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Abstract 11	
The concentrations of rare earth elements (REE) were determined by ICP-MS in dominant seaweed 12	
species, collected from three locations of the northwestern Mediterranean Sea. This is the first study 13	
to define levels and patterns of REE in macro algae from these coastal areas. 14	
Rare elements are becoming emerging inorganic contaminants in marine ecosystems, due to their 15	
worldwide increasing applications in industry, technology, medicine and agriculture. 16	
Significant inter-site and interspecies differences were registered, with higher levels of REE in 17	
brown and green macro algae than in red seaweeds. Levels of light REE were also observed to be 18	
greater compared to heavy REE in all samples. 19	
One of the investigated locations (Bergeggi, SV) had higher REE and ΣREE concentrations, 20	
probably due to its proximity to an important commercial and touristic harbor, while the other two 21	
sites were less affected by anthropogenic contaminations, and showed comparable REE patterns 22	
and lower concentrations. 23	
 24	
Capsule: rare earth elements in seaweeds 25	
 26	
Keywords: REE, seaweeds, Mediterranean Sea, pollution tracers. 27	

28	



	

 29	
1. Introduction 30	
 31	

Rare earth elements (REE) are a group of chemical elements including yttrium (Y), scandium (Sc) 32	

and lanthanides (from lanthanum to lutetium). Despite their name, REE are not that rare in the 33	

natural environment, being the fifteenth most abundant component of the earth’s crust (USEPA, 34	

2012). REE are further subdivided into light REE (LREE), including lanthanum	(La),	cerium	(Ce),	35	

praseodymium	(Pr),	neodymium	(Nd)	and	samarium	(Sm);	and	heavy REE (HREE), including 36	

gadolinium	 (Gd),	 europium	 (Eu),	 terbium	 (Tb),	 dysprosium	 (Dy),	 thulium	 (Tm),	 ytterbium	37	

(Yb),	holmium	(Ho),	erbium	(Er),	lutetium	(Lu)	and	yttrium	(Y)	(Anastopoulos	et	al.,	2016).		38	

REE	mainly enter	into oceans through atmospheric fallout (De Baar et al., 1983) and fluvial inputs 39	

(Frost et al., 1986), and have	been	frequently	investigated	as	natural	tracers	of	biogeochemical	40	

processes	 (Oliveri	 et	 al.,	 2010).	As the distribution patterns of REE in the water column are 41	

already known, it is possible to utilize these patterns for tracing water masses or to identify 42	

pollution sources in seawater (Censi et al., 2004). 43	

In fact, in the last decade, the worldwide use of REE in industrial applications (electronics, nuclear 44	

energy, metallurgy, medicine, computer manufacturing) and in some countries (such as China) for 45	

use in fertilizer and feed additives, has increased levels of REE in water environments (Mashitah et 46	

al., 2012; Hermann et al., 2016). Thus, REE can be considered as emerging contaminants and pose 47	

a potential risk for marine and freshwater ecosystems. 48	

The Mediterranean Sea is a semi-enclosed sea; concentrations of trace elements and REE in this 49	

basin are higher than those registered in other nutrient-depleted surficial waters (Greaves et al., 50	

1994; Strady et al., 2015). Numerous investigations regarding patterns of dissolved and particulate 51	

REE have been performed in this basin (e.g. Censi et al., 2004; Martinez-Boti et al., 2009; 52	

Tranchida et al., 2011; Roussiez et al., 2013; Ayache et al., 2016); conversely, occurrence and 53	

distribution of REE in marine biota have scarcely been investigated. To our knowledge, there are 54	

only two studies that have analyzed the distribution of REE in plankton from the Mediterranean Sea 55	



	

