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Dark matter relic abundance and scalar-tensor dark energy
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Scalar-tensor theories of gravity provide a consistent framework to accommodate an ultralight
quintessence scalar field. While the equivalence principle is respected by construction, deviations from
general relativity and standard cosmology may show up at nucleosynthesis, cosmic microwave
background, and solar system tests of gravity. After imposing all the bounds coming from these
observations, we consider the expansion rate of the Universe at weakly interacting massive particle
decoupling, showing that it can lead to an enhancement of the dark matter relic density up to few orders
of magnitude with respect to the standard case. This effect can have an impact on supersymmetric
candidates for dark matter.
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I. INTRODUCTION

According to our current understanding [1], dark mat-
ter (DM) and dark energy (DE) represent the two major
components of the present Universe. Surprisingly, it is
found that the DM and DE energy densities, �DM and
�DE, are today roughly the same (differing only by a
factor of 2), while their ratio has been varying by several
orders of magnitude in the past history of the Universe.

It seems quite natural, then, to explore the possibility of
a DM–DE interaction which could account for this coin-
cidence. This approach, however, is not free from prob-
lems if the DE component is interpreted in terms of a
dynamical quintessence [2] scalar field. Indeed, such a
scalar is constrained to be extremely light in order to fit
the data, giving rise to unwanted long-range forces which
may represent a severe threat to the equivalence principle.
In addition, couplings of the quintessence scalar with the
gauge field strengths are potential sources of dangerous
time variations of the fundamental constants1.

A possible way of coping with a very light scalar while
avoiding these shortcomings is to choose to work in
the framework of a scalar-tensor gravity (ST) theory
[8], whereby construction matter has a purely metric
coupling with gravity. It has been shown [9] that in
this case the scalar field can benefit from an attraction
mechanism which, during the matter dominated
era, makes ST overlapping with standard general relativ-
ity (GR). At the same time, ST may possess a second
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‘‘attraction mechanism’’ [9] which will ensure the correct
evolution of �DE along a so-called ‘‘tracking’’ [10]
solution.

While ST can very closely reproduce standard GR at
the present time, it may, however, lead to major differ-
ences in the past evolution of the Universe, differences
which may result in observable consequences for us to-
day. For example, it has been shown [11–14] that ST
theories may have a profound impact on nucleosynthesis.
At the same time, a curious fact has recently come to
attention: a nonconventional dynamic of the quintessence
scalar in the past history of the Universe may remain
‘‘hidden’’ to the available cosmological observations, but
manifest itself through the DM relic abundance [15–17].
It is then worth studying whether ST may provide a viable
quintessence candidate and at the same time have an
impact on the DM relic abundance. We have considered
this possibility and computed explicitly the differences
from the standard case.

When considering ST theories, the departures from
standard cosmology are mainly due to the different ex-
pansion rate ( ~H) which they determine. Such deviation
from the usual expansion rate of GR bears potentially
relevant consequences in all those phenomena which are
closely dependent on the timing in which they occur. The
aim of the present work is to study the possible modifi-
cations of the expansion rate of the Universe in ST at the
time of cold dark matter (CDM) freeze-out, focusing on
weakly interacting massive particles (WIMPs) as the
most natural candidates for CDM. As is well known, their
present relic density depends on the precise moment they
decouple and, in turn, on the precise moment the WIMP
annihilation rate equals the expansion rate of the
Universe. We expect then that a variation of ~H in the
past may lead to measurable consequences on the WIMP
relic abundance.
19-1  2004 The American Physical Society
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In order to assess the allowed departure of ~H from its
standard value at WIMP freeze-out, we have to take into
account the bounds imposed on ST by phenomena at later
epochs [18]. We already mentioned the crucial test of
nucleosynthesis: passing the big bang nucleosynthesis
(BBN) exam will imply rather severe restrictions on the
coupling of the scalar field of ST to matter and also on its
initial conditions at temperatures much higher than the
WIMP freeze-out. Coming to later epochs, we have to
consider the photon decoupling and the consequent re-
strictions imposed by cosmic microwave background
(CMB) data [19]. Interestingly enough, we will show
that the BBN ‘‘filter’’ on ST is so efficient that it drasti-
cally limits any visible effect on the CMB spectrum (in
particular, shifts in the peaks’ positions are forced to be
smaller than the experimental error). More restrictive
than the CMB probe turn out to be the GR tests, in
particular, after the tight bound on the post-Newtonian
parameter �, recently provided by the Cassini spacecraft
[20]. This constraint becomes quite relevant when com-
bined with that on the scalar equation of state of w�

coming from SNe Ia data [21].We will find that significant
deviations from standard cosmology are possible only if
the DE equation of state differs appreciably from �1
today. In other words, if DE is a cosmological constant,
it is unlikely that future cosmological observations will
be able to discriminate between ST and GR.

The question we intend to explicitly tackle is the fol-
lowing: taking all the abovementioned restrictions (BBN,
CMB, GR tests) into account, how much can the Hubble
parameter ~H at the time of WIMP freeze-out differ from
its canonical value if ST replaces GR? In other words,
how much is the WIMP relic density allowed to vary if
we consider ST instead of GR?

