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Abstract

The N = 2∗ supersymmetric gauge theory is a massive deformation of N = 4, in which the adjoint 
hypermultiplet gets a mass. We present a D-brane realisation of the (non-)Abelian N = 2∗ theory, and 
compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients 
determine couplings of higher-dimensional operators in the effective supergravity action that involve powers 
of the anti-self-dual N = 2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the 
D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function 
in the two-parameter Ω-background, in agreement with a recent proposal.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

N = 2 supersymmetric theories, with two four-dimensional (4d) supercharges, provide a 
simple and interesting playground for studying exact dynamics of gauge theories, their couplings 
to supergravity and various dualities. A very powerful tool is their relation with topological field 
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and string theories, obtained by the so-called topological twist that combines R-symmetry with 
Lorentz transformations to define a projection into the chiral (BPS) sector of the theory [1,2]. In 
particular, N = 2 topological strings describe the coupling of topological field theories to gravity 
and its partition function computes a series of higher dimensional F-terms, FgW

2g , involving 
powers of the chiral Weyl superfield W in the effective N = 2 supergravity action [3,4]. Its lower 
component is the graviphoton field-strength (anti-self-dual by convention) that plays therefore 
the role of the topological string coupling. F0 is the N = 2 prepotential, while F1 corresponds 
to the gravitational R2 coupling (on-shell there is only one term).

The field theory limit is obtained by going near the singularity of the moduli space where some 
charged states become massless depending on the gauge group and the representation matter 
content of the theory [5]. This limit is captured by the Nekrasov partition function, obtained by 
an explicit sum over instantons on the field theory side [6–9]. The sum is regularised by the 
so-called Ω-background, starting from six dimensions, and depends on two parameters ε1,2, or 
equivalently ε± = ε1 ± ε2. It was observed that for ε+ = 0, the power series in ε− reproduces the 
(field theory limit of) Fg’s, leading to the identification of ε− with the (anti-self-dual) graviphoton 
field-strength. ε+ provides therefore a deformation of the topological string, called refinement, 
and should be likely identified with a self-dual field strength of a particular vector modulus 
[10,11].

A special case on the field theory side is that of an Abelian gauge theory which, despite 
the naive expectation, is actually non-trivial, even at the perturbative level, in the presence of a 
massive neutral hypermultiplet that makes it N = 2∗ [9,12]. The latter is defined as a massive 
deformation of N = 4: when the mass m of the hypermultiplet vanishes, one recovers N = 4
supersymmetry and a vanishing partition function, while when m becomes very large, the adjoint 
hypermultiplet decouples, and one is left with a pure N = 2 U(1) gauge theory. Despite the ab-
sence of renormalizable interactions and of singular points with extra massless states, the theory 
couples to gravity leading to non-trivial higher-dimensional couplings involving the graviphoton. 
Moreover F1 has a logarithmic singularity in the mass, due to the non-vanishing trace anomaly. 
Finally, one can get another degree of non-triviality by considering a radius deformation from 
five dimensions.

In this work we present a string realisation of an Abelian 5d and 4d N = 2∗ theory1 and com-
pute the couplings Fg,n of a double series of higher-dimensional F-terms of the form W 2g�n, 
where � is the chiral projection of a certain anti-chiral vector superfield with lower component 
corresponding to the self-dual field strength. This amounts to compute a series of amplitudes in-
volving four gravitini, 2g − 2 anti-self-dual graviphotons and n self-dual gauge fields belonging 
to the multiplet of the D5-brane coupling modulus. In the field theory limit, the result repro-
duces the Nekrasov partition function in the two-parameter Ω-background, in agreement with 
the proposal [10].

Our paper is organised as follows. In Section 2, we present the string theory construction in 
a D-brane setup [14,15], based on a freely acting orbifold that realises partial supersymmetry 
breaking N = 4 → N = 2 [16], as a Scherk–Schwarz deformation [17]. In Section 3, we study 
the simplest case of ε+ = 0, corresponding to the usual topological amplitudes Fg involving only 
powers of the graviphoton. We start by the 5d theory compactified on a circle of radius R and 
then we take the 4d limit R → 0. In Section 4, we generalise our analysis to the deformed case 
described by the two-parameter Ω background. In Section 5, we extend the previous results to 

1 For the non-Abelian case, see Ref. [13].
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the case of non-Abelian U(M) gauge theories thus recovering the results of [13] for an order-two 
freely-acting orbifold. Finally, in Section 6, we present our conclusions and comment on the 
inclusion of non-perturbative contributions.

2. The construction of N = 2∗ gauge theories

The N = 2∗ supersymmetric gauge theory is a massive deformation of N = 4 whereby 
four scalars and two fermions, filling an N = 2 hypermultiplet, in the adjoint representation 
of the gauge group get a mass m. For generic values of the mass parameter, the hypermultiplet 
participates non-trivially to the dynamics of the gauge theory, while in the m → ∞ limit the 
adjoint hypermultiplet decouples, and one is left with a pure N = 2 gauge theory. In the opposite 
m → 0 limit one simply recovers the original N = 4 theory, where non-trivial cancellations 
occur and the theory becomes conformal at the quantum level.

This property of the theory reminds of a spontaneous partial supersymmetry breaking via a 
Scherk–Schwarz mechanism [17] where the mass of the adjoint hypermultiplet is proportional to 
the (inverse) size of the compact direction. In the following we shall build the N = 2∗ theory as a 
Scherk–Schwarz deformation of the N = 4 one, first in the field theory and then in a full-fledged 
string setup.

Mass deformations of N = 4 gauge theories have been largely studied in the past years fol-
lowing different approaches, including M-theory [18–22]. Here we consider the simple Scherk–
Schwarz deformation since it allows for an exact CFT description which is amenable to concrete 
perturbative computations.

2.1. The Scherk–Schwarz construction in field theory

It is a well known fact [23] that the N = 4 gauge theory can be obtained as a dimensional 
reduction of the ten-dimensional N = (1, 0) theory. Imposing periodic boundary conditions on 
all fields along the six compact directions, one is clearly left with a low-energy four-dimensional 
theory