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Abstract: Flavour changing (FC) neutrino-matter interactions have been proposed

as a solution to the atmospheric neutrino anomaly. Here we perform the analysis of

the full set of the recent 52 kTy Super-Kamiokande atmospheric neutrino data,

including the zenith angle distribution of the contained events as well as the higher

energy upward-going stopping and through-going muon events. Our results show

that the FC mechanism can describe the full data sample with a χ2min = 44/33 d.o.f.

which is acceptable only at the 90.5% confidence level, while the νµ → ντ oscillation
scenario gives a χ2min = 23.5/33 d.o.f. which is valid at the 11% CL. The combined

analysis confines the amount of FC to be either close to maximal or to the level of

about (10–50)%.
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1. Introduction

Neutrinos produced as decay products in hadronic showers from cosmic ray collisions

with nuclei in the upper atmosphere [1] have been observed by several detectors [2]–

[7]. Although the absolute fluxes of atmospheric neutrinos are largely uncertain, the

expected ratio (µ/e) of the muon neutrino flux (νµ + ν̄µ) over the electron neutrino

flux (νe + ν̄e) is robust, since it largely cancels out the uncertainties associated with

the absolute flux. In fact, this ratio has been calculated [1] with an uncertainty

of less than 5% over energies varying from 0.1GeV to 100GeV. In this resides our

confidence on the long-standing atmospheric neutrino anomaly.

Although the first iron-calorimeter detectors in Fréjus [2] and NUSEX [3] re-

ported a value of the double ratio, R(µ/e) = (µ/e)data/(µ/e)MC, consistent with one,

all the water Cerenkov detectors Kamiokande [4], IMB [5] and Super-Kamio-

kande [6] have measured R(µ/e) significantly smaller than one. Moreover, the

Soudan-2 collaboration, also using an iron-calorimeter, reported a small value of

R(µ/e) [7], showing that the so-called atmospheric neutrino anomaly was not a fea-

ture of water Cerenkov detectors.

Recent Super-Kamiokande high statistics observations [6] indicate that the

deficit in the total ratio R(µ/e) is due to the number of neutrinos arriving in the

detector at large zenith angles. Although e-like events do not present any compelling

evidence of a zenith-angle dependence, the µ-like event rates are substantially sup-

pressed at large zenith angles.

The νµ → ντ as well as the νµ → νs [8, 9] oscillation hypothesis provides a
very good explanation for this smaller-than-expected ratio, which is also simple and

well-motivated theoretically. This led the Super-Kamiokande collaboration to

conclude that their data provide good evidence for neutrino oscillations and neutrino
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masses [10]. However, alternative explanations to the atmospheric neutrino data

have been proposed in the literature including the possibility of neutrino decay [11],

the violation of relativity principles [12, 13] or the violation of CPT symmetry [14].

These explanations, however, have been challenged by the precise data of Super-

Kamiokande on upward going muon events [15] which allows to study the energy

dependence of the neutrino survival (or disappearance) probability [16, 17]. Based

on such observations, both the possibility of an explanation of the anomaly in terms

of neutrino decay [18] as well as the violation of relativity principles or the violation

of CPT symmetry [17], have been disfavoured.

In ref. [19] an alternative explanation of the atmospheric neutrino data in terms

of FC neutrino-matter interactions [20] was proposed, and it was shown that even

if neutrinos have vanishing masses and/or the vacuum mixing angle is negligible,

FC neutrino matter interactions could account for the Super-Kamiokande results

on contained events providing an excellent description to the data, statistically as

good as neutrino oscillations. The validity of this explanation was first questioned

in ref. [16] where the authors presented arguments against the FC neutrino-matter

interaction solution on the basis of a fit to the up-going muons data from Super-

Kamiokande.

In this paper we re-analyze the possibility of explaining the atmospheric neutrino

anomaly by means of νµ → ντ conversion induced by flavour-changing neutrino-

matter interaction which can be effective during the neutrino propagation in the

Earth. We extend the analysis of ref. [19] to the new set of Super-Kamiokande

data by including also the up-going muon samples.

