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CENTRAL BINOMIAL COEFFICIENTS DIVISIBLE BY OR

COPRIME TO THEIR INDICES

CARLO SANNA

Abstract. Let A be the set of all positive integers n such that n divides the central binomial
coefficient

(
2n
n

)
. Pomerance proved that the upper density of A is at most 1 − log 2. We

improve this bound to 1− log 2− 0.05551. Moreover, let B be the set of all positive integers
n such that n and

(
2n
n

)
are relatively prime. We show that #(B ∩ [1, x]) � x/

√
log x for all

x > 1.

1. Introduction

Given a sequence of integers (an)n≥1 with some combinatorial or number-theoretic meaning,
the study of the set of positive integers n such that n divides an has interested several authors.
For instance, Alba González, Luca, Pomerance, and Shparlinski [1] considered the case of
(an)n≥1 being a linear recurrence; while André-Jeannin [2], Luca and Tron [5], Sanna [7], and
Somer [10] focused on Lucas sequences. Furthermore, Chen, Gassert and Stange [3] studied
this problem for sequences given by the iterates of a polynomial map. Also, the “dual” set of
positive integers n such that an and n are relatively prime has been studied by Sanna [8] for
(an)n≥1 being a linear recurrence.

Let A be the set of positive integers n such that n divides the central binomial coefficient(
2n
n

)
. Ulas and Schinzel [12, Theorems 3.2 and 3.4] proved that A and its complement N \ A

are both infinite. We recall that the upper density of a set of positive integers S is defined as
the value of

lim sup
x→+∞

#S(x)

x
,

where S(x) := S ∩ [1, x], while the lower density is defined analogously by a limit inferior.
Pomerance [6, Theorem. 3] proved the following result.

Theorem 1.1. The upper density of A is at most 1− log 2 = 0.30685. . .

Note that Pomerance, maybe for aesthetic reasons, stated Theorem 1.1 with 1/3 instead of
1− log 2, but he actually proved the latter bound.

Our first result is the following improvement of Theorem 1.1.

Theorem 1.2. The upper density of A is at most 1− log 2− 0.05551 = 0.25134. . .

Let B be the set of all positive integers n such that
(
2n
n

)
and n are relatively prime. It is

easy to see that each odd prime number belongs to B. Hence, by the Prime Number Theorem,
we have

(1) #B(x) ≥ (1 + o(1)) · x

log x
,

as x→ +∞. Our second result is an upper bound for #B(x).

Theorem 1.3. We have

(2) #B(x)� x√
log x

,

for all x > 1.
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We leave the following questions to the interested readers:

Question 1.1. Does A have a positive lower density?

Question 1.2. If β(x) is defined implicitly by

#B(x) =
x

(log x)β(x)
,

for all x > 1, then from (1) and (2) it follows that

lim inf
x→+∞

β(x) ≥ 1

2
and lim sup

x→+∞
β(x) ≤ 1.

Can we improved these bounds?

Pomerance [6, end of pag. 7] conjectured that Question 1.1 has a positive answer, and indeed
numerical experiments [9] seem to suggest that the lower density of A is at least 1/9.

Notation. We use the Landau–Bachmann “Big Oh” and “little oh” notations O and o, as
well as the Vinogradov symbol �. In summation subscripts, we reserve the letters p and q for
prime numbers. For x > 0, we write π(x) for the number of primes not exceeding x. Finally,
for integers a and m > 0, we use (a mod m) to denote the unique nonnegative integer r < m
such that m divides a− r.

2. Preliminaries

The key tool of the proofs is the following lemma.

Lemma 2.1. For all prime numbers p and all positive integers n, we have that p does not
divide

(
2n
n

)
if and only if all the digits of n written in base p are less that p/2.

Proof. It is a corollary of the theorem of Kummer [4] which says that, for positive integers
m,n and a prime number p, the exponent of p in the prime factorization of

(
m+n
n

)
is equal to

the number of carries in the addition m+ n when done in base p. �

The next lemma follows easily from Lemma 2.1 by a counting argument.

