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Abstract

There has been recently growing evidence that atrial fibrillation
(AF), the most common cardiac arrythmia, is independently associated
to the risk of dementia. The topic represents a very recent frontier of
high social impact for the number of individuals involved and for the
expected increasing AF incidence in the next forty years. Although a
number of potential hemodynamic processes, such as microembolisms,
altered cerebral blood flow, hypoperfusion and microbleeds, arise as
connecting links between the two pathologies, causality mechanisms
are far from being clear.
An in silico approach is proposed combining in sequence two lumped-
parameter schemes, for the cardiovascular system and the cerebral cir-
culation. The systemic arterial pressure is obtained from the cardio-
vascular system and used as input for the cerebral circulation, with
the aim to study the role of AF on the cerebral hemodynamics with
respect to normal sinus rhythm (NSR), over a 5000 beats record. In
particular, the alteration of the hemodynamic (pressure and flow rate)
patterns in the micro-circulation during AF is analyzed by means of
different statistical tools, from correlation coefficients to autocorrela-
tion functions, crossing times, extreme values analysis and multivariate
linear regression models. A remarkable signal alteration, such as drop
of the signal correlation (NSR: about 3 [s], AF: less than 1 [s]) and
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increased probability (up to 3-4 times higher in AF than NSR) of ex-
treme value events, emerges towards the peripheral brain circulation.
The described scenario offers a number of plausible cause-effect mech-
anisms that might explain the occurrence of critical events and the
hemodynamic links relating AF and dementia.
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1 Introduction

Atrial fibrillation (AF), leading to irregular and faster heart beating, is the
most common tachyarrhythmia with an estimated number of 33.5 million
individuals affected worldwide in 2010 [1] and its incidence is expected to
double within the next forty years [2]. Beside thromboembolic transient is-
chemic attack (TIA) and stroke - whose risk is increased fivefold in patients
with AF [3] and is associated with both cerebral impairment and demen-
tia [4] - it has been recently observed that AF is independently associated
with cognitive decline through a constellation of different potential hemody-
namic mechanisms, such as silent cerebral infarctions (SCIs) as a result of
micro-embolization [5, 6], altered cerebral blood flow [7], hypoperfusion [8]
and microbleeds, whose repetition increases the risk of intracerebral haem-
orrhagic events and dementia by five times [9].

Although representing a currently debated topic [10], there is growing
evidence that AF - independently of clinically relevant events - enhances
the risk of dementia and cognitive deficit [8, 9, 11]. Several different kinds
of observational works - such as meta-analyses [12]-[14], reviews [15, 16],
cross-sectional [17]-[19], cohort and longitudinal [20]-[25] studies - confirm an
independent association between AF and cognitive decline at differing grades
of severity. Only few results with critical limiting aspects and potential
sources of bias, such as small population [26], very high rate of lost during
follow up [27] and very elderly subjects (aged 85 and older) [28], found no
significant relation between AF and cognitive impairment.

However, most of the above observational studies can only show an as-
sociation between AF and cognitive impairment and not a causal relation
based on hemodynamics for any of the known potential mechanisms. Just
recently, the role of SCIs on the cognitive function during AF has been
assessed through MR imaging [6]. Although some of the hemodynamic con-
sequences of AF, such as lower diastolic cerebral perfusion and decreased
blood flow in the intracranial arteries, have been reported [8, 9, 15](and re-
lated therein references), the linking mechanisms with cognitive impairment
remain theoretical or mainly undetermined.
To the best of our knowledge, the specific impact of the altered AF beat-
ing on the cerebral hemodynamics is still in great part unexplored. In fact,
currently adopted clinical techniques in the field of cerebral hemodynamics
- such as transcranial doppler (TCD) ultrasonography - lack the resolving
power to give insights on the micro-vasculature, in terms of flow and pressure
signals. In particular, little is known about the consequences of AF treat-
ment on the evolution of cognitive decline. Few studies examined so far
the potential benefits from AF treatment in reducing cognitive impairment.
Increased cognitive dysfunction was found to relate with less effective oral
anticoagulation treatment [29], while AF patients who underwent catheter
ablation had a lower risk of dementia than those who did not [30]. These
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studies, though not prospective and with biased information, give insights
that specific treatments for AF could modify the risk of dementia. The in-
triguing recent hints offered by literature encourage a deeper comprehension
of the AF effects on hypoperfusion and irregular cerebral blood flow, which
is still lacking [31].