(Strady et al., 2015; Battuello et al., 2017); examining REE in marine organisms is of great 56	

importance because of their increasing levels in seawater environments and, consequently, in the 57	

marine food chain.  58	

Of the marine organisms that can be utilized as bioindicators of trace elements and REE in marine 59	

environments, seaweeds have several advantages as they are widespread, easy to collect and have a 60	

considerable ability to take-up trace elements in solution and concentrate them. Moreover, as they 61	

are at the base of the marine food chain, macro algae are essential in the transfer of trace elements 62	

to higher trophic levels. 63	

We determined REE concentrations and distributions in seaweeds from three different sites located 64	

in Northwestern Mediterranean coastal areas. These sites have different environmental protection in 65	

the Ligurian and Northern Tyrrhenian Sea. The macro algae species collected for this study were 66	

the most abundant and widespread in all three sampling sites and were represented by the three 67	

phylum Chlorophyta (green algae), Ochrophyta (brown algae) and Rodophyta.  68	

Macro algae species from these three locations were the subject of a previous investigation that 69	

focused on essential and nonessential trace elements, in the perspective of identifying the species 70	

potentially suitable for human and animal nutrition, as well to identify any potential risks for 71	

consumers due to the presence of toxic metals such as lead, cadmium and mercury in seaweeds of 72	

Mediterranean origin (Squadrone et al., under review). 73	

In this study, we aimed to measure, for the first time, the concentrations of REE in marine 74	

Mediterranean seaweeds, identifying patterns and fractionations of REE, and verifying the potential 75	

use of REE as pollution tracers in the studied area. 76	

 77	

2. Materials and methods 78	

2.1. Sampling area  79	

All three sampling locations were situated in the northwestern Mediterranean Sea (Figure 1). 80	



	

The first sampling site was located in Bergeggi (SV), a Marine Protected Area of the Ligurian Sea 81	

(44°14'26. 94"N, 8°26'50. 98"E, General Reserve named B zone.) Here, human activities are 82	

restricted and regulated by the Italian law. Close to this site is located the industrial and commercial 83	

harbor of Vado Ligure (SV), characterized by high shipping traffic. 84	

The second site was in the Island of Elba (Tyrrhenian Sea, 42°42'35. 17"N, 10°24'44. 97"E), five 85	

nautical miles off the Tuscan coast. Elba is the most populated island of the Tuscan archipelago, 86	

especially in summer. 87	

The third sampling site was located in the little Capraia Island, (43°4'26. 90"N, 9°49'39.63"E, in the 88	

National Park of the Tuscan Archipelago, PNAT), another Marine Protected Area of the Ligurian 89	

Sea, about 30 nautical miles off Tuscan coast. The island has few inhabitants and no industrial 90	

activities. 91	

Seaweed samples were collected in summer 2016. After collection, the macro algae were washed on 92	

board with seawater and then stored in refrigerated conditions. The specimens were transported to 93	

the laboratory and examined under the stereomicroscope, after being cut into thin sections, in order 94	

to identify the macro algae species. Before analyzing the seaweeds for REE content in the chemical 95	

laboratory, samples were rinsed with tap water, followed by a rinse with distilled water, then freeze-96	

dried and homogenized to obtain a fine powder. Approximately 1-1.5 g of each sample were 97	

utilized for quantitation of REEs.	98	

2.2 Determination of REE 99	

Samples mineralization was performed using a microwave digestion lab station (Ethos 1, Milestone, 100	

Shelton, CT, USA), equipped with a 10 positions rotor for high pressures polytetrafluoroethylene 101	

(PTFE) digestion tubes.  102	

All digestion tubes were cleaned with concentrated acid, rinsed with ultrapure water and dried at 103	

room temperature under a chemical hood. Disposable polypropylene tubes were used to storage 104	

mineralized samples. Freeze-dried samples (1.0-1.5 g) were directly weighed into PTFE digestion 105	



	

tubes. 7 mL of HNO3 (70% v/v) and 1.5 mL of H2O2 (30% v/v) were then added before the 106	

microwave digestion process, programmed as follows:  heating to 130°C in 8 min, hold for 2 min, 107	

heating to 200°C in 8 min, hold for 5 min; cooling for 30 min. Digested samples were then 108	

quantitatively transferred to 50 mL polypropylene tubes and gravimetrically diluted to a final 109	

weight of 50 g with ultrapure water. 110	

REE determination was performed by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS 111	