Lemma 2.2. For all prime numbers p and all x ≥ 2, the number of positive integers n ≤ x
such that p does not divide

(
2n
n

)
is at most pxθp, where θp := log(12(p+ 1))/ log p.

Proof. See [6, Lemma 1]. �

We need also the following well-known theorem of Mertens.

Theorem 2.3. We have ∑
p≤x

1

p
= log log x+M +O

(
1

log x

)
,

for all x ≥ 2, where M is the Meissel–Mertens constant.

Proof. See [11, Chapter I.1, Theorem. 9]. �

A consequence of Theoreom 2.3 is the following technical lemma.

Lemma 2.4. We have ∑
3√2x<p≤

√
2x√

2x<q≤x/p

1

pq
< 0.06502 + o(1),

as x→ +∞.
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Proof. Fix a positive integer n and, for the sake of convenience, put αk := 1/3 + k/(6n) for
each nonnegative integer k ≤ n. Thanks to Theorem 2.3, we have∑

3√2x<p≤
√
2x√

2x<q≤x/p

1

pq
=

n∑
k=1

∑
(2x)αk−1 <p≤ (2x)αk

1

p

∑
√
2x<q≤x/p

1

q

≤
n∑
k=1

 ∑
(2x)αk−1 <p≤ (2x)αk

1

p

 ∑
√
2x<q≤x/(2x)αk−1

1

q


=

n∑
k=1

log

(
αk
αk−1

)
log(2− 2αk−1) + o(1),

as x → +∞. The desired bound follows by taking n = 106. (The author performed the
computation using the PARI/GP computer algebra system.) �

For all x, y ≥ 0, let Φ(x, y) be the number of positive integers not exceeding x and having
all their prime factors greater than y. We will make use of the following estimate for Φ(x, y).

Theorem 2.5. We have

Φ(x, y) =
e−γx

log y
·
(

1 +O

(
1

log y

))
,

for all x ≥ 2 and 2 ≤ y ≤ exp(log x/10 log log x), where γ is the Euler–Mascheroni constant.

Proof. It follows from [11, Chapter I.1, Theorem 11] and [11, Chapter I.4, Theorem 2]. �

3. Proof of Theorem 1.2

Let C := N \ A be the complement of A. Clearly, it is enough to prove that C has lower
density at least log 2 + 0.05551.

For x > 0, let C1 be the set of positive integers n ≤ x having a prime factor greater than√
2x. We shall prove that C1 ⊆ C(x) and #C1 ≥ (log 2 + o(1)) ·x, as x→ +∞. To this aim, we

proceed exactly as in the proof of Theorem 1.1. We include here the reasonings for the sake of
completeness, and also to motivate better the rest of the proof. If n ∈ C1, then we can write
n = dp for a prime number p >

√
2x and a positive integer d satisfying

d ≤ x

p
<

x√
2x

=
1

2

√
2x <

p

2
.

Hence, by Lemma 2.1, p does not divide
(
2n
n

)
, so that n ∈ C, and thus C1 ⊆ C(x).

Moreover, for each prime number p ∈ ]
√

2x, x], the number of possible n = dp ∈ C is at least
x/p− 1. Note also that, since p >

√
2x, to each n ∈ C it corresponds exactly one p. Therefore,

(3) #C1 ≥
∑

√
2x<p≤x

(
x

p
− 1

)
≥ x ·

∑
√
2x<p≤x

1

p
− π(x) = (log 2 + o(1)) · x,

as x→ +∞, where we used Theorem 2.3 and the well-known fact that π(x) = o(x).
Now let C2 be the set of positive integers n ≤ x such that n = mp, where p ∈ ] 3

√
2x,
√

2x]
is a prime number, and m is a positive integer having no prime factor greater than