We find that in ST theories the expansion rate of the
Universe at few GeVs can profoundly differ from the usual
value obtained in GR (with variations up to 5 orders
of magnitude) and, yet, allow the correct light elements
production at BBN. This situation is perfectly analogous
to the ‘‘kination’’ effect studied in [15], where a modifi-
cation of ~H at WIMP freeze-out was induced by a short
period of dominance of the scalar kinetic energy,
although with some deal of fine-tuning. In the case
considered here, the effect of ST on ~H depends on
the strength of the scalar-matter coupling; however, no
particular fine-tuning is needed to pass the severe nucleo-
synthesis test even when large modifications of ~H at
freeze-out occur. This means that the attraction of ST
towards GR proceeds very rapidly during the cooling
of the Universe from the few GeVs of WIMP freeze-out
down to the MeV range of nucleosynthesis. The overlap
of ST with GR can subsequently be very efficient leading
to ST scenarios which can hardly be disentangled from
ordinary GR in present tests at the post-Newtonian level.
The fact that ST strongly affects the number of CDM
063519
particles may turn out to be the major signature of these
theories.

From the point of view of particle physics model
building, these large variations in the WIMP number
density today is of utmost relevance. Particles which
were not considered suitable to play a significant role in
CDM scenarios can be rescued because of their enhanced
number density. On the other hand, particles (or regions
of the parameter space for certain WIMP candidates),
which in usual GR scenarios constitute promising CDM
candidates, would be excluded because their boosted
number would overclose the Universe. These considera-
tions become of particular interest if we focus on the case
where the WIMPs correspond to the lightest supersym-
metric particle. A complete analysis of the cosmologi-
cally excluded and cosmologically interesting regions of
the SUSY parameter spaces in different SUSY contexts,
when ST is considered, is presently in progress [22].
II. SCALAR-TENSOR THEORIES OF GRAVITY

ST theories represent a natural framework in which
massless scalars may appear in the gravitational sector of
the theory without being phenomenologically dangerous.
In these theories a metric coupling of matter with the
scalar field is assumed, thus ensuring the equivalence
principle and the constancy of all nongravitational cou-
pling constants [23]. Moreover, as discussed in [6,7], a
large class of these models exhibits an attractor mecha-
nism towards GR; that is, the expansion of the Universe
during the matter dominated era tends to drive the scalar
fields toward a state where the theory becomes indistin-
guishable from GR.

ST theories of gravity are defined by the action [6,7,23]

S � Sg � Sm; (1)

where

Sg �
1

16�

Z
d4x

�������
�~g

p
��2 ~R� 4!���~g��@��@��

� 4 ~V���	: (2)

The matter fields 
m are coupled only to the metric
tensor ~g�� and not to �, i.e., Sm � Sm�
m; ~g��	. ~R is
the Ricci scalar constructed from the physical metric ~g��.
Each ST model is identified by the two functions !���
and ~V���. For instance, the well-known Jordan-Fierz-
Brans-Dicke (JFBD) theory [8] corresponds to !��� �
! (constant) and ~V��� � 0.

The matter energy-momentum tensor is conserved,
masses and nongravitational couplings are time indepen-
dent, and in a locally inertial frame nongravitational
-2
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physics laws take their usual form. Thus, the ‘‘Jordan’’
frame variables ~g�� and � are also denoted as the ‘‘physi-
cal’’ ones in the literature. On the other hand, the equa-
tions of motion are rather cumbersome in this frame, as
they mix spin-2 and spin-0 excitations. A more conve-
nient formulation of the theory is obtained by defining
two new gravitational field variables, g�� and the dimen-
sionless field ’, by means of the conformal transforma-
tion

~g�� 
 A2�’�g��; �2 
 8�M2
�A�2�’�;

V�’� 

A4�’�
4�

~V���; ��’� 

d logA�’�

d’
:

(3)

Imposing the condition

�2�’� �
1

4!��� � 6
; (4)

the gravitational action in the ‘‘Einstein frame’’ reads

Sg�
M2

�

2

Z
d4x

�������
�g

p
�R�g��@�’@�’�

2

M2
�

V�’�	; (5)

and matter couples to ’ only through a purely metric
coupling,

Sm � Sm�
m; A
2�’�g��	: (6)

In this frame masses and nongravitational coupling con-
stants are field dependent, and the energy-momentum
tensor of matter fields is not conserved separately, but
only when summed with the scalar field one. On the other
hand, the Einstein frame Planck mass M� is time inde-
pendent and the field equations have the simple form

R�� �
1

2
g��R �

T’��
M2

�

�
T��
M2

�

;

@2’�
1

M2
�

@V
@’

� �
1

M2
�

��’����
2

p T;
(7)

where

T’�� � M2
�@�’@�’� g��

�
M2

�

g��

2
@�’@�’� V�’�

�
;

and T�� � 2��g��1=2�Sm=�g�� is the matter energy-
momentum tensor in the Einstein frame. The relevant
point about the scalar field equation in (7) is that its
source is given by the trace of the matter energy-
momentum tensor, T 
 g��T��, which implies the
(weak) equivalence principle. Moreover, when ��’� � 0
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the scalar field is decoupled from ordinary matter and the
ST theory is indistinguishable from ordinary GR.