2. Massless neutrino evolution with FC interaction

In our phenomenological approach we assume that the evolution equations which

describe the νµ → ντ transitions in matter may be written as

i
d

dr

(
νµ
ντ

)
=
√
2GF

(
0 ενnf (r)

ενnf(r) ε
′
νnf (r)

)(
νµ
ντ

)
, (2.1)

where νa ≡ νa(r) (a = µ, τ) are the probability amplitudes to find these neutrinos
at a distance r from their creation position,

√
2GFnf (r)εν is the νµ + f → ντ + f

forward scattering amplitude and
√
2GFnf (r)ε

′
ν is the difference between the ντ − f

and νµ−f elastic forward scattering amplitudes, with nf (r) being the number density
of the fermions which induce such processes.

The parameters ε and ε′ contain the information about FC neutrino interactions.
Such FC interactions may be accompanied by neutrino mass [21] but this need not

be the case [22, 23]. One description would be to parametrize directly the FC inter-

actions in terms of an effective four-fermion hamiltonian. This could, for instance,

arise by renormalization effects from the unification scale down to the electroweak

2



J
H
E
P
0
7
(
2
0
0
0
)
0
0
6

scale in, say, supergravity models [23]. An alternative more phenomenological way

is to consider the existence of a tree-level FC process να+ f → νβ + f where f is an
elementary fermion (charged lepton or quark). The interaction can be mediated by

a scalar or vector boson of mass m and the neutrino-fermion coupling is generically

denoted by gαf (α is a flavour index) and can be written as

ε′ν =
|gτf |2 − |gµf |2
4m2
√
2GF

and εν =
gτf · gµf
4m2
√
2GF

. (2.2)

Since we are assuming vanishing neutrino masses, the anti-neutrino transitions

ν̄µ → ν̄τ are governed by the same evolution matrix given in eq. (2.1). For the sake of
simplicity, we consider εν̄ = εν and ε

′
ν̄ = ε

′
ν , which implies that we have only two free

parameters in the analysis. Moreover, we set our normalization on these parameters

by assuming that the relevant neutrino interaction in the Earth is only with down-

type quarks. One could also assume that the incoming atmospheric neutrino has FC

interactions off-electrons or equivalently, due to charge neutrality, off-up-type quarks.

For simplicity, in the present analysis we consider only the case of interactions on

down-type quarks.

We have calculated the transition probabilities of νµ → ντ (ν̄µ → ν̄τ ) as a
function of the zenith angle by numerically solving the evolution equation using the

density distribution in [24] and a realistic chemical composition with proton/neutron

ratio 0.497 in the mantle and 0.468 in the core [25].

3. Fitting the data to the FC hypothesis

We have then used these probabilities to compute, as a function of the two param-

eters, εν and ε
′
ν , the theoretically expected numbers of events for the four sets of

data reported by Super-Kamiokande: sub-GeV, multi-GeV, stopping muons and

through-going muons. The expected number of contained events are computed by

convoluting the probability with the corresponding neutrino fluxes (for which we use

the Bartol calculations [1]) and interaction cross sections and taking into account

the experimental efficiencies as detailed in ref. [8]. For the up-going muon sam-

ples we obtain the effective muon fluxes for both stopping and through-going muons

by convoluting the probabilities with the corresponding muon fluxes produced by

the neutrino interactions with the Earth. We include the muon energy loss during

propagation both in the rock and in the detector according to [26, 27] and we take

into account also the effective detector area for both types of events, stopping and

through-going. We compute the effective area using the simple geometrical picture

given in ref. [28]. Our final results show good agreement with the full MC simulation

of the Super-Kamiokande collaboration in the Standard Model case (see the thick

solid line in figure 3.)
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Figure 1: Allowed regions for εν and ε

′
ν in the FC massless-neutrino scenario for the

different Super-Kamiokande data sets: (a) sub-GeV, (b) multi-GeV, (c) stopping muons

and (d) through-going muons. The best fit points for each case are indicated by stars. The

shaded area refers to the 90% C.L. while the contours stand for 95% and 99% C.L.