The efficiency of the mathematical modelling approach for the descrip-
tion of the cerebral circulation has been widely recognized and in silico
hemodynamics is currently a rising field of research, e.g. [32, 33]. In a
previous work, we obtained first exploratory results adopting two lumped-
parameter models for the cardiovascular and cerebral circuits, which high-
lighted the onset of critical events - such as hypoperfusions and hypertensive
events - at arteriolar and capillary levels during AF [34]. Aim of the present
work is to understand and analyze - through a systematic and extensive sig-
nal analysis - possible hemodynamic-based causal relations underlying the
occurrence of such critical events, for which AF may imply cognitive dys-
function. The statistical tools here exploited are borrowed from the classical
time-series analysis and include the cross-correlation functions between the
input pressure/flow rate signals and the corresponding downstream signals,
auto-correlation functions in different cerebral districts, distribution of con-
secutive time lapses spent above/below the mean value of the pressure and
flow rate temporal signals, detection of minimum and maximum hemody-
namic values per beat, quadrant analysis, and multivariate linear regression
models for the hemodynamic variables (averaged by beat). A model-based
estimation of these critical events can offer useful hints for the assessment
of some of the AF treatments, in particular rate and rhythm control strate-
gies, as it can suggest a prioritary treatment to minimize neurodegenerative
changes.
To isolate single cause-effect relations and ascertain which AF-driven vari-
ation mostly affects the cerebral circulation and should be therefore taken
under strict control, a comparative signal analysis (in terms of pressure and
flow rate time-series) is proposed between normal sinus rhythm (NSR) and
AF signals over a 5000 beats record. The paper is organized as follows.
In the Materials and Methods Section the stochastic modelling, composed
by the cardiovascular and cerebral systems, is introduced. The following
section (Pressure and Flow Rate Signal Analysis) proposes a collection of
different statistical tools to carry out a systematic study of the signal varia-
tion. In the Discussion, a summarizing framework explaining the reasons of
AF-induced changes in the micro-circulation is given. Conclusions remark
that the emergence of critical events in AF turns out to be caused by the
signal alteration - especially in terms of correlation, memory and complexity
- induced by AF into the micro-vascular hemodynamics.
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2 Materials and Methods

2.1 Computational modelling and beating features

The stochastic modelling of the AF-induced cerebral hemodynamics has
been recently proposed [34] and consists of three subsequential steps. Figure
1 describes the modelling process adopted (panels 1, 2, 3) and shows repre-
sentative pressure time series obtained as outputs (panel 4). The proposed
stochastic algorithm combines two different lumped models in sequence: the
cardiovascular model is exploited to obtain the systemic arterial pressure,
Pa, which is then used as forcing input for the next cerebral model.

• Building the RR intervals. We recall that RR [s] is the temporal in-
terval between two consecutive heart beats, while the heart rate, HR,
is the number of heartbeats per minute. Normal sinus and fibrillated
beating are modelled via artificially built RR intervals based on NSR
and AF beating features (see the details in [35]). Normal RR heart
beats are extracted from a correlated pink Gaussian distribution (mean
µ = 0.8 s, standard deviation, σ = 0.06 s), which is the typical dis-
tribution observed during sinus rhythm for RR [35]. AF beatings are
instead extracted from an Exponentially Gaussian Modified (EGM)
distribution (mean µ = 0.8 s, standard deviation σ = 0.19 s, rate
parameter γ = 7.24 Hz), which is unimodal and represents the most
common AF distribution (60-65% of the cases) [36, 37]. The exponen-
tial contribution is responsible for the uncorrelated nature of the AF
beating. Comparison between NSR and AF is proposed at the same
mean heart rate (75 bpm) to facilitate the results analysis. 5000 beats
are extracted and then simulated for both configurations in order to
achieve the statistical stationarity for the main statistics of the out-
comes (the 5000 RR beats extracted in NSR and AF conditions are
reported in the first panel of Fig. 1).

• Cardiovascular model. Once the RR extraction is completed, a lumped
cardiovascular model is used to obtain the systemic arterial pressure
(Pa). The model was first proposed [38] to describe through a Wind-
kessel approach the complete cardiovascular system. It includes the
systemic and venous circuits together with the four cardiac chambers
which are actively modelled. By means of a network of compliances,
resistances, and inductances, the cardiovascular dynamics is expressed
in terms of pressures, flow rates, volumes, and valve opening angles.
After being validated in resting conditions over more than 30 clinical
data [35, 39], the model has been exploited to study left valvular dis-
eases [40] during AF and the effect of increased heart rate in resting
conditions [41] and under exercise [42]. To account for AF conditions,
both atria are considered as passive (while in NSR they actively con-
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tract). We point out that the cardiovascular and cerebral models are
combined in sequence: once the systemic arterial pressures, Pa, are
obtained from the cardiovascular scheme in NSR and AF conditions,
they are then used as forcing inputs for the cerebral model. Examples
of Pa time series are reported in the first panel of Fig. 1.

• Cerebral model. The 0D modelling for the cerebrovascular dynam-
ics has been proposed [43] to study the whole (arterial and venous)
cerebral circulation (Panels 2 and 3, Fig. 1). Similarly to the car-
diovascular model, a framework of resistances (R, [mmHg s/ml]) and
compliances (C, [ml/mmHg]) accounts for the dissipation effects and
the elastic properties of vessels, respectively. The cerebral circula-
tion is expressed in terms of pressure (P , [mmHg]), volume (V , [ml]),
flow rate (Q, [ml/s]), and can be divided into three principal districts:
large arteries, distal arterial circulation, capillary-venous circulation.
The first section is composed by the afferent arteries and the circle of
Willis, while the six main cerebral arteries link the present region to
the downstream distal circuit. The distal arterial circulation includes
the pial circulation and the intracerebral arteries-arterioles, and it is
split into six regional districts, independently controlled by autoreg-
ulation and CO2 reactivity. The cerebrovascular control mechanisms
are individually described by means of first-order low-pass dynam-
ics, acting to directly maintain the physiological flow rate level. The
consequent autoregulation mechanisms of vasodilatation and vasocon-
striction are ruled by a temporal variation of the distal compliances,
C, and resistances, R. A unique pressure downstream the distal region
represents the capillary pressure. The cerebral venous circulation is
defined by two-element Windkessel modelling, while the cerebrospinal
fluid circulation is formed at the level of cerebral capillaries. In the fol-
lowing, a single pathway (ICA-MCA) highlighted in Fig. 1 (Panel 3) is
studied as representative of the blood flow and pressure distributions
from large arteries to the capillary-venous circulation: left internal
carotid artery (Pa and QICA,left), middle cerebral artery (PMCA,left