We next consider an homogeneous cosmological space-
time

ds2 � dt2 � a2�t�dl2;

where the matter energy-momentum tensor admits the
perfect-fluid representation

T�� � ��� p�u�u� � pg��;

with g��u�u� � 1.
The Friedmann-Robertson-Walker (FRW) equations

then take the form

�a
a
� �

1

6M2
�

��� 3p� 2M2
� _’2 � 2V�’�	; (8)

�
_a
a

�
2
�

k

a2
�

1

3M2
�

�
��

M2
�

2
_’2 � V�’�

�
; (9)

�’� 3
_a
a

_’ � �
1

M2
�

�
��’����

2
p ��� 3p� �

@V
@’

�
; (10)

with the Bianchi identity

d��a3� � pda3 � ��� 3p�a3d logA�’�: (11)

The physical proper time, scale factor, energy, and
pressure are related to their Einstein frame counterparts
by the relations

d~# � A�’�d#; ~a � A�’�a;

~� � A�’��4�; ~p � A�’��4p:

Defining new dimensionless variables

N 
 log
a
a0
; % 


V�’�
�

; w 

p
�
;

and setting k � 0 (flat space) the field equation of motion
takes the more convenient form

2

3

1� %

1� ’02=6
’00 � ��1� w� � 2%	’0

� �
���
2

p
��’��1� 3w� � 2%

d logV�’�
d’

; (12)

where primes denote derivation with respect to N. This
will be our master equation.

The effect of the early presence of a scalar field on the
physical processes will come through the Jordan-frame
Hubble parameter ~H 
 d log~a=d~#:

~H � H
�1� ��’�’0�

A�’�
; (13)
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where H 
 d loga=d# is the Einstein frame Hubble pa-
rameter. In the flat-space case (k � 0), Eq. (13) finally
gives

~H 2 �
A2�’�

3M2
�

�1� ��’�’0�2

1� �’0�2=6
�~�� ~V	: (14)
III. EVOLUTION OF THE FIELD

A. Radiation domination

During radiation domination the scalar field energy
density is suppressed, %� 1, and the first term in the
right-hand side (rhs) of Eq. (12) is proportional to

1� 3w �
�tot � 3ptot

�tot
�

~�tot � 3~ptot

~�tot

�
1

~�tot

�X
A

�~�A � 3~pA� � ~�m

�
; (15)

where the sum runs over all particles in thermal equilib-
rium, while ~�m is the contribution from the decoupled
and pressureless matter abundance.

During radiation domination, ~�tot ’ �2T4=30, where T
is the Jordan-frame temperature, and the contribution
from a single particle in equilibrium gives

~�A � 3~pA
~�tot

’
15

�4

gA
g?
y2AF�yA	; (16)

with yA 
 mA=T, gA the number of degrees of freedom of
A, g? the number of relativistic degrees of freedom, and

F�yA	 

Z 1

0
dx

x2

"A�exp�"A� � 1	
; (17)

where "A 
 �y2A � x2�1=2 and the minus (plus) sign in the
denominator of the integrand holds for bosons (fermions).
In Fig. 1 we plot y2F�y	. We see that it is different from
zero only around y � 1, that is, for T ’ mA. For higher
temperatures it is quadratically suppressed in y, approach-
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FIG. 1. The function y2F�y	, with y 
 m=T defined by
Eq. (17). The upper (lower) curve corresponds to bosons (fer-
mions).
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ing the relativistic regime in which 1� 3 ~wA � 0. For
lower temperatures it is Boltzmann suppressed. Then, as
emphasized in [6,7], the field ’ evolves even during
radiation domination, receiving a ‘‘kick’’ each time a
particle in equilibrium becomes nonrelativistic. The sec-
ond term in Eq. (15) is suppressed as Teq=T, so it becomes
relevant only as equivalence is approached.

In the following, we will consider the evolution of the
field from the freeze-out of the DM particles down to
today, so we will have to take into account all particles of
masses between the freeze-out and matter-radiation
equivalence.

B. Matter domination

During matter domination 1� 3w ’ 1 and, as long as
the field energy density is subdominant (%� 1), the rhs
of the equation of motion (12) is given by �

���
2

p
��’� and

the field evolution depends on the form of the coupling
function ��’�. As already mentioned, the JFBD theory is
given by a constant �, and the value � � 0 corresponds to
GR. A very attractive class of models is that in which the
function ��’� has a zero with a positive slope, since this
point, corresponding to GR, is an attractive fixed point
for the field equation of motion [6,7].

It was emphasized in Ref. [9] (see also [24]) that the
fixed point starts to be effective around matter-radiation
equivalence, and that it governs the field evolution until
recent epochs, when the quintessence potential becomes
dominant. If the latter has a runaway behavior, the same
should be true for ��’�, so that the late-time behavior
converges to GR.

C. Late-time behavior

The evolution of the field during the last redshifts
depends on the nature of DE. We will consider two pos-
sibilities: a cosmological constant and an inverse-power
law scalar potential for ’, which can be collectively
represented by the potential

V�’� � �4’�� �� � 0�; (18)

� � 0 corresponding to the cosmological constant.
In general, a cosmological constant in the Einstein

frame does not correspond to a cosmological constant
in the Jordan frame, as one can read from Eq. (3).
However, present tests of GR (see next section) imply
that at late times A�’� ’ 1, so that the two frames are
almost coincident and the expansion histories during the
last few redshifts are practically indistinguishable.