Xseries II, Thermo Scientific, Bremen, Germany) equipped with a multi-vial auto sampler (ASX 112	

520, CETAC Technologies, Omaha, NE, USA). Instrument was tuned daily before each analytical 113	

trial.  Certified Reference Materials (REE-1 from the National Institute of Standard and 114	

Technology), blank reagents and standard solutions were processed during each analytical session 115	

to verify performances of the methods. The limit of quantification (LOQ) was 0.010 mg Kg-1. 116	

Results were expressed in mg Kg-1 dry weight as the mean for each site with standard deviation; the 117	

sum of REE (ΣREE), of light REE (LREE) and of heavy REE (LREE) are also shown (Table 1). 118	

2.3 Statistical analysis 119	

 The one-way analysis of variance (ANOVA) was employed to compare the average contents of the 120	

sum of REE (ΣREE) in macro algae between the three sampling sites and between the macro algae 121	

species in the same site (Table 2). The unpaired t-test was used to compare the average contents of 122	

ΣREE in macro algae between sites 2 and 3. Results were considered statistically significant at p 123	

values of < 0.05. Graph Pad Statistics Software Version 6.0 (GraphPad Software, Inc., USA) was 124	

used for statistical evaluations. 125	

3. Results and Discussion 126	

REE are typical lithophile elements, with scarce presence in biological tissues. Seaweeds 127	

mostly develop in marine environments in contact with sediments and suspended particulate from 128	

geologic origin is present in their environment. Therefore, fine geological particulate, containing 129	

REE, are incorporated in plants tissues in different amounts. 130	



	

The concentrations of REE in marine macro algae from the three collection sites of the 131	

Northwestern Mediterranean Sea are shown in Table 1 (mg Kg-1 dry weight). REE and ΣREE are 132	

also graphically presented for the three sites (Figure 2) and for the analyzed seaweeds (Figures 3 133	

and 4), to facilitate comparison. 134	

A high variability in REE concentrations between the three sampling sites and between species was 135	

recorded; the REE concentrations, however, consistently followed the same trend, and 136	

concentrations of LREE were always higher than HREE. 137	

3.1 Inter-site variability  138	

In Figures 2a and 2b, mean REE levels in the three sampling sites are graphically represented. As 139	

shown, the specific area of collection greatly affected REE concentrations. In fact, macro algae 140	

from site 1 (Bergeggi, SV) had the highest concentrations for all the analyzed REE (Table 1). In site 141	

1, the highest REE values were found in the Ocrophyta Halopteris filicina (Ce 8.8 mg Kg-1, La 4.3 142	

mg Kg-1, Nd 4.1 mg Kg-1, Y 3.4 mg Kg-1, Sc 1.5 mg Kg-1, Pr 1.1 mg Kg-1, Sm and Gd 0.87 mg Kg-143	

1, Dy 0.64 mg Kg-1, Er 0.32 mg Kg-1, Yb 0.27 mg Kg-1,Tb and Ho 0.22 mg Kg-1, Eu 0.17 mg Kg-1, 144	

Tm 0.80 mg Kg-1, Lu 0.78 mg Kg-1) and the lowest concentrations were found in the Rodhopyta 145	

Ganonema farinosum (Ce 4.8 mg Kg-1, La 2.5 mg Kg-1, Nd 2.2 mg Kg-1, Y 2.0 mg Kg-1, Sc 0.84 mg 146	

Kg-1, Pr 0.55 mg Kg-1, Sm and Gd 0.46 mg Kg-1, Dy 0.35 mg Kg-1, Er 0.19 mg Kg-1, Yb 0.15 mg 147	