and QMCA,left), middle distal region (Pdm,left and Qdm,left), capillary-
venous circulation (Pc and Qpv). Examples of pressure time series of
the ICA-MCA pathway are shown in Fig. 1, Panel 4. More details on
the cerebral model are offered elsewhere [34].

3 Pressure and Flow Rate Signal Analysis

The analysis, involving a record of 5000 beats (for both NSR and AF), fo-
cuses on the pressure and flow rate time series along the ICA-MCA pathway
and can be divided in two main parts: (i) analyses of the continuous time
series and (ii) beat-by-beat analyses. In the first set, the signal is continuous
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and defined by all the temporal instants of the time series. In the second
set, the signal is discretized and one per beat data are obtained. Therefore,
discrtized time series are composed by 5000 elements, corresponding to the
5000 beats simulated. The i-th element may contain the average values (Q
and P ), as well as the maximum (Qmax and Pmax) and minimum (Qmin and
Pmin) values of the related hemodynamic variable computed over the i-th

beat.

3.1 Complete time series analysis

3.1.1 Linear correlation coefficient and auto-correlation function

The linear correlation coefficient is calculated between the signal entering
into the brain (Pa) and the signals downstream up to the capillary region
(PMCA,left, Pdm,left, Pc). Analogous computation is performed for flow
rates, that is QICA,left with respect to QMCA,left, Qdm,left and Qpv. In Ta-
ble 1 the linear correlation coefficient, ρ, between couples of hemodynamic
signals is reported in NSR (II column) and AF (III column) conditions. In
both NSR and AF conditions the correlation - which remains very high in
the middle cerebral artery section - is damped towards the distal circulation.
However, the damping is by far more relevant in the fibrillated condition.
At the capillary-venous level, the correlation in AF is decreased by up to
21% with respect to NSR for the pressure, while in the distal district up
to 17% for the flow rate. The key aspect here emerging is that AF hemo-
dynamic signals in the deep cerebral circulation are more prone than the
corresponding NSR signals to lose their temporal interdependence with re-
spect to the large artery circulation. Peripheral signals differ much more
from the corresponding input signals during AF rather than in NSR.
Fig. 2 shows the autocorrelation functions, R(τ), together with the corre-
sponding envelopes, Renv(τ), of pressures and flow rates at the large arteries
level (top) and in the capillary-venous region (bottom) for both NSR (blue)
and AF (red) (for details, see the Appendix A). NSR autocorrelations in
all cerebral regions display quasi-repetitive patterns (with period about 0.8
s), and a decay in amplitude over the delay axis. The coherence times re-
ported in the II column of Table A1 (see Appendix A) evidence that NSR
signals maintain long-term memory (around about 4 beats) through the
whole ICA-MCA pathway (temporal coherence even increases a bit towards
the distal/capillary circulation). The picture is substantially different in
AF condition. For the input signals, R(τ) still shows a remaining quasi-
periodicity although the decay rate is very high. In the capillary region,
the drop of R(τ) resembles the behaviour of random signals. The coher-
ence times, τc, in AF regime confirm a loss of memory, with values varying
between 1.11 and 0.87 s. Towards the deep cerebral circulation the signal
memory deteriorates even more so that capillary/venous hemodynamic sig-
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nals during AF reveal short-time memory features (τc < 1 s). Therefore,
the hemodynamic signals exhibit much more complexity and randomness-
like features approaching the deep circulation in AF than in NSR.

3.1.2 Crossing time analysis

Quantification of the consecutive time lapse spent by each variable above
or below a certain threshold is here introduced through the crossing time,
Tcr: it represents the temporal interval spent by the hemodynamic variable
above or below the threshold individuated by the mean value in NSR. Fig. 3
(panels a and b) displays representative examples of Tcr intervals for Pdm,left,
during NSR and AF. Tcr intervals are individuated throughout the whole
temporal series to evaluate how AF influences the duration of excursions
from the reference mean value in NSR.

