endobacterium in  shaping the

transcriptome profile of its fungal host in the presence of an oxidative stress; however, we observed

that  some  specific  metabolic  pathways  changed  depending  on  the  presence/absence  of  the

endobacterium.

When considering the general pattern of the transcripts, some processes were up-regulated in the B+

line and down-regulated in the B- line. We suggest that, for the B- line, the impairment of several

aspects of the primary metabolism (Bonfante and Desirò 2017; Lumini et al. 2007) could impact the

way the fungus reacts to stress induced by hydrogen peroxide. A crucial gene category showed an

opposite pattern: all the ROS-scavenger genes shown in Table 2, were surprisingly upregulated in

the B- line vs the B+ line after H2O2 treatment. Since we have previously demonstrated (Salvioli et

al.  2016) that  the B+ line had constitutively higher  expression levels  of such ROS scavenging

enzymes than the B- line, we reasoned that the line with its endobacteria probably needs less of an

increase in the expression of ROS-responsive elements compared with the B- line. Thus, the H2O2

treated B- line needs to invest more in eliciting the expression of ROS scavengers, in order to reach

an antioxidant status that is comparable to that of the native fungal line.

In contrast to the cured line, the fungus with the endobacteria seems to activate a different strategy.

It does not further elicit the transcription of the ROS-scavenger genes following the H2O2 exposure,

and  indeed  (under  similar  conditions)  the  corresponding  bacterial  genes  were  downregulated

(Salvioli  et  al.  2016),  suggesting  that  the  CaGg  does  not  provide  specific  help  in  ROS
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detoxification. However, regulatory systems of CaGg like the toxin-antitoxin systems are activated

by  H2O2  exposure  (Salvioli  et  al.  2017).  Therefore,  we  suggest  that  the  bacterium provides  a

protection to  its fungal host by using more complex mechanisms than the upregulation of ROS-

scavanger  genes.  Differently  from these  genes,  many  other  pathways  were  upregulated  in  the

fungus  with  the  endobacterium.  In  the  treated  B+  line  processes  related  to  MAPK  signal

transduction (such as phosphorus and phosphate metabolism categories, protein kinase cascade and

phosphorylation  processes)  were  overall  up-regulated,  while  they  were  down-regulated  in  the

treated B- line. Since the whole MAPK cascade is activated by diverse environmental stresses as a

powerful actor to control gene expression and conferring cellular stress resistance (Morigasaki et al.

2013; Hagiwara et al.  2009), we hypothesize that the fungus with its endobacterium may more

efficiently  face  oxidative  stress,  as  well  as  high  osmolarity  and  heat  shock.  Also  DNA

conformation/packaging GO categories were upregulated in the B+ treated line only. Given that

H2O2 can act as a stimulus to activate some genomic areas  (Breitenbach et al. 2015), the fungal–

bacterial association could be more efficient in perceiving it.

Our  work  has  demonstrated  that  an  AM  fungus  actively  responds  to  H2O2 used  to  mimic  an

exogenous source  of  oxidative stress.  Some responses  mirror  mechanisms already described in

yeast and filamentous fungi. The presence of the endobacterium leads to more tuned differences: the

B-  line  mostly  activates  the  expected  ROS-scavenger  genes,  which  are  constitutively  highly

expressed in the B+ line, while the B+ line activates many other pathways. These pathways include

MAPK cascades, which may lead to a more active and tightly regulated response to exogenous

oxidative stress.

In conclusion, it seems that the mechanisms for adaptation to oxidative stress in G. margarita are

diverse and differ depending on the presence/absence of the bacterium. The AM fungus with the

bacteria  strongly  up-regulate  many  general  processes,  which  probably  also  involve  the

endobacterium;  the  AM  fungus  without  the  bacteria  show  general  down-regulation  of  such

processes, but specifically activate a set of ROS-related genes. Eventually, the antioxidant status of

the two fungal lines turns out to be very similar, demonstrating the unexpected capacity of the cured

line to compensate for its original lower performance. We can speculate that for both the lines H2O2

also acts as a signal, as it does in dried seeds (Tommasi et al. 2001, El-Maarouf-Bouteau and Bailly

2008)  and in fungal conidia also from pathogenic fungi, where changes in the cellular oxidative

status trigger germination (Breitenbach et al. 2015). Since H2O2 is a strong antibacterial molecule,

the question remains whether CaGg is affected by the treatment, also considering that some of the

key enzymes for glutathione biosynthesis were not found in its genome (Ghignone et al, 2012).
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Given the relevance of AM fungi in natural and agricultural ecosystems, we propose that the data

set developed for  G. margarita may be a starting point for studying environmental adaptation of

AM fungi to the oxidative stress that originates from the application of fungicide or herbicide (Yang

et al. 2016; Angelova et al. 2005).
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Fig. 1: (a) Principal Component Analysis (PCA) showing the distance between samples of each

condition. Ellipses represent 95% confidence interval around each group; (b) Variance Partitioning

Analysis  (VPA) executed  over  the  whole  dataset,  showing hydrogen peroxide  treatment  as  the

driving parameter contributing to overall variability.