In our statistical analysis we adopted the technique [8, 29] of fitting separately the

angular distributions of the µ- and e-like contained events (N iµ and N
i
e, i stands for

sub-GeV and multi-GeV) and the up-going muon fluxes (Φjµ, j = stopping, through-

going). The expected number of events have been compared with the recent 52 kTy

data reported by the Super-Kamiokande collaboration [30] and the allowed re-

gions in the (εν , ε
′
ν) plane have been determined from a χ

2 fit. In constructing the

χ2 function, we explicitly take into account the correlation of errors, both of theo-

retical and experimental origin. Details on the definition of the correlation matrix

for contained events can be found in ref. [8], while the definition of the sources of

errors and their correlations for the up-going muons fluxes are given in ref. [31, 29].

Here we simply summarize that we consider the overall normalization of the up-going
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Figure 2: Expected up-down asymmetry in Super-Kamiokande for the FC-neutrino sce-

nario as a function of the muon momentum for fully contained µ-like events, compared to

the Super-Kamiokande experimental data.

muon fluxes to be affected by an uncertainty of 20% but in order to account for the

uncertainties in the primary cosmic ray flux spectrum we allow a 5% variation in

the ratio between muon events in different energy samples. We further introduce a

10% theoretical error in the ratio of electron-type to muon-type events of the dif-

ferent samples. Other important source of theoretical uncertainty arises from the

neutrino interaction cross section which at Super-Kamiokande ranges from 10–

15%. Uncertainties in the ratio between different angular bins are treated, similarly

to ref. [29], by allowing a variation of 5% times the difference between the mean bin

cosines. With our definition we obtain, for instance, χ2SM =122/(35 d.o.f.) which

means that the SM has a CL of 10−11! Using this same χ2 function for the case of
oscillations we obtained allowed regions for masses and mixing angles very similar to

those obtained by the Super-Kamiokande collaboration both for contained events

as well as for upward going muons [8].

In figure 1 we show the contours of the regions allowed by the Super-Kamio-

kande data. The different panels of the figure refer to the fits performed over the

different sets of data separately: (a) sub-GeV; (b) multi-GeV; (c) stopping muons;

(d) through-going muons. The shaded areas are the regions allowed at 90% C.L.,

while the dashed and dotted contours refer to 95 and 99 % C.L., respectively. The

condition used to determine the allowed regions is: χ2 = χ2min +∆χ
2 where ∆χ2 =

4.6, 6.0, 9.2 for 90, 95 and 99 % C. L., respectively.

The allowed regions for the contained events are, as expected, similar to the

ones obtained in ref. [19]. The individual best fits now improve with respect to the

analysis of the old data: χ2min = 2.4/(8 d.o.f.) for the sub-GeV data (εν = 0.196 and

ε′ν = 0.013) and to χ
2
min = 6.4/(8 d.o.f.) for the multi-GeV sample (εν = 0.689 and
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(b)
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ε
Figure 3: Allowed regions for εν and ε

′
ν for the combination of the Super-Kamiokande

data sets: (a) the binned contained events are combined with total (unbinned) up-going

events; (b) binned contained and up-going events. The best fit points for each case are

indicated by stars. The shaded area refers to the 90% C.L. while the contours stand for

95% and 99% C.L.

ε′ν = 0.284). The combination of the two sets of contained events leads to allowed
regions which are analogous to the ones reported in the ref. [19] and which are not

reproduced again here. The best fit point corresponds to εν = 0.95 and ε
′
ν = 0.084

with χ2min = 9.3/(18 d.o.f.). The goodness of the fit to the contained events in

the FC-neutrino interaction scenario can be understood since the suppression of the

expected event rates for contained events is the same for sub-GeV and multi-GeV

samples. The Super-Kamiokande collaboration has also measured the energy

dependence of the up-down asymmetry for contained events [10] and this clearly

indicates a strong energy dependence of the asymmetry for muon-like events in the

momentum range 0.2 GeV < pµ < 2 GeV. The asymmetry is consistent with zero at

low momentum but significantly deviates from the expectation in the SM at higher

momenta. One may naively expect that since the FC conversion mechanism is energy-

independent it could be in contradiction with this measurement. However, one must

notice that the average angle between the directions of the final-state lepton and

the incoming neutrino ranges from 70◦ at 200 MeV to 20◦ at 1.5 GeV, so that at
low momenta the possible asymmetry of the neutrino flux is largely washed out.