Since the crossing times, Tcr, are computed over the whole temporal se-
ries, we can then evaluate their probability density functions (PDFs) in NSR
and AF (Fig. 4). During NSR in the large artery region (blue curves, panels
from a to d), Tcr values are narrowly centered around the mean value which
is half of the average beat, i.e. 0.4 s, thereby showing a stable oscillation of
the signals around their mean values. Going towards the distal/capillary re-
gion (blue curves, panels from e to h), the mean values do not substantially
vary, but the variability around them increases revealing wider probability
density functions. In AF conditions, in the large artery region (red curves,
panels from a to d) mean values are comparable to those observed during
AF, while standard deviations values are increased by 3 to 4 times. In the
deep circulation (red curves, panels from e to h), Tcr mean values increase
with respect to NSR and standard deviation values grow up to 3-4 times
with respect to the AF large artery region. The PDFs display much more
pronounced right tails and lose the symmetry shown during NSR. As dis-
played in the example of Fig. 3, the increased importance of the right-tails
implies that the AF signals lose their periodicity around the mean value
and spend long time (up to 2-3 s) consecutively and well above or below the
physiological threshold, without crossing it.
A complementary information is related to the percentile analysis. To high-
light the AF-induced changes at the cerebral level, during NSR we compute
the percentiles, from the 5th to the 95th (separated by 5), of the the different
quantities analyzed, conferring to these percentiles the role of reference NSR
thresholds. In AF, we then evaluate to which percentile each of the nineteen
NSR thresholds corresponds, thus quantifying how AF modifies the proba-
bility of reaching extreme values. An example is reported in Fig. 4, panel a:
the Tcr value individuated by the 5th percentile in NSR corresponds to the
37th percentile in AF. This means that a value which is extremely low and
rarely reached in NSR becomes common and frequently attained in AF.
Inserts of Fig. 4 report the percentile analysis performed on the Tcr values
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and represent to which AF percentile (red) each NSR percentile (blue) cor-
responds. It can be noted that in the large artery region low NSR percentiles
(5-20 %) correspond to quite high AF percentiles (35-50 %), especially for
the pressure. This means that shorter Tcr values are more likely to occur
in AF with respect to NSR. This picture is no more true approaching the
distal/capillary circulation where, in addition, high NSR percentiles (95-80
%) relate to much lower AF percentiles (70-50 %). Thus, in the deep circu-
lation, Tcr values are statistically longer in AF than in NSR. The scenario
is similarly observed for both pressure and flow rate and evidences in AF an
increased probability of having long temporal ranges where excursions from
the baseline hemodynamic value can develop.
The combined analysis of PDFs and percentile variation of the crossing time
Tcr reveals in the distal cerebral region a higher probability of extreme value
events, such as hypoperfusions or hypertensive peaks, since the pressure and
flow rate signals remain much longer (and consecutively) above or below
their reference values. With the following beat-by-beat analysis we will be
able to specify which kind of critical events may emerge, whether below
(hypo) or above (hyper) the NSR hemodynamic thresholds.

3.2 Beat-by-beat analysis

3.2.1 Minimum and maximum values analysis

Minimum (Qmin and Pmin) and maximum (Qmax and Pmax) values over
a cardiac beat are here considered, recalling that these are instantaneous
hemodynamic values. In Table B1 (Appendix B) mean and standard de-
viation values of the 5000 minimum and maximum values are reported for
the hemodynamic variables. Fig. 5 presents the PDFs of the minimum and
maximum values for pressures and flow rates at the large arteries level (top)
and in the capillary-venous region (bottom) in NSR (blue) and AF (red).
In NSR maximum and minimum PDFs are narrowly centered around the
relative mean values and the coefficients of variation (cv = σ/µ) are well
below 0.1, with values which do not significantly vary along the ICA-MCA
pathway. In AF, mean values do not essentially vary with respect to NSR
(apart from Pa), while standard deviation values are significantly larger,
leading to cv values often above 0.1.
Inserts of Fig. 5 exhibit percentile variations in AF with respect to NSR,
by focusing on maximum values for pressures (left panels) and minimum
values for flow rates (right panels). Although input pressure is more likely
to present hypotensive events, partially due to an averagely lower Pa in AF
[35], on the contrary the probability of hypertensive events increases along
the ICA-MCA pathway, with a maximum at the capillary level (95 % in
NSR corresponds to less than 70 % in AF). For flow rates we concentrate on
the percentile variations of the minima, as possible quantification of hypop-

9



erfusive events. No significant differences emerge when moving from large
arteries towards the deep cerebral circulation (Fig. 5, panels b, d, f, h).
Contrarily to hypertensive events, which are mainly linked to the instanta-
neous maximum pressure values reached, hypoperfusions are more related
to the temporal persistence of flow rate below the physiological thresholds
[34]. Therefore, pressure maxima are indicators of increased hypertensive
events, while flow rate minima - being markers of low instantaneous flow
rate - are not analogously symptomatic of hypoperfusions. An improved
interpretation can be gained through the analysis of mean values per beat,
which is offered in the next sections.