Kg-1, Eu 0.10 mg Kg-1, Tb and Ho 0.080 mg Kg-1, Tm and Lu 0.030 mg Kg-1).  148	

Despite being located in a marine protected area, site 1 seems to be greatly affected by being 149	

situated close to an important industrial and touristic harbor. 150	

In site 2 (Elba Island, LI), we detected the highest levels of all elements in the Clorophyta Flabellia 151	

petiolata (Ce 3.5 mg Kg-1, Y 2.3 mg Kg-1, La 2.2 mg Kg-1, Nd 1.9 mg Kg-1, Sc 0.66 mg Kg-1, Pr 152	

0.47 mg Kg-1, Gd 0.45 mg Kg-1, Sm 0.40 mg Kg-1, Dy 0.34 mg Kg-1, Er 0.18 mg Kg-1, Yb 0.15 mg 153	

Kg-1, Eu and Ho 0.10 mg Kg-1, Tb 0.091 mg Kg-1, Tm 0.040 and Lu 0.033 mg Kg-1).  154	

In site 3 (Capraia Island, LI), the highest REE concentrations were found in the Ocrophyta 155	

Halopteris scoparia (Ce 6.2 mg Kg-1, La and Nd 2.7 mg Kg-1, Y 1.9 mg Kg-1, Sc 0.87 mg Kg-1, Pr 156	



	

0.65 mg Kg-1, Sm and Gd 0.51 mg Kg-1, Dy 0.34 mg Kg-1, Er 0.17 mg Kg-1, Yb 0.13 mg Kg-1, Eu 157	

0.10 mg Kg-1, Ho 0.073 mg Kg-1, Tb 0.070 mg Kg-1, Tm 0.025 mg Kg-1, Lu 0.022 mg Kg-1) and the 158	

lowest levels were found in the Rodhopyta Dudresnaya verticillata. 159	

 Sites 2 and 3 seem to be less affected by anthropogenic contamination, and REE mean values were 160	

half of those registered in site 1. 161	

In Table 2, the comparison between the ΣREE by one-way ANOVA showed a highly significant 162	

difference in concentrations between the three locations (p < 0.0001). However, the comparison 163	

between only sites 2 and 3 using the unpaired t-test resulted in a non-significant difference (p > 164	

0.05), highlighting that site 1 showed very different levels of REE in seaweeds, while between sites 165	

2 and 3, ΣREE values did not differ significantly. 166	

3.2 Interspecies variability  167	

The total levels of REE (ΣREE) are shown for each analyzed species in the three examined 168	

locations (Figure 3). 169	

In site 1, Bergeggi (SV), the highest values were found overall, especially in green and brown 170	

macro algae, while in sites 2 and 3, REE values were lower; however, there was a high interspecies 171	

variability in the same sampling site. In fact, in site 1 (Figure 3), the total REE content was in the 172	

following decreasing order Halopteris filicina (ΣREE 27 mg Kg-1 d.w.) > Flabellia petiolata > 173	

Padina pavonica > Codium bursa > Ganonema farinosum (ΣREE 15 mg Kg-1 d.w.); in site 2, the 174	

order was Flabellia petiolata (ΣREE 15 mg Kg-1 dry weight (d.w.) > Dictyota dichotoma > Codium 175	

bursa = Padina pavonica > Peyssonnelia squamaria > Laurencia obtusa > Caulerpa racemosa > 176	

Halopteris filicina (ΣREE 2.1 mg Kg-1 d.w.); and finally, in site 3, the order was Halopteris 177	

scoparia (ΣREE 17 mg Kg-1 d.w.) > Padina pavonica > Halimeda tuna > Peyssonnelia squamaria 178	

> Cystoseira spp > Flabellia petiolata > Codium bursa > Dudresnaya verticillata (ΣREE 2.3 mg 179	

Kg-1 d.w.). A comparison between the three species that were collected in all three locations (F. 180	

petiolata, C. bursa, P. pavonica) is shown in Figure 4. The REE pattern was similar, but 181	