For the purpose of this paper, that is the analysis of the
impact of DE on ST cosmology, the situation in which the
quintessence field is different from ’ and decoupled from
it would be basically the same as that with a cosmological
constant, since in both cases the second term in the rhs of
Eq. (12) vanishes.
-4
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FIG. 2 (color online). Evolution of the energy density of the
background (upper solid line) and of three typical solutions for
the scalar field. We see that different initial conditions converge
to the same solution.
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The main feature of the potential in (18) for � > 0 is
the existence of ‘‘tracker’’ solutions, which are attractors
in field space [10]. In the �! 0 limit, the late-time
behavior is completely determined by the two parameters
�% 
 �4=�0

M and �. A nonvanishing � would modify the
behavior of the field today, hopefully keeping the desir-
able property of insensitivity to the initial conditions.

In this paper, we will consider the following choice for
A�’�:

A�’� � 1� Be�-’; (19)

corresponding to

��’� � �
-Be�-’

1� Be�-’
; (20)

which has a runaway behavior with positive slope, as
required by the discussion at the end of the previous
subsection. The choice for the parameters B and - will
be discussed in the following section.
FIG. 3 (color online). The regions in the �%-� parameter plane giv
The left-hand plot is the pure GR case (B � 0) while the right-ha
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In Fig. 2 we show the evolution of the background and
field energy density. We see that field energy densities
corresponding to different initial conditions converge to
the same solution, driven by ��’�. Notice also that the �
attractor becomes effective even before matter-radiation
equivalence, due to the nonrelativistic decoupling effect
explained above.

In Fig. 3 we show the region of parameter plane �%-�
giving w’ <�0:7, where

w’ �
M2

�=2 _’2 � V�’�

M2
�=2 _’2 � V�’�

; (21)

and 0:65<�’ < 0:75. We see that in the ST case (B �

0), the region giving more negative values of the equation
of state is somehow enlarged with respect to pure GR
quintessence. However, in the observationally allowed
region for �’ the influence of the B parameter is
negligible.
IV. PHENOMENOLOGICAL BOUNDS

A. Nucleosynthesis

Assuming �’0 ’ 0 in Eq. (14) —as we have checked
numerically for the solutions relevant in this analysis—
the Jordan-frame expansion rate during nucleosynthesis
may be approximated as

~H 2 ’ A2�’�
1

3M2
�

~�: (22)

The above expression should be compared to the GR
one, in which the Planck mass at nucleosynthesis was the
same as today. We obtain

� ~H2

~H2

								nuc



~H2 � ~H2
GR

~H2
GR

								nuc
�
A2�’nuc� � A2�’0�

A2�’0�
: (23)

The change in the expansion rate is completely analo-
gous to that obtained by adding extra neutrinos to the
standard GR case. Using the bound �N < 1 (which is
more restrictive than those obtained for instance in [25]),
ing w’ <�0:7 (dark gray) and 0:65<�’ < 0:75 (light gray).
nd plot is for ST with B � 0:1, - � 8.
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we get

A�’nuc�

A�’0�
< 1:08: (24)
4 6 8 10 12
-1

-0.9

-0.8

β

B=0.01

excluded by
Cassini

allowed by SNe

FIG. 4 (color online). The impact of the Cassini GR test. The
regions below the curves are excluded at 1� level. The SN Ia
bound on the DE equation of state is also shown.
B. General relativity tests

At the post-Newtonian level, the deviations from GR
may be parametrized in terms of an effective field-
dependent Newtonian constant2

G � G�’� 
 G�A�’�
2�1� �2�’�	;

and two dimensionless parameters �PN and-PN which, in
the present theories, turn out to be [23]

�PN�1��2
�2

1��2 ; -PN�1�
0�2

�1��2�2
; (25)

where 0 � @�=@’.
A new constraint on the parameter �PN has been ob-

tained recently using radio links with the Cassini space-
craft [20],

�PN � 1 � �2:1� 2:3� � 10�5: (26)

Present bounds on -PN � 1 are O�10�4� and are less
restrictive for our choice of ��’�, since
00�2�’0� ’ �-�3�’0�.

The bound from the Cassini spacecraft turns out to be
quite strong when used in connection with the one on the
equation of state w’ from SNe Ia. In Fig. 4 we show the
excluded region in the --w’ plane implied by Eq. (26).
We see that an equation of state w’ <�0:78, as implied
by SNe Ia data at 95% C.L. [21], requires either a large
value for - or a very small B. Since the last case corre-
sponds to an expansion history of the Universe practically
indistinguishable from GR, any nonstandard behavior
induced by the ST theories in the past should be likely
accompanied by an equation of state different from �1
today. If DE is a pure cosmological constant, then the
bound from Cassini implies B<O�10�3� [making A�’�
practically indistinguishable from one at least since BBN
on], or unnaturally large values of -.

C. CMB power spectrum

The impact of a cosmological constant or quintessence
on the CMB power spectrum has been extensively ana-
lyzed in Ref. [26]. In the context of ST theories, the
problem has been studied in Refs. [18,27]. The main
change with respect to a theory for DE based on GR is
due to a difference in the expansion rate, which affects
the angular scale of the anisotropies. The angle under
which the first peak is seen goes as
2Strictly speaking, this is only true for a massless field, but
for any practical purpose it applies to our nearly massless
scalar (m’ �H�1

0 ) as well.