3.2.2 Analysis of mean values per beat

Mean values per beat are computed for pressure (Pi) and flow rate (Qi) over
the 5000 cardiac periods (i = 1, ..., 5000). These 5000 values are referred to
the mean values, P and Q, of the complete temporal signals: P ∗

i = P i − P
and Q∗

i = Qi −Q. In Fig. 6, flow rate-pressure scatter plots are reported in
NSR and AF conditions for internal carotid artery (panel a), middle cerebral
artery (panel b), middle distal district (panel c), and capillary-venous region
(panel d), together with a linear regression data fitting for each condition
with the corresponding coefficient of determination, R2. Data dispersion is
high at large arteries level (R2 < 0.1), while it decreases towards the micro-
circulation reaching R2 values around 0.97, with a strict direct proportion-
ality between Q∗

pv and P ∗

c . This implies that, at the capillary-venous level,
hypertensive events are strictly concomitant with hyperperfusions, while hy-
potensive episodes occur during hypoperfusions. The present behaviour is
observed in both NSR and AF, however AF stretches much more data to-
wards extreme values.
Inserts of panels (a) to (d) represent the probability density functions (PDFs)
of mean flow rates, Q∗

i , confirming the enhanced variability going to the pe-
ripheral regions, which is 3 times higher than in the large arteries. Moreover,
standard deviation values, σ, are about 4 times higher in AF than in NSR
at each district. This combined increase of variability leads to extremely
high data dispersion in the micro-circulation during AF and underlies the
mechanisms promoting the presence of hypoperfusions.

3.2.3 Multivariate and univariate linear regression models

Multivariate linear regression models are here built for the mean values P i

and Qi in the four districts, having as regressors the preceding beats. The
current mean value is indicated as P 0 and Q0, while with RR−i we refer to
the i-th preceding beat. The models are formalized as follows:
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P 0 = a+

N∑
i=1

αiRR−i, (1)

Q0 = b+
N∑
i=1

βiRR−i. (2)

where a and b are the intercept values, αi and βi represent the coefficients
of the linear multivariate model, while N is the number of regressors. By
choosing N , a multivariate model is built with N regressors. The number
of regressors was tested up to N = 6, leading to 6 models for pressure and 6
for flow rate, at each cerebral district and rhythm condition (96 models are
computed in total). With N = 1, the multivariate linear regression model
turns into univariate.

In Fig. 7 coefficients of determination, R2, are shown for each model
as function of the number of regressors, N , in NSR and AF conditions
for pressures and flow rates at the large arteries level (Pa and QICA,left)
and into the micro-circulation (Pc and Qpv). In general, AF presents lower
R2 values than NSR for the multivariate models, while for the univariate
models (N = 1) AF shows higher R2 values than NSR for all flow rates and
capillary pressure. Moreover, in both NSR and AF, R2 values are higher
in the peripheral districts than the large arteries, since the signal average
amplitude decreases going downstream (e.g., in AF Pa,max − Pa,min = 42
mmHg, Pc,max − Pc,min = 6 mmHg).
For pressures, in the large arteries region the univariate models capture the
great part of correlation, having R2 > 0.8 for both NSR and AF. RR−1 and
RR−2 are sufficient to accurately predict the current pressure level, P 0, at
the cerebral entrance. At the capillary level, instead, R2 reaches a plateau
forN = 4, meaning that 4 preceding beats are necessary to retain the present
hemodynamic content. For flow rates, in the large arteries region univariate
models are not much informative (R2 < 0.2), while the main correlation
content is retained by RR−2 and saturated with RR−3. In the peripheral
region, univariate models gain relevance exceeding R2 = 0.6, however it is
necessary to consider up to 4 regressors to guarantee a plateau for R2.
For both pressures and flow rates, the number of preceding beats necessary
to fully describe the current state increases towards the micro-circulation.
It should be however noted that, in all the districts and rhythm conditions,
the multivariate model with 4 regressors (N = 4) represents the maximum
correlation level obtained. In fact, beyond this threshold, by adding further
regressors the prediction of current state is not improved. We can therefore
conclude that RR beats are significant regressors and the present hemody-
namic state has memory of the past to the extent of about 4 beats. In other
words, 4 consecutive beats are sufficient to predict the next pressure and
flow rate levels.
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To better explore the role and weight of the preceding beats, the mul-
tivariate models retaining the maximum correlation level (4 regressors) are
now analyzed in details, with the related coefficients α and β showed in
NSR and AF for the distal and capillary-venous sections (see Fig. 8). Coef-
ficients α1 and β1 are always negative with large absolute values, meaning
that a substantial contribution to potential hypoperfusions and hypotensive
episodes is linked to the length of RR−1. With a long RR−1 beating, the
terms β1RR−1 and α1RR−1 become predominant, leading to low flow rate
and pressure levels. Coefficients related to RR−2 are more variable, since α2

and β2 are positive in the capillary-venous district, while in the distal region
α2 are negative and β2 are close to zero. Coefficients α3 and β3 present mod-
erate positive values, and this scenario is found again with no considerable
variation for α4 and β4 coefficients.
Based on the regression coefficients, the most dangerous RR combinations
can be finally studied, i.e. those configurations which are able to minimize
flow rate (hypoperfusion) and maximize pressure (hypertensive episode). We
only consider AF condition, where the RR beating is uncorrelated. In NSR,
instead, the beating is correlated and closely varies around 0.8 s, therefore
all coefficients have the same weight as they refer to beats which all strictly
stay around 75 bpm.

• Hypoperfusions can be obtained with the following quadruplets:

– Qdm,left: RR−1 long beat, RR−2 any beat, RR−3 short beat,
RR−4 normal/short beat;

– Qpv: RR−1 long beat, RR−2 normal/short beat, RR−3 short
beat, RR−4 normal/short beat.