	

concentrations differed in the same species in the two green macro algae F. petiolata and C. bursa 182	

from the three sites; the brown macro alga P. pavonica showed almost the same levels of REE in 183	

sites 2 and 3, but a higher value in site 1. 184	

As shown in Table 2, the one-way interspecies comparison revealed highly significant differences 185	

between the different macro algae species for each site. This finding is in line with the scarce 186	

literature regarding REE in macro algae. In fact, other authors have underlined the interspecies 187	

variability in REE levels. Fu and coauthors (2000) suggested that REE patterns are division-188	

dependent; while Sakamoto and coauthors (2008) indicated that the mechanism of uptake could be 189	

different and related to seaweed morphology, even if the accumulation of REE in seaweed is still 190	

not elucidated. 191	

3.3 Chondrite-normalized REE pattern (Leedey Oklahoma chondrite) 192	

To define a normalized REE pattern (Figure 5), we utilized the normalized values reported 193	

by Masuda (1975) for the Leedey chondrite, which is considered the most primitive chondrite 194	

(Sakamoto et al., 2008). Chondrite meteorites are, in fact, used as a reference for the normalization 195	

of REE, as they are thought to be similar to the original composition of the Earth’s crust (Masuda et 196	

al., 1973). Moreover, during this meteorite formation, lanthanide fractionation did not occur (Song 197	

et al., 2006; Antonina et al., 2013), therefore, if fractionation between REE in seaweeds occurred, 198	

the comparison with the chondrite pattern could disclose this phenomenon. 199	

In our study, the REE patterns were comparable in the three sites (Figure 5), even if, as previously 200	

indicated, site 1 (Bergeggi, SV) showed higher overall REE concentrations than the other two 201	

locations. The REE Ce and Eu have additional valences compared to the other lanthanides, and 202	

when Ce and/or Eu concentrations are enriched or depleted compared to the levels recorded in 203	

chondrite, this phenomenon is defined as a Ce or Eu (positive or negative) anomaly. In seaweeds 204	

from the three sites, a Eu negative anomaly was observed (Figure 5), while the REE ratios (Ce/La, 205	

Gd/Yb, La/Yb) were almost the same in the three different stations (mean values 1.8, 3.3 and 17, 206	

respectively). 207	



	

The Eu anomaly is thought to be strictly dependent on lithology (Moller et al., 2004) and 208	

enrichment or depletion was explained by the Eu capacity to be mostly incorporated into 209	

plagioclase minerals.  210	

Despite the very different sites of origin, the chondrite-normalized pattern profile of Mediterranean 211	

seaweeds appeared to be very similar to the pattern found by Mashitah and co-authors (2012) in 212	

brown seaweeds from Malaysian coasts. 213	

The REE patterns normalized by chondrite (Figure 5) are typical of geological materials 214	

such as sediments, confirming that REE measurements are compatible with a geological material 215	

incorporated in macro algae tissues in different amounts. Moreover, the patterns are similar among 216	

sampling sites suggesting that correspond to sediments of similar origin. 217	

3.4 Comparison with REE in biota  218	

In a previous study, we analyzed Ce and La concentrations in marine zooplankton from the 219	

Northwestern Mediterranean Sea (Battuello et al., 2017). We observed that concentrations for both 220	

these elements decreased from herbivorous to carnivorous copepods, and were in the average range 221	

of 0.50 - 1.86 mg Kg-1 for Ce and 0.28 - 0.88 mg Kg-1 d.w. for La (lowest values in carnivores). 222	

In this investigation, Ce and La in seaweeds were in the medium range of 7.2 - 2.5 mg Kg-1 and 3.7 223	

- 1.3 mg Kg-1 d.w., respectively, showing the higher ability of REE to accumulate in seaweeds 224	

compared to zooplankton. As for as we know, we cannot compare these results with other seaweeds 225	

from the Mediterranean Sea, but a few studies have been performed in other parts of the world. For 226	

example, Hou and Yan (1998) analyzed La levels in Chinese coast seaweeds, finding the highest 227	

values reported in seaweeds to date, 10.14 mg Kg-1 d.w. in green macro algae and 6.73 mg Kg-1 d.w. 228	

in red macro algae, while the highest value we found for lanthanum was 4.3 mg Kg-1 in H. filicina 229	

and P. pavonica from site 1. 230	

Masitah (2012) analyzed REE concentrations in P. pavonica (Malaysian coast), and found ΣREE 231	

values ranging from 62 to 8.4 mg Kg-1, higher concentrations than in the Mediterranean area, where 232	