063519
2peak � �=lpeak � vstdeczdec=d�zdec�; (27)

where lpeak is the corresponding multipole, vs is the sound
speed, tdec and zdec are the time and redshift of decou-
pling, and d�zdec� is the distance to the last scattering
surface. The latter is given by

d�zdec� �
Z 1

1=�zdec�1�

d~a

~a ~H
; (28)

and is thus dominated by the behavior of ~H close to the
upper limit of integration, where ~a ~H is smaller. For this
reason, ST theories passing the GR tests (A! 1 today,
that is, ~H ! ~HGR) imply a small deviation of the distance
to the last scattering surface with respect to GR.

On the other hand, the decoupling time might be sig-
nificantly more perturbed. It is given by an expression
analogous to Eq. (28) with the upper (lower) limit of
integration replaced by 1=�zdec � 1� (0). As a result, since
the Universe expanded faster than in GR at early times,
we expect tdec to be smaller, and the peak to move
towards higher multiples. We find

�lpeak
lpeak

’
4

3

A�~adec� � 1

A�~adec�
; (29)

which is consistent with the numerical findings of
Ref. [18].

Because of the well-known degeneracy of the CMB
spectrum with respect to cosmological parameters,
present measurements of the peak locations [19] do not
translate straightforwardly into a bound on A�~adec�. For
instance, it is found that a shift in the peak multipole can
be obtained also by varying the energy densities accord-
ing to [28]
-6
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�lpeak
lpeak

’ �1:25
��

�
� 0:23

��Mh2

�Mh2
� 0:09

��bh2

�bh2

�0:089
��M

�M
; (30)

so that, in general, a full reanalysis of the CMB including
the new parameter A�~adec� would be required. However, in
the present case we find that, once the BBN bound on A
has been imposed, the resulting values for A�~adec� are so
close to unity as to give shifts in the peak multiples
smaller than the experimental error. Thus, the CMB
spectrum does not provide significant bounds to the
present scenario.
FIG. 5 (color online). The contours show the expansion rate
enhancement ~H= ~HGR at T � 10 GeV obtained in the ST
model, as a function of the initial values of the factor A�’�
and of the ratio of the scalar to background energy density
�’=�B. We considered for the initial conditions a temperature
of T � 500 GeV. The black area represents initial conditions
which are excluded by nucleosynthesis. The gray contours
represent enhancements of 1–102, 102–103, 103–104, 104–105

from the lightest to the darkest. The dashed lines show the
shifts of the CMB Doppler peaks obtained in the ST model.
V. IMPACT ON WIMP RELIC ABUNDANCE

Having in mind all the bounds discussed in the pre-
vious section, we can now go on to compute the cosmo-
logical evolution of the scalar field and its impact on the
DM relic abundance.

As a first step, we want to estimate if ST can have a
sizable effect on the Jordan-frame Hubble parameter ~H at
the time of WIMP decoupling, without violating any of
the available cosmological observations. We will consider
the function A�’� of Eq. (19), imposing on the parameters
B and - the phenomenological constraints already dis-
cussed. We will then compute the ratio ~H= ~HGR at the
decoupling time of a typical WIMP of mass m �
200 GeV. In this way we will be able to get an estimate
of the effect before going into further detail.

The tightest bound is that coming from Eq. (24). It has
an impact on both B in Eq. (19) and on the initial con-
ditions of ’ at temperatures higher than the WIMP
freeze-out. Indeed, since on the tracker solution the scalar
field is ’tr

0 � O�1� today, it should have been � 1 at
nucleosynthesis, otherwise it would not have reached
the attractor in time [10]. This implies B � O�0:1�.

As already discussed, the equation for the dynamics of
the scalar field ’ is obtained by substituting the expres-
sion of Eq. (15) in the rhs of Eq. (12) and choosing a
coupling function ��’�, as defined in Eq. (20). In the sum
of Eq. (15) only the terms corresponding to particles with
m< Tc have been considered, i.e., particles lighter than
the critical temperature of the phase transition through
which they acquire a mass (see Ref. [7]). In particular, we
have taken into account the top quark, the Z0, theW�, the
bottom quark, the tau quark, the charmed quark, the
pions, the muon, the electron, and a WIMP particle of
mass m � 200 GeV. Numerical integration of the equa-
tion for ’ has been carried out between approximately
500 GeV and today. We have then computed, through
Eq. (14), the modified expansion rate in the ST theory
at a temperature T � 10 GeV corresponding to a typical
time of WIMP decoupling and compared it to the expan-
sion rate of the standard case at the same temperature.
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In Fig. 5 we plot the ratio ~H= ~HGR at T � 10 GeV as a
function of the initial value of A�’� and initial ratio of the
scalar to background energy density �’=�B. We have
restricted the possible initial conditions to those regions
of parameters values respecting the BBN bound of
Eq. (24). We see that we have been able to produce an
enhancement of the expansion rate up to O�105� at the
time of WIMP decoupling. It is then worth studying in
more detail what happens to the WIMP relic abundance.

Let us now consider the calculation of the relic abun-
dance of a DM WIMP with mass m and annihilation
cross section h�annvi. As already mentioned, laboratory
clocks and rods measure the physical metric ~g�� and so
the standard laws of nongravitational physics take their
usual form in units of the interval d~s2. As outlined in
Ref. [12], the effect of the modified ST gravity will enter
the computation of particle physics processes (like the
WIMP relic abundance) through the physical expansion
rate ~H defined in Eq. (13).We have therefore to implement
the standard Boltzmann equation with the modified
physical Hubble parameter ~H:

dY
dx

� �
1

x
s
~H
h�annvi�Y

2 � Y2
eq�; (31)
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FIG. 7 (color online). Numerical solution of the Boltzmann
equation (31) in a ST cosmology for a toy model of a DM
WIMP of mass m � 50 GeV and constant annihilation cross
section h�annvi � 1� 10�7 GeV�2. The temperature evolution
of the WIMP abundance Y�x� clearly shows that freeze-out is
anticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ’. At a value x �
m=T’ a reannihilation phase occurs and Y�x� drops to the
present day value.