Fig. 2: GO enrichment analysis  representation of the DEGs generated for the all  treated  vs all

control comparison. Each slice of the circle is associated with an enriched GO category. The size of

the inner circle slices is proportional to the significance of the related term (P<0.05), and their color

indicates if the related category is globally up- or down-regulated. A dot is plotted in the outer circle

slices for each gene belonging to a specific category. The color of the dots indicates if the genes are

up- (red) or down- (blue) regulated, and their position on the gray spaces is a representation of their

log2 fold change (i.e. genes with the strongest up-regulation are placed on the outer border of the

spaces).

Fig. 3: Venn diagram showing the number of DEGs that are in common between the all treated vs

all control, B+ treated  vs B+ control and B- treated  vs B- control comparisons, and genes whose

expression changes uniquely for each comparison.

Fig. 4: GO enrichment analysis representation of the DEGs generated for the genes that are DE

only for the B- treated  vs B- control comparison. Each slice of the circle is associated with an

enriched GO category. The size of the inner circle slices is proportional to the significance of the

related term (P < 0.05), and their color indicates if the related category is globally up- or down-

regulated. A dot is plotted in the outer circle slices for each gene belonging to a specific category.

The color  of the dots indicates  if  the genes  are  up- (red)  or down- (blue)  regulated,  and their

position on the gray spaces is a representation of their log2 fold changes (genes with the strongest

regulation are placed on the borders of the spaces).

Fig. 5: GO enrichment analysis representation of the DEGs generated for the genes that are DE

only for the B+ treated  vs B+ control comparison. Each slice of the circle is associated with an

enriched GO category. The size of the inner circle slices is proportional to the significance of the

related term (P < 0.05), and their color indicates if the related category is globally up or down

regulated. A dot is plotted in the outer circle slices for each gene belonging to a specific category.

The color  of the dots indicates  if  the genes  are  up- (red)  or down- (blue)  regulated,  and their

position on the gray spaces is a representation of their log2 fold changes (genes with the strongest

regulation are placed on the borders of the spaces).

Fig. 6: Glutathione (a) and ascorbate and/or its analogues (b) contents in control and treated spores

of  G. margarita. Bars indicate the total amount of the molecules (GSH and ASC) and the ratios

between the reduced and the oxidised form. Values (expressed as picomoles per spore) are the mean
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of three independent biological replicates. Letters indicate whether the differences observed in the

total amount of GSH and ASC are statistically significant (p<0.05).

Fig. 7: Scheme showing the enzymes activated by G. margarita in response to hydrogen peroxide

treatment  and  the  connection  between  their  activities  and  ROS detoxification.  Methionine  rich

proteins actively participate in ROS scavenging, since methionine reacts with peroxide radicals and

is oxidized to methionine sulfoxide, being successively reduced by methionine sulfoxide reductase.

The oxidized enzyme is then restored to the reduced form in a reaction which involves the oxidation

of thioredoxin,  reduced by the enzyme thioredoxin reductase in  a  NADPH dependent  reaction.

Given its activation in response to hydrogen peroxide, pentose phosphate cycle is suggested as the

main source of NADPH to counteract oxidative stress in G. margarita. NADPH derived from the

pentose phosphate cycle could also be involved in the assimilation of sulfur, which is the element

characterizing the functional groups of all the elements reported in the scheme.

Table 1: G. margarita ROS detoxifying enzymes and their activation in the all treated vs all control

comparison.

Table 2: Expression of three G. margarita ROS scavengers in different conditions. The transcript

levels for these genes are higher in the B+ control; therefore, after treatment, the B+ line requires

less transcriptional activation to achieve the same detoxifying potential as the B-.

Supplemental materials

Table S1: Data for each Illumina single-end library, including the initial yield of raw reads and the

percentage of reads that survived the trimming with Trimmomatic V.0.36.

Table S2: summary of the differentially expressed genes (DEGs) identified for each comparison

(FDR<0.05; |log2foldchange| >1.5).

Table S3: list of the most up- and down- regulated genes in each comparison.

Table  S4: G.  margarita  homologues  for  the  key genes  involved  in  the  yeast  HOG1 signaling

pathway and their expression.

Table S5: R. irregularis and G. margarita candidates for GULO and ALO1, two enzymes known to

catalyze the synthesis of ascorbate analogues in fungi. A single R. irregularis showed homology to

both GULO and ALO1, but two distinct candidates were found for G. margarita
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