	

the range we registered was 22 - 7.9 mg Kg-1 (Table 1, Figure 2). REE in Padina sp. from the 233	

Malaysia areas decreased in the following order: 234	

Ce>Nd>La>Pr>Gd>Sm>Dy>Er>Yb>Eu=Tb>Ho>Tm>Lu.  235	

In our study, in site 1 (Bergeggi, SV), the order of REE was: 236	

Ce>La>Nd>Y>Pr>Gd=Sm>Sc>Dy>Er>Yb>Eu>Tb>Ho>Tm>Lu, while in sites 2 and 3, the order 237	

was the same, namely Ce>Y>La>Nd>Sc>Pr>Gd>Sm>Dy>Er>Yb>Eu>Ho>Tb>Tm>Lu, 238	

demonstrating that P. pavonica samples in these two sites  have the same geological “fingerprint”. 239	

Moreover, it was evident that these findings reflected a different pattern of REE in seaweeds, not 240	

only between the two different marine areas (Malaysia and Mediterranean), but also between the 241	

Mediterranean stations that we investigated. Sakamoto and co-authors (2008) investigated REE 242	

patterns in seaweed species collected in the Pacific Ocean (Japan). They found that seaweeds 243	

accumulated REE at levels 103 times higher than concentrations detected in seawater, and that the 244	

accumulation factor was higher for the heavy REE.  245	

In order to estimate the bio concentration factor (BCF), which is defined as the accumulation of a 246	

chemical from water in an organism (Landis et al., 2011), we used the REE concentrations 247	

measured in surface waters of the Mediterranean Sea (Censi et al., 2004), ranging from 0.00013 µg 248	

L-1 (Yb) to 0.0029 µg L-1 (La).  In fact, as REE partitioning is controlled by complexation and 249	

binding constants on an ocean-wide basis (Sholkovitz et al., 1994; Strady et al., 2015), we decided 250	

to apply them on a regional basin-wide basis, with the approach already utilized in the study by 251	

Strady and co-authors (2015). 252	

BCF was usually expressed as the ratio of the concentration of the chemical in the organism and in 253	

water; our findings are shown in Figure 6. 254	

The BCFs were expressed in the following decreasing order: 255	

Ce>Yb>Pr>La>Nd>Sm>Eu>Tb>Gd>Dt>Ho>Tm>Lu>Er, and with the exception of Yb, the bio 256	

concentration factors were higher in LREEs than in HREEs.  257	



	

In a previous investigation in the studied area (Squadrone et al., under review), we found that 258	

different macro algae accumulated trace elements from seawater to different extents, and that brown 259	

and green macro algae had higher values than red macro algae. In fact, in seaweeds from site 1, 260	

important concentrations of iron, aluminum, manganese, copper, nickel and chromium were 261	

registered.  262	

In this study, the same site (Bergeggi, SV) showed the highest levels of REE.  263	

We suggest that REE concentrations in macro algae from sites 2 and 3, being non-contaminated 264	

areas, could constitute a baseline record for these elements in Mediterranean seaweeds, due to their 265	

characteristic elemental profile. In the presence of anthropogenic sources, such as in site 1, this 266	

unique profile was altered, and we can, therefore, suggest the use of REEs as pollution tracers. 267	