FIG. 6. A typical behavior of the function A�’� defined in
Eq. (19), calculated for parameters B � 0:1 and - � 8.
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where x � m=T, s � �2�2=45�h?�T�T3 is the entropy
density, and Y � n=s is the WIMP density per comoving
volume.

We have considered values of ~H which respect all the
bounds discussed in Sec. IV. Specifically, we have con-
sidered the function A�’� as given in Eq. (19) with
parameters B � 0:1 and - � 8. The function A�’� for
this choice of parameters is plotted in Fig. 6, which shows
that A�’� is very large at large temperatures, and then, at
a temperature T’, sharply drops to values close to 1 before
nucleosynthesis sets in. A parametrization of the behavior
of A�’� for T > T’, that will be useful in the following
discussion, is

A�’� ’ 2:19� 1014
�
T0
T

�
0:82

’ 9:65� 103
�
GeV

m

�
0:82

x0:82;

(32)

where T0 is the current temperature of the Universe.
We have numerically checked that, in the regime we are

considering, a good approximation to the physical Hubble
parameter is given by

~H � A�’� ~HGR: (33)

The solution of the Boltzmann equation is therefore for-
mally the same as in the standard case, with the notice-
able difference that now the Hubble parameter gets an
additional temperature dependence, given by the function
A�’�. This can be translated in a change in the effective
number of degrees of freedom at temperature T:

g?�x� ! A2�x�g?�x�: (34)
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An approximated solution of Eq. (31) can be cast in a form
analogous to the standard case:

1

Y0
�

1

Yf
�

���������
�

45G

r
m
Z 1

xf
dx
A�1�x�G�x�h�annvi

x2
; (35)

where G�x� � h?�x�=g
1=2
? �x� and Y0 and Yf are the WIMP

abundances per comoving volume today and at freeze-
out, respectively.

The freeze-out temperature is obtained by the follow-
ing implicit equation:

xf � ln
�
0:038MPgm

h�annvifx
�1=2
f

A�xf�g
1=2
? �xf�

�
; (36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A�x� ! 1 we recover the stan-
dard case. The relic abundance is then simply given by

�h2 �
ms0Y0
�crit

; (37)

where s0 is the present entropy density and �crit denotes
the critical density.

A numerical solution of the Boltzmann equation (31) in
a ST cosmology with the function A�x� given in Fig. 6 is
-8



FIG. 9 (color online). The ratio between the freeze-out values
of xf � m=Tf in ST cosmology and in GR as a function of the
WIMP mass. The dashed, solid, and dotted lines refer to
h�annvi � 10�4, 10�7, and 10�14 GeV�2, respectively.

FIG. 8 (color online). The expansion rate of the Universe ~H
and the WIMP interaction rate - � Ysh�annvi are plotted as a
function of the temperature. The reannihilation effect dis-
cussed in the text is outlined. The small drop in the rates at
T � 300 MeV is due to the quark-hadron phase transition.
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shown in Fig. 7 for a toy model of a DM WIMP of mass
m � 50 GeV and constant annihilation cross section
h�annvi � 1� 10�7 GeV�2. The temperature evolution
of the WIMP abundance Y�x� clearly shows that freeze-
out is anticipated, since the expansion rate of the Universe
is largely enhanced by the presence of the scalar field ’.
This effect is expected. However, we note that a peculiar
effect emerges: when the ST theory approached GR [a fact
which is parametrized by A�’� ! 1 at a temperature T’,
which in our model is 0.1 GeV], ~H rapidly drops below the
interaction rate - establishing a short period during
which the already frozen WIMPs are still abundant
enough to start a sizable reannihilation. This post-
freeze-out ‘‘reannihilation phase’’ has the effect of re-
ducing theWIMP abundance, which nevertheless remains
much larger than in the standard case. For the specific
case shown in Fig. 7 the WIMP relic abundance is �h2 �
0:0027 for GR, while for a ST cosmology becomes �h2 �
0:12, with an increase of a factor of 44.

The phenomenon of reannihilation can be conveniently
discussed in terms of the relation between the expansion
rate of the Universe ~H and theWIMP interaction rate - �
Ysh�annvi. A numerical calculation of these two quanti-
ties is plotted in Fig. 8 as a function of the temperature.
The departure from equilibrium occurs earlier than in the
GR case, because ~H � ~HGR. When decoupling is com-
pleted, the particles evolve with an approximately con-
stant Y � Yf and -� T3, while the Hubble rate evolves as
063519
~H� A�x�~�1=2 � T1:2, i.e., slower than in the standard case
[we have used here the approximate A�x� behavior of
Eq. (32)].

At the transition temperature T’ the Hubble rate drops
to its standard value HGR and becomes smaller than the
interaction rate: in this case the decoupled WIMPs start
to annihilate again, for a short period. After this rean-
nihilation phase, the particles continue to evolve with an
approximately constant abundance Y < Yf and - recovers
the behavior T3, while ~HGR � ~�1=2 � T2 as usual.