• Hypertensive episodes may occur with the following quadruplets:

– Pdm,left: RR−1: short beat, RR−2 short/normal beat, RR−3 nor-
mal/long beat, RR−4 long beat;

– Pc: RR−1 short beat, RR−2 any beat, RR−3 long beat, RR−4

normal/long beat.

The least probable configuration is the distal hypertension, since a se-
quence of consecutive beats with decreasing duration (from long to short)
has to occur, while the most probable combinations are represented by distal
hypoperfusion and capillary-venous hypertension. In fact, to obtain one of
these two conditions at the current state, it is sufficient having a long (or
short) last beat and a short (or long) third to last beat, which is quite a
plausible circumstance in AF.
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4 Discussion

By means of different statistical tools, the signal analysis so far described
not only underlines the increasing impact of AF going towards the cerebral
micro-circulation, but it also suggests a coherent framework explaining why
AF induces such evident hemodynamic changes. The key point is how differ-
ently the cerebral districts respond to the alteration of the cardiac rhythm.
To better understand this aspect, we assume to force the cerebral modelling
with an idealized input. A sinusoidal input signal (period T = 0.8 s) is taken
for Pa, with mean value 100 mmHg and four different amplitudes (100 ± 5
mmHg, 100 ± 10 mmHg, 100 ± 15 mmHg, 100 ± 20 mmHg). When at
the maximum or minimum amplitude the signal is abruptly interrupted and
instantaneously jumps to the mean value, maintaining then this steady state:
the first case is defined as up-mean jump (an example with an amplitude of
20 mmHg is reported in Fig. 9a, top panel), while the second represents a
down-mean jump. This approach is borrowed from the theory of dynamical
systems, where the system is excited by an external impulsive forcing to
understand its response time. In this case, the system involved is the cerebral
circulation and reacts in the different downstream districts as reported in
Fig. 9a (from top, Pa, to bottom, Pc). Two basic remarks arise: (i) due
to the inertia of the system, the signal in the downstream sections does
not immediately reach the steady level, but it goes on oscillating with a
damped amplitude before recovering the equilibrium state; (ii) the transient
damping behaviour considerably varies along the ICA-MCA pathway. To
associate a quantitative measure to the transient dynamics, in every district
downstream the carotid entrance we evaluate the time lapse, Td, necessary
to reach the steady constant levels of pressure. Td represents the temporal
delay or latency to recover the equilibrium constant state in response to
a sudden and abrupt variation, and it is identified by |dP/dt < ǫ| (here
ǫ = 10−7) at each section. The latency Td at the entrance (Pa level) is
0, since the jump is instantaneous, while it has a finite value immediately
downstream. In Fig. 9b, we report for the pressure the time delay over the
ICA-MCA pathway normalized with respect to the corresponding value at
first district, PMCA,left. For each of the four jump amplitudes (5 mmHg,
10 mmHg, 15 mmHg, 20 mmHg), the two up-mean and down-mean jumps
give similar results, thus the average value between them is taken. Since
absolute values of Td depend on the threshold ǫ and the jump amplitude, we
consider the time delay normalized with respect to the upstream district.
In fact, the focus is not on the specific value assumed by the latency but on
its variation towards the micro-circulation.

It can be noted that the normalized behaviours of Td/Td(PMCA,left) do
not practically depend on the jump amplitude. In the micro-circulation the
latency in recovering the equilibrium state is about five times greater than
at the beginning of the middle cerebral artery. The longer delay is due to the
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interplay between the different mechanical features of the cerebral system,
which here is modelled as an electric circuit, composed by a network of
resistances and compliances (Panel 3 of Fig. 1). These mechanical and
structural properties make the inertia of the system increase when entering
the cerebral circulation towards the micro-vasculature. As a consequence,
when a disturbance at the carotid level propagates into the cerebral vessel
network, the distal and capillary districts remain altered for longer. The
behaviour is analogous to that of a system of springs in series and parallel,
which is externally excited at one end: each spring stiffness combines with
the others and, in a point far from the perturbed end, the damping of the
oscillation is lengthened, even if the external perturbation is ceased.

The synthetic alteration of the carotid signal here described is a limit
case, but it well catches the fundamental mechanism underlying the results
described in the above signal analysis. In fact, AF leads to an irregular
RR series, which in turn promotes - through the systemic circulation - a
collection of in series pressure disturbances at the carotid level. Each of these
perturbations singularly produces an alteration of the cerebral circulation.
The higher mechanical inertia in the peripheral districts explains why here
during AF right tails of the crossing time, Tcr, become important (Section
3.1.2). In fact, every Pa modification leads to a downstream signal excursion
from the physiological threshold (i.e., mean value in NSR). The consecutive
time lapse spent above or below this threshold allows the signal to reach
maximum, mean or minimum values which definitely exceed the NSR range
(Sections 3.2.1 and 3.2.2). When the signal is uninterruptedly above the
threshold, hyperperfusions and hypertensive events are promoted. When
the contrary holds, hypotensive episodes and hypoperfusions occur.