 268	

4. Conclusions 269	

REE, due to their unique chemical properties have become crucially important in many industrial 270	

applications, and the global demand is still increasing. Following the consequent release of REE in 271	

terrestrial and aquatic environments, due to the extraction process and production of several 272	

industrial components, REE can be considered new emerging inorganic contaminants, for which the 273	

potential risks for human health and ecosystems have still not been investigated. Seaweeds have 274	

been shown to constitute a useful tool for biomonitoring REE, as they can concentrate REE at 275	

higher levels than in seawater. This study constitutes the first investigation of REE in seaweeds 276	

from the Northwestern Mediterranean Sea, providing the first record, which can be utilized for 277	

future comparisons. 278	
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Concentrations of REE in macro algae from Mediterranean Sea (mg Kg-1 d.w.)    
Site Species La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Tm Lu Y Sc ΣREE LREE HREE 
S1 Codium bursa  3.5 6.3 0.81 3.1 0.65 0.17 0.68 0.14 0.51 0.15 0.26 0.20 0.050 0.043 2.9 1.1 21 14 5.1 

 Flabellia petiolata  4.3 8.8 1.0 4.0 0.85 0.16 0.83 0.16 0.60 0.16 0.30 0.25 0.060 0.051 3.1 1.6 26 19 5.6 
 Padina pavonica  3.9 7.2 0.91 3.6 0.77 0.16 0.78 0.13 0.58 0.14 0.30 0.24 0.050 0.041 3.3 0.94 23 16 5.8 
 Halopteris filicina  4.3 8.8 1.1 4.1 0.87 0.17 0.87 0.22 0.64 0.22 0.32 0.27 0.080 0.078 3.4 1.53 27 19 6.3 

 
Ganonema 
farinosum  2.5 4.8 0.55 2.2 0.46 0.10 0.47 0.08 0.35 0.08 0.19 0.15 0.030 0.030 2.0 0.84 15 10 35 

 mean 3.7 7.2 0.87 3.4 0.72 0.15 0.73 0.15 0.53 0.15 0.27 0.22 0.054 0.048 2.9 1.2 22 16 6.5 
 SD 0.77 1.72 0.21 0.77 0.17 0.03 0.16 0.051 0.11 0.049 0.051 0.048 0.018 0.018 0.55 0.36 4.9 3.6 1.1 
                     

S2  La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Tm Lu Y Sc ΣREE LREE HREE 
 Codium bursa  1.5 2.8 0.34 1.4 0.28 0.072 0.29 0.065 0.22 0.068 0.11 0.090 0.020 0.020 1.22 0.52 9.0 6.3 2.2 
 Flabellia petiolata  2.2 3.5 0.47 1.9 0.40 0.10 0.45 0.091 0.34 0.10 0.18 0.15 0.040 0.033 2.26 0.66 13 8.5 3.8 
 Caulerpa racemosa  1.1 1.8 0.24 1.0 0.22 0.050 0.24 0.040 0.20 0.050 0.11 0.080 0.020 0.020 1.30 0.50 6.9 4.3 2.1 

 Padina pavonica  1.6 2.0 0.33 1.4 0.29 0.075 0.33 0.052 0.26 0.060 0.14 0.11 0.020 0.017 1.88 0.48 9.0 5.6 2.9 
 Halopteris filicina  0.29 0.64 0.07 0.31 0.070 0.010 0.070 0.010 0.050 0.010 0.030 0.020 0.031 0.003 0.23 0.25 2.1 1.4 0.5 
 Dictyota dichotoma  1.8 3.3 0.41 1.6 0.34 0.090 0.36 0.060 0.27 0.070 0.15 0.11 0.020 0.020 1.61 1.13 11 7.4 2.8 

 
Peyssonnelia 
squamaria  1.6 2.6 0.32 1.3 0.25 0.070 0.26 0.050 0.18 0.050 0.090 0.070 0.020 0.010 1.02 0.45 8.3 6.0 1.8 

 Laurencia obtusa  1.3 2.3 0.28 1.2 0.25 0.060 0.27 0.050 0.21 0.050 0.11 0.080 0.020 0.020 1.33 0.61 8.1 5.2 2.2 
 mean 1.4 2.4 0.31 1.3 0.26 0.066 0.28 0.052 0.22 0.057 0.12 0.089 0.024 0.018 1.4 0.58 8.5 5.6 2.9 
 SD 0.56 0.91 0.12 0.47 0.10 0.028 0.11 0.023 0.084 0.025 0.046 0.038 0.008 0.009 0.60 0.26 3.2 2.1 1.0 
                     