We notice that a reannihilation phase does not occur in
the case of kination, i.e., in the case the energy density of
the Universe is dominated by the kinetic term of a scalar
field [15]. In this case the evolution of the expansion rate
is ~Hkin � T3 during kination, and then evolves smoothly
into the standard behavior ~HGR � T2. During kination
both ~H and - have the same T dependence and closely
follow each other, until kination ends and the standard
behavior is recovered. Reannihilation is possible if the
phase during which the expansion rate has the transition
toward its standard GR behavior is faster than the post-
freeze-out evolution of the interaction rate, i.e., faster
than T3.

The change in the freeze-out temperature is shown in
Fig. 9 where we show the ratio between the freeze-out
values of xf � m=Tf in ST cosmology and in GR.
The freeze-out temperature is anticipated about a factor
of 2, with a dependence also on the annihilation cross
-9



FIG. 11 (color online). Increase in the WIMP relic abundance
with an annihilation cross section h�annvi � a, for different
values of a. The dot-dashed, solid, and dashed lines correspond
to a � 10�4 , 10�7, and 10�14 GeV�2, respectively.

FIG. 10 (color online). Increase in the WIMP relic abundance
in ST cosmology with respect to the GR case. The solid curve
refers to an annihilation cross-section constant in temperature,
i.e., h�annvi � a � 10�7 GeV�2, while the dashed line stands
for an annihilation cross section which evolves with tempera-
ture as h�annvi � b=x � 10�7 GeV�2=x.
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section, as is clear from Eq. (36): for very low values
of h�annvi the freeze-out temperature may be anticipated
up to a factor of 5. For these low cross sections the
relic abundance is anyway largely overabundant: we can
therefore quantify the reduction in xf in a factor which
ranges between 10% and 40% for WIMPs which can
provide abundances in the cosmologically acceptable
range.

The amount of increase in the relic abundance which is
present in ST cosmology is shown in Fig. 10. The solid
curve refers to an annihilation cross-section constant in
temperature, i.e., h�annvi � a, while the dashed line
stands for an annihilation cross section which evolves
with temperature as h�annvi � b=x (these two cases cor-
respond to the two limiting situations of the usual non-
relativistic expansion of the thermally averaged
annihilation cross section: h�annvi � a� b=x). In the
case of s-wave annihilation the increase in relic abun-
dance ranges from a factor of 10 up to a factor of 400. For
a pure b=x dependence, the enhancement can be as large
as 3 orders of magnitude.

The behaviors shown in Fig. 10, which have been
obtained by a numerical integration of the Boltzmann
equation (31), can be understood by employing the ap-
proximate analytical solution (35). In the case of
h�annvi � a, Eq. (35) gives

1

Y0
� GmG�xGRf �

a

xGRf
(38)
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in the standard GR case, and

1

Y0
� Gm

�G�xSTf �

�A

a
1:82

�
1

�xSTf �1:82
�

1

�x’�1:82

��

�Gm
�
G�x’�

a
x’

�
(39)

in our ST model where the A�x� function is given in
Eq. (32) for T > T’ and A�x� � 1 otherwise [ �A � 9:65�
103 �GeV=m�0:82]. For the sake of simplicity, in both
solutions we have dropped the term 1=Yf which adds a
small correction, not relevant for the present approximate
discussion. In both equations G �

�������������������
�=�45G�

p
. The ratio R

of the relic abundances is

R 

��h2�ST
��h2�GR

’
1:82 �Ax’x

0:82
f

x’ � 1:82 �ArGx1:82f

; (40)

where we have approximated xGRf ’ xSTf and we have
defined rG � G�x’�=G�xf�. By making explicit the mass
dependencies we obtain

R ’
ARmGeV

BR �m1:82
Gev

; (41)

where the mass is expressed in GeV, AR ’ 1:76�
104x0:82f ’ 2:05� 105, BR � 1:76� 104T’rGx

1:82
f ’

2:05� 105, and the numerical values have been obtained
for xf ’ 20 and rG ’ 0:5 (since in our case T’ is smaller
than the quark-hadron phase transition which we have set
-10



FIG. 13 (color online). The relic abundance in a ST theory as
a function of the WIMP mass in the case of h�annvi 
 a �
1� 10�7 GeV (solid line) and h�annvi 
 b=x � 1�
10�4 GeV=x (dashed line). The upper (lower) dotted lines
corresponds to the GR case for h�annvi 
 a � 1� 10�7 GeV
and h�annvi 
 b=x � 1� 10�4 GeV=x, respectively.
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at TQCD � 300 MeV). The analytic approximation of
Eq. (41) helps to explain the behavior shown by the solid
curve in Fig. 10, which has been obtained by numerical
calculations which employ the exact form of the function
A�’�. From Eq. (41) we can in fact derive that, for low
masses, the ratio R has the behavior

R ’
m

rGT’

1

xf
�

1

rG

Tf
T’

; (42)

which shows that in this mass regime R grows almost
linearly with the WIMP mass m, and it is larger for lower
values of T’. If we accept T’ as low as the BBN scale, we
can obtain a further increase in the relic abundance of a
factor 100 on the top of the one showed in Fig. 11 for low
values of m. When the WIMP mass is very large, the ratio
R behaves as