The continuous sequence of transient perturbations at the carotid en-
trance represented by the AF beating does not allow the system to recover
the physiologic state that another disturbance already arrives. The uncorre-
lated nature of AF beating enhances the complexity of the deep cerebral sig-
nal and reduces its predictability, since a disturbance can lead the system to
the same or opposite direction with respect to the previous perturbation. As
a consequence, the signal periodicity breaks towards the micro-circulation
provoking a decrease of the correlation and a drop of the coherence time
(Section 3.1.1). Although the predictive grade remains satisfactory, the in-
creased signal complexity and uncertainty make the regression models less
performing in AF than in NSR (Section 3.2.3). Up to 3-4 preceding beats
are necessary to averagely describe the current hemodynamic state and this
temporal range is governed by the combined interplay between the super-
position of different transient disturbances introduced into the system by
the AF and the intrinsic latency of the system (Section 3.2.3). However,
characterization of the present hemodynamic state in the first cerebral dis-
tricts requires in general fewer preceding beats than in the capillary regions,
that is signal predictability deteriorates towards the peripheral regions. This
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aspect furthermore strengthens the basic mechanism described throughout
the Discussion. Due to the mechanical features of the different cerebral
districts and their reciprocal interconnection, the micro-circulation suffers
much more and for longer from the AF-induced hemodynamic alterations.

4.1 Limitations

Limiting aspects of the present work are related to the computational hy-
potheses. The modelling of the cardiovascular system providing the pressure
input, Pa, for the cerebral dynamics does not account for the baroreceptor
mechanisms in the short-term. Moreover, AF is simulated assuming an un-
correlated beating and no atrial contraction, but with no increase of the
constant baseline value of elastance with respect to NSR. Additionally, no
long-term remodelling effects are captured and no reduced ventricular con-
tractility is assumed. In the cerebral modelling, NSR and AF configurations
solely differ by the entrance inputs, Pa, while the remaining hemodynamic
framework is set as in healthy conditions.

5 Conclusions

Several hemodynamic mechanisms have been recently proposed for the as-
sociation between AF and cognitive disfunction independent of clinically
relevant events. However, definitive clinical evidences are still missing and,
at the present stage, an in silico approach can be valuable in providing
and addressing new hemodynamic-based suggestions on prioritary medical
treatments.
Through an accurate and diversified signal analysis the present work shows
a constellation of possible symptoms for the alteration of the hemodynamic
patterns during AF in the cerebral micro-circulation. AF signals in the
distal-capillary circulation lose their temporal interdependence and pre-
dictability, becoming more complex and revealing short-memory features.
The crossing time analysis displays an increased probability of extreme value
events which, through the beat-by-beat analysis, results being hypertensive
and hypoperfusive episodes. The RR beats turn out to be good hemo-
dynamic regressors. In particular, the role of the preceding beat into the
current vascular state is crucial, while up to four consecutive RR beats are
necessary to fully describe the averaged hemodynamic level of the next beat.
Exploiting this outcome, the worst hemodynamic configuration occurs with
a long (or short) last beat and a short (or long) third to last beat, which
is rather common during AF [36, 37, 45]. The intrinsic structural latency
revealed by the cerebral circulation is plausibly stirred by AF and concurs
to exacerbate the observed scenario.
The framework here described can offer physically-based hints explaining
why critical events, such as hypertensive or hypoperfusive episodes, are more
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likely to occur in the cerebral peripheral regions during AF, thereby further
strengthening the hemodynamic link between AF and cognitive decline.
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Appendix A. Autocorrelation function, R(τ), and

coherence time, τc

The autocorrelation function, R(τ), representing the correlation of the signal
with itself at different temporal lags τ , detects repeating temporal patterns
and periodicity. Through its envelope, Renv(τ), the autocorrelation function
is used as standard measure of the coherence time, τc [44]:

τc =

∫
+∞

−∞

|Renv(τ)|
2dτ (A1)

The coherence time, τc, quantifies the degree of temporal correlation of
the signal: long-term coherent signals have autocorrelation functions with
slow rate of decay, while short-term memory signals (such as random sig-
nals) show very rapidly decaying autocorrelation functions. Within bioelec-
tromagnetic signals, long-term refers to coherence times equal or greater
than 1-2 s [44]. Coherence time values, τc, are reported in Table A1, for
both NSR and AF conditions along the ICA-MCA pathway.

Appendix B. Minimum and maximum values anal-

ysis

Table B1 presents the mean and standard deviation values of the 5000 min-
imum and maximum values for the hemodynamic variables.
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Figure Legends