S3  La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Tm Lu Y Sc ΣREE LREE HREE 
 Codium bursa  0.76 1.6 0.18 0.73 0.13 0.022 0.12 0.017 0.085 0.018 0.046 0.037 0.0070 0.006 0.49 0.33 4.5 3.4 0.9 

 Flabellia petiolata  0.61 1.3 0.14 0.59 0.11 0.021 0.12 0.016 0.086 0.018 0.047 0.048 0.0070 0.0089 0.51 1.19 4.8 2.7 0.9 
 Halimeda tuna  1.51 3.0 0.37 1.4 0.26 0.040 0.25 0.030 0.17 0.030 0.090 0.071 0.012 0.0090 1.04 0.42 8.7 6.5 1.7 
 Padina pavonica  1.9 3.2 0.44 1.8 0.34 0.060 0.35 0.046 0.25 0.050 0.14 0.11 0.018 0.016 1.74 0.45 11 7.7 2.8 
 Halopteris scoparia   2.73 6.2 0.65 2.7 0.51 0.10 0.51 0.070 0.34 0.073 0.17 0.13 0.025 0.022 1.87 0.871 17 13 3.3 
 Cystoseira spp.  1.00 1.5 0.23 0.99 0.22 0.050 0.25 0.040 0.20 0.040 0.12 0.096 0.016 0.015 1.38 0.32 6.4 3.9 2.2 

 
Peyssonnelia 
squamaria  1.52 2.9 0.35 1.4 0.26 0.050 0.26 0.040 0.18 0.040 0.090 0.070 0.013 0.011 1.01 0.40 8.6 6.4 1.8 

 
Dudresnaya 
verticillata  0.52 0.80 0.090 0.35 0.060 0.010 0.070 0.010 0.040 0.010 0.020 0.013 0.0020 0.0020 0.20 0.10 2.3 1.8 0.4 

 mean 1.32 2.5 0.31 1.2 0.24 0.044 0.24 0.034 0.17 0.035 0.090 0.072 0.013 0.011 1.0 0.51 7.9 5.7 2.3 
 SD 0.75 1.7 0.18 0.75 0.14 0.03 0.14 0.020 0.10 0.021 0.051 0.039 0.007 0.0062 0.61 0.35 4.6 3.5 1.0 



 



        Table 2 Statistical evaluation 
 

    
 P value P value 

One-way ANOVA 
(3 SITES, 

ΣREE COMPARISON) 
P < 0.0001 **** 

Unpaired t test 
(SITE 2 AND SITE 3 

ΣREE  COMPARISON) 

P = 0.0811 
 

(P > 0.05) 
NS 

One-way ANOVA  
(Site 1,  ΣREE interspecies  COMPARISON) P < 0.0001 **** 

One-way ANOVA  
(Site 2,  ΣREE interspecies  COMPARISON) P < 0.0001 **** 

One-way ANOVA  
(Site 3,  ΣREE interspecies  COMPARISON) P < 0.0001 **** 

   **** Significant at the 0.01 probability level 
   NS not statistically significant 

	



Figure 1 

Sampling sites, study area. 

Figure 2a 

Rare earth elements in macro algae from three Northwestern Mediterranean locations (mg Kg-1 dry 
weight, log scale).	

Figure 2b 

Box-plot diagrams of ΣREE (mean ± SD) in the three sampling locations (mg Kg-1 dry weight).   

Figure 3 

Box-plot diagrams of ΣREE (mean ± SEM) in the macro algae species (mg Kg-1 dry weight) from 
the three examined locations. 

Figure 4 

REE distribution (mg Kg-1 dry weight) in Flabellia petiolata, Codium bursa and Padina pavonica 
in the three sampling sites.   	

Figure 5 

Chondrite (Leedey, Oklahoma) normalized patterns of REE in Northwestern Mediterranean macro 
algae (log scale). 

Figure 6 

Bioconcentration factors in macro algae from the Northwestern Mediterranean Sea. 
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