R ’
1:76� 104x0:82f

m0:82
GeV

; (43)

with a slight drop with the mass. The position of the
maximum and the maximal value of R are given by

mmax
GeV ’ �2:15� 104rGT’�

0:56xf (44)

and

Rmax ’
108

�rGT’�
0:45 : (45)

These expressions show that the maximal effect is also
obtained for the lowest values of T’; in this case the
FIG. 12 (color online). Increase in the WIMP relic abundance
with an annihilation cross section h�annvi � b=x, for different
values of b. The dot-dashed, solid, and dashed lines correspond
to b � 10�4, 10�7, and 10�10 GeV�2, respectively.
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position of Rmax is shifted toward lower masses. For T’
at the BBN scale, the maximal increase in theWIMP relic
abundance is of the order of 3000, instead of about 400
obtained for T’ � 0:1 GeV and shown in Fig. 11.

An interesting property shown by Eq. (41) is that R
does not depend explicitly on the annihilation cross sec-
tion h�annvi � a, which drops out in the ratio. An implicit
dependence on the cross section is present through xf, as
can be seen in Eq. (36). This dependence, however, is only
logarithmic and does not spoil the general behavior of R
shown in Fig. 10. This is shown in Fig. 11: the largest
difference occurs for very low annihilation cross sections,
for which the deviation of xf is larger. However, for cross
sections of interest, i.e., cross sections which provide relic
abundances below the cosmologically acceptable upper
bound, the values of R are stable to a relatively good
extent.

A similar analysis holds in the case of h�annvi � b=x.
However, in this case the dependence of R with xf is
somehow stronger [as obtained from the integration in
Eq. (35)], and the effect of changing h�annvi is slightly
larger. This effect can be seen in Fig. 12, where R is shown
for different values of the parameter b. Notice that larger
cross sections, which in the standard case provide lower
values for the relic abundance, are the ones which get
more enhanced in ST cosmology.

Finally, as an example we show in Fig. 13 the relic
abundance as a function of the WIMP mass in the case of
-11
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h�annvi 
 a � 1� 10�7 GeV and h�annvi 
 b=x � 1�
10�4 GeV=x. We see that, in this case, the relic abundance
can be at the level required to explain the CDM content of
the Universe (�CDMh2 � 0:095–0:13 [29]) for a ST the-
ory, while it is underabundant in the standard case. The
models shown in Fig. 13 represent a case in which we can
explain at the same time both the DM and DE contents of
the Universe, and the interplay of the two component is
crucial in determining the right abundances of both DM
and DE.

An analysis of specific particle candidates of DM, in
particular, in supersymmetric models, will be examined
elsewhere [22].
VI. CONCLUSIONS

The idea of exploiting primordial (ultralight) scalars in
order to shed some light on a dynamical interpretation of
DE is by now a widespread research topic in the literature.
In this paper we follow the promising proposal of con-
sidering the quintessence scalar as embedded in a scalar-
tensor theory of gravity. This approach is at variance with
the usual interpretation of quintessence as a new light
scalar whose interactions with matter are subject to the
tight phenomenological constraints on the equivalence
principle violation and time variation of the fundamental
coupling constants. Identifying the quintessence field
with the scalar component of a ST theory, instead, does
not pose any threat to the equivalence principle, since by
construction matter has a purely metric coupling with
gravity.

We focus on quintessence ST models which possess a
double ‘‘attraction mechanism,’’ one to GR and the other
ensuring �DE to follow a tracking solution. These two
simultaneous mechanisms act as a ‘‘protection’’ for the
theory to prevent its fall into immediate troubles (for
instance, large departures from GR predictions).
Nevertheless, we still obtain important phenomenologi-
cal signatures which might disentangle this theory from
GR or other alternative proposals. The tests of our ST
scenario divide into two classes: deviations from GR and
063519
departures from standard cosmology, in particular, con-
cerning the expansion rate of the Universe.

The latter effect has a big impact on the most distant
epoch of the Universe for which we have ‘‘direct’’ infor-
mation, i.e., nucleosynthesis. However, we pointed out
that we can further extend the implications of a non-
standard ~H in the early Universe to times prior to nucleo-
synthesis. Sticking to the standard WIMP picture of DM,
one of the most relevant events before BBN is the WIMP
decoupling which is expected to have occurred at a
temperature of a few GeVs. Our work shows that, despite
the severe filters on ST quintessence models which are
provided by BBN, solar system tests of gravity and, to a
lesser degree, by CMB, it is still possible to find remark-
able enhancements on the expansion rate of the Universe
at WIMP freeze-out, yielding to relic WIMP abundances
which can vary up to a few orders of magnitude with
respect to the standard case.

In this paper we pointed out some general features of
the new ‘‘WIMP story’’ around its decoupling tempera-
ture in the presence of ST quintessence. In particular, we
noticed that some unexpected effect can take place, such
as a short phase of WIMP ‘‘reannihilation’’ when ST
approaches GR. Needless to say, such potentially (very)
large deviations entail new prospects on the WIMP char-
acterization both for the choice of the CDM candidates
and for their direct and indirect detection probes. A
thorough reconsideration of the ‘‘traditional’’ WIMP
identified with the lightest neutralino in SUSYextensions
of the SM as well as the identification of other potentially
viable CDM candidates in the ST context is presently
under way [22].
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