√
2x and

satisfying (m mod p) < p/2. If n ∈ C2, then writing n = mp as before we have

m ≤ x

p
<

x
3
√

2x
=

1

2
(2x)2/3 <

1

2
p2,

which, together with (m mod p) < p/2, implies that m = d1+d2p for some nonnegative integers

d1, d2 < p/2. Hence, by Lemma 2.1, p does not divide
(
2n
n

)
, so that n ∈ C, and thus C2 ⊆ C(x).
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At this point, we want to prove a lower bound for #C2. For each prime number p ∈
] 3
√

2x,
√

2x], the number of positive integers m ≤ x/p such that (m mod p) < p/2 is at least(
x

p2
− 1

)
· p

2
− 1 ≥ x

2p
− p.

Furthermore, the number of positive integers m ≤ x/p such that m has a prime factor q >
√

2x
is at most ∑

√
2x<q≤x/p

x

pq
.

Therefore, the number of positive integers m such that mp ∈ C2 is at least

(4)
x

2p
− p−

∑
√
2x<q≤x/p

x

pq
.

Now summing (4) over all prime numbers p ∈ ] 3
√

2x,
√

2x] we get

∑
3√2x<p≤

√
2x

 x

2p
− p−

∑
√
2x<q≤x/p

x

pq

(5)

≥
∑

3√2x<p≤
√
2x

 1

2p
−

∑
√
2x<q≤x/p

1

pq

 · x− π(
√

2x) ·
√

2x

>
(
1
2 log 3

2 − 0.06502 + o(1)
)
· x,

as x → +∞, where we applied Theorem 2.3 and Lemma 2.4. However, note that (5) is not
a lower bound for #C2, since some n ∈ C2 could be written as n = mp for two (and no more
than two, since p > 3

√
2x) different values of p. The number of those double-counted n’s is at

most ∑
3√2x<p<q≤

√
2x

x

pq
<
x

2
·

 ∑
3√2x<p≤

√
2x

1

p

2

=
(
1
2(log 3

2)2 + o(1)
)
· x,

as x→ +∞, thanks again to Theorem 2.3. Hence,

(6) #C2 >
(
1
2 log 3

2 − 0.06502− 1
2(log 3

2)2 + o(1)
)
· x > (0.05551 + o(1)) · x,

as x→ +∞.
At this point, since C1 ∩ C2 = ∅ and C1 ∪ C2 ⊆ C(x), by (3) and (6) we get

#C(x) ≥ #C1 + #C2 > (log 2 + 0.05551 + o(1)) · x,

as x→ +∞, and the proof is complete.

4. Proof of Theorem 1.3

Suppose x ≥ 2 is sufficiently large, and put y := exp
(√

log x/4
)
. We split B into two subsets:

B1 := {n ∈ B : p | n for some prime number p ≤ y},
B2 := B \ B1.

If n ∈ B1(x), then n = mp for a prime number p ≤ y and a positive integer m. Moreover, since

n and
(
2n
n

)
are relatively prime, p does not divide

(
2n
n

)
, which in turn, by Lemma 2.1, implies

that p does not divide
(
2m
m

)
. Now Lemma 2.2 tell us that for any prime number p ≤ y there
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are at most p(x/p)θp positive integers m ≤ x/p such that p does not divide
(
2m
m

)
. Therefore,

#B1(x) ≤
∑
p≤y

p

(
x

p

)θp
≤
∑
p≤y

p

(
x

p

)1−1/(4 log p)
� x1−1/(4 log y) · y

= x · exp

(
− log x

4 log y
+ log y

)
� x√

log x
,(7)

where we also used the inequality

θp = 1− log(2p/(p+ 1))

log p
< 1− 1

4 log p
.

On the other hand, thanks to Theorem 2.5, we have

(8) #B2(x) ≤ Φ(x, y)� x

log y
� x√

log x
.

Hence, putting together (7) and (8), we get

#B(x) = #B1(x) + #B2(x)� x√
log x

,

as desired.

Acknowledgements. The author thanks the anonymous referee for a suggestion which im-
proves considerably the bound of Lemma 2.4.
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