In figure 2 we plot, together with the Super-Kamiokande data, the momentum

behaviour of the asymmetry in the FC-neutrino interaction scenario calculated for

the best fit point to the contained event sample. As seen in the figure the agreement

is excellent.
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Data d.o.f. χ2minFC χ2minOsc
sub-GeV 8 2.4 2.4

multi-GeV 8 6.4 6.3

contained 18 9.3 8.8

stopping-µ 3 1. 1.3

through-going-µ 8 10.3 10.4

contained + total up-µ 10 20.4 9.6

contained + angular up-µ 33 44. 23.5

Table 1: χ2min obtained for several data combinations in the framework of FC-ν interactions

as compared to the case of the neutrino vacuum-oscillation scenario.

In figure 1, we also show the regions which are allowed by the up-going muons

samples of Super-Kamiokande. Panel (c) stands for stopping muons and panel (d)

for the through-going sample. In the case of stopping muons, we see that, analogously

to the contained events, the allowed region lies in the sector of the plane where the

average survival probability is of the order of a half, which is what appears to be

needed for explaining the data. Instead, in the case of through-going muons, the

experimental data do not show such a strong reduction with respect to the theoretical

calculations, and therefore the allowed region lies in the upper-left corner of the

parameter space, which refers to a smaller transition probability. In both cases, the

best fit point for each individual sample is good: χ2min = 1/(3 d.o.f.) for stopping

muons (εν = 0.756 and ε
′
ν = 0.196) and χ

2
min = 10.3/(8 d.o.f.) for the through-going

case (εν = 0.081 and ε
′
ν = 0.260). Both for the contained and for the up-going events,

the best fits for each individual sample have the same level of statistical confidence

as compared to the oscillation interpretation of the atmospheric neutrino data. This

is shown in table 1, where we report the best fit values we obtain for the different

data sets in the case of the FC-ν interactions scenario and in the case of the neutrino

oscillation scenario[31].

The allowed regions can be qualitatively understood in the approximation of

constant matter density. The conversion probability in this case is

P (νµ → ντ ) = 4ε2ν
4ε2ν + ε

′
ν
2 sin

2

(
1

2
ηL

)
, (3.1)

where η =
√
4ε2ν + ε

′
ν
2
√
2GFnf . For nf = nd ≈ 3ne and ε′ν < εν , the oscillation

length in matter is given by

Losc =
2π

η
≈ 1.2× 103

[
2mol/cc

ne

] [
1

εν

]
km . (3.2)

From eq. (3.1) one can see that in order to have a relatively large transition

probability, as required by the contained events and, also, by the stopping muons
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events, the FC parameters are required to be in the region ε′ν . εν and η & π/R⊕.
This last condition leads to a lower bound on εν . The island in figure 1b corresponds

to η ∼ π/R⊕.
The combination of the different data sets in a single χ2-analysis is shown in

figure 3. Panel (a) shows the combination of the full angular distribution of contained

events with the total (unbinned) event rate of stop and through-going muons data,

while panel (b) refers to the combination of all the angular distributions, including

that of through-going muon events. In figure 3a the information brought by the

higher energy data is effective at the normalization level, since no information about

their angular dependence is included. In this case the allowed region is still relatively

large although the description is already worse than in the oscillation case as can be

seen by comparing the corresponding χ2min (20.4/(10 d.o.f.) for FC as compared to

9.6/(10 d.o.f.) for the oscillation scenario). This worsening is due to the fact that

in the FC scenario the transition probability is energy independent while the data

shows a smaller conversion for the higher energy through-going muon events. As

seen in figure 3b, when the angular information of both stopping and through-going

muons is included in the data analysis, the description becomes even worse, mainly

due to the angular distribution of the through-going data set. The allowed regions

now form a set of isolated small ’islands’. The best fit point corresponds to εν = 0.57

and ε′ν = 0.45 which is acceptable only at the 90.5% confidence level (χ
2
min = 44/(33

d.o.f.)).