Figure 1. Scheme of the in silico approach (the figure should be read clock-
wise starting from the left bottom panel 1). (1) Cardiovascular model. 5000
extracted RR records in NSR (blue) and AF (red), and examples of Pa time
series obtained through the cardiovascular model. (2) Cerebral circulation.
Sketch of the cerebral vasculature forced by the Pa input, which is obtained
from the cardiovascular model described in panel 1. (3) Cerebral mathemati-
cal model. R: resistance, C: compliance, Q: flow rate, P : pressure. The left
ICA-MCA pathway is highlighted in red and is composed by Pa, QICA,left,
PMCA,left, QMCA,left, Pdm,left, Qdm,left, Pc and Qpv. (4) Example of pres-
sure time series. Representative resulting time series for the pressure along
the ICA-MCA pathway, in NSR (blue) and AF (red) conditions, obtained
from the cerebral model described in panel 3.
In panels 2, 3, 4, the colored boxes refer to different cerebral regions: large
arteries (light blue), distal arteries (green), capillary/venous circulation (yel-
low).
Figure 2. Autocorrelation functions (thin curves), R(τ), and corresponding
envelopes (thick curves), Renv(τ), as functions of the delay time, τ . Pressure
(left, panels a and c) and flow rate (right, panels b and d) signals from large
arteries (top, panels a and b) to capillary/venous region (bottom, panels c
and d). NSR: blue, AF: red.
Figure 3. Examples of Tcr evaluation for an exemplificative portion of the
Pdml,left time series (a: NSR, b: AF). Tcr intervals are indicated in green.
Figure 4. Probability density functions of the crossing times, Tcr, NSR:
blue, AF: red. Inserts show the percentile analysis of the Tcr values, evi-
dencing to which AF percentile each NSR percentile corresponds.
Figure 5. Probability density functions of the maximum (Pmax and Qmax)
and minimum (Pmin and Qmin) values, NSR: blue, AF: red. Pressure (left,
panels a and c) and flow rate (right, panels b and d) from large arteries
(top, panels a and b) to capillary/venous region (bottom, panels c and d).
Inserts represent the percentile analysis, showing how percentiles in NSR
are modified in AF. Percentiles of maxima are reported for pressures, while
percentiles of minima are shown for flow rates.
Figure 6. Analysis of mean values per beat (blue: NSR, red: AF). Scat-
ter plots: (a) large arteries P ∗

a and Q∗

ICA,left; (b) middle cerebral artery
P ∗

MCA,left and Q∗

MCA,left; (c) middle distal district P ∗

dm,left and Q∗

dm,left; (d)
capillary-venous region P ∗

c andQ∗

pv. Inserts represent the PDFs of mean flow
rate values, Q∗

i . Coefficients of determination, R2, and the linear fittings are
computed for each configuration.
Figure 7. Multivariate linear regression models in NSR (blue) and AF
(red) conditions, for pressure (left panels, Pa and Pc) and flow rate (right
panels, QICA,left and Qpv). Coefficients of determination, R2, as function
of the number of regressors, N .
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Figure 8. Coefficients αi and βi of the linear multivariate models, i =
1, ...N , with N = 4. (a) pressures, Pdm,left and Pc; (b) flow rates, Qdm,left

and Qpv. NSR: blue, AF: red.
Figure 9. (a) Sinusoidal Pa signal (mean 100 mmHg, amplitude 20 mmHg)
abruptly interrupted at its maximum (top panel) and pressure response in
the downstream cerebral districts (PMCA,left, Pdm,left, Pc). (b) Temporal
delays, Td, normalized with respect to the corresponding value at first dis-
trict (PMCA,left) along the ICA-MCA pathway.
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NSR AF

(Pa, PMCA,left) 1.00 1.00

(Pa, Pdm,left) 0.83 0.76

(Pa, Pc) 0.83 0.65

(QICA,left, QMCA,left) 0.99 0.98

(QICA,left, Qdm,left) 0.87 0.72

(QICA,left, Qpv) 0.88 0.80

Table 1: Linear correlation coefficient, ρ, for NSR and AF conditions. Sig-
nals are normalized with respect to their mean and standard deviation val-
ues, as follows: xn = (x−µx)/σx. For mean and standard deviation values,
please refer to [34].
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NSR AF

Pa 3.09 s 1.11 s

Pc 3.29 s 0.90 s

QICA,left 3.02 s 0.94 s

Qpv 3.47 s 0.87 s

Table A1: Coherehce times, τc, for the hemodynamic signals in the large
arteries (Pa and QICA,left) and in the capillary/venous region (Pc and Qpv),
for NSR (II column) and AF (III column).
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NSR AF

Variable Minimum Maximum Minimum Maximum

Pa [mmHg] 77.91 ± 2.89 122.44 ± 1.55 75.34 ± 8.48 117.72 ± 4.46

PMCA,left [mmHg] 76.59 ± 2.82 118.25 ± 1.58 73.96 ± 8.22 113.48 ± 4.40

Pdm,left [mmHg] 53.38 ± 1.63 61.57 ± 1.23 51.70 ± 5.00 59.60 ± 4.11

Pc [mmHg] 21.69 ± 0.68 27.40 ± 0.67 21.93 ± 2.71 27.63 ± 2.76

QICA,left [ml/s] 2.25 ± 0.13 7.38 ± 0.21 2.35 ± 0.53 7.50 ± 0.78

QMCA,left [ml/s] 1.90 ± 0.12 5.84 ± 0.19 1.96 ± 0.46 5.89 ± 0.68

Qdm,left [ml/s] 2.99 ± 0.15 4.28 ± 0.16 3.04 ± 0.57 4.31 ± 0.59

Qpv [ml/s] 9.70 ± 0.49 14.49 ± 0.43 9.96 ± 1.78 14.58 ± 1.69

Table B1: Mean and standard deviation values, in NSR and AF conditions,
of the maxima and minima of pressures (Pmax and Pmin) and flow rates
(Qmax and Qmin).
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