The behavior of the allowed regions can be understood by observing figure 4

where we show the angular distributions for the four cases: (a) sub-GeV; (b) multi-

GeV; (c) stopping muons; (d) through-going muons. We show the distributions for

the best fit point obtained from the combination of contained events with the total

number of upward going muons P1 = (εν , ε
′
ν) = (0.17,0.28) and for the best fit point

obtained from the analysis of the full data set P2 = (0.57,0.45). Although both points

give a similar normalization to the up-going muon data samples, point P1 gives a

better description to the angular dependence of the contained events, but it does

not describe well the zenith angle distribution of the through-going muon events. As

commented above, such point correspond to an effective FC-oscillation length of the

order of the Earth radius. In this case we can see the imprints of the “oscillatory”

sine behavior in the expected angular distribution of the up-going muon events.

Such behavior, however, does not appear to be present in the Super-Kamiokande

data, leading to a worse overall fit. In the case of multi-GeV contained events, this

oscillatory behavior is averaged out due to the smaller angular resolution in the data

and point P1 can give a good description of the data. On the other hand, point P2
gives a worse description of the contained events but fits better the shape of upward

going muon data, with the exception of the last three angular bins of the through-

going sample, where it does not produce a sufficient amount of through-going muons

at angles 0 < θ < 20◦ below the horizon.
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Figure 4: Best-fit zenith angle distributions in the massless-neutrino FC scenario. The

thick-solid lines correspond to the calculation in absence of new physics. The dotted

lines correspond to the best fit point obtained by the analysis of the contained events

combined with total (unbinned) up-going events. The thin-solid line is for the best fit

point of the combined analysis of contained and up-going muon events. The 52 kTy Super-

Kamiokande data are indicated by crosses.
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4. Conclusions

In summary, in this paper we have re-analyzed the possibility of explaining the at-

mospheric neutrino anomaly by means of νµ → ντ conversion induced by flavour-
changing neutrino-matter interaction which can be effective during the neutrino

propagation in the Earth. We extend the analysis of ref. [19] to the new set of

Super-Kamiokande data by including also the up-going muon samples. Our re-

sults show that that flavour changing νµ-matter interactions are able to describe

the full set of data of Super-Kamiokande on atmospheric neutrinos with a prob-

ability of 9.6 %. Thus they are ruled out as an explanation at the 90 %CL. The

agreement between the data and the calculated events for the Super-Kamiokande

detector is good for the individual sets of data collected by Super-Kamiokande,

with a confidence level as good as for the oscillation hypothesis. However, when the

data are combined together, in particular once the upward-going muon zenith-angle

distribution is included in the analysis, the νµ oscillation provides a much better

description. The worsening of the fit which occurs when the through-going muons

sample is included is partly due to the fact that in the FC scenario the transition

probability is energy independent while the data shows a smaller conversion for the

higher energy up-through-going muon events. The ensuing result is that the expecta-

tions from FC-neutrino interaction for neutrinos arriving mainly at angles above 20

degrees below the horizon do not reproduce the experimental data. The accumula-

tion of additional up-going events should therefore enable one to impose new model

independent limits on the strength of the ε and ε′ parameters, as can be foreseen by
looking at figure 1(d).

For the time being it is cautious to say that, unaccompanied by mass-related

oscillations, the FC hypothesis is disfavored by the data. However, they could

still be there at some level, even if the data would admit a very good interpre-

tation in terms of standard νµ → ντ oscillations. This is theoretically not an ad
hoc assumption, since in many theoretical models neutrino masses naturally co-

exist with FC-neutrino interactions. Another argument against FC neutrino con-

versions as the only source of explanation of the atmospheric anomaly is the re-

quired magnitude of the FC couplings: although it is technically possible to ac-

commodate it (for example in models with broken R-parity [32]) these neutrino FC

couplings would be accompanied by too large lepton flavour violating τ decays in

models which respect an SUL(2) symmetry in FC couplings [33]. Last, but not

least, one virtue of the above FC mechanism is that it can be also tested at fu-

ture Long Baseline experiments. From eq. (3.1), using ne ∼ 2 mol/cc, we can
predict that for ε ' ε′ ∼ 1 (0.1) the planned K2K experiment [34] should obtain
P (νµ → ντ ) ∼ 0.35 (0.004) while for MINOS [35] one finds P (νµ → ντ ) ∼ 0.75
(0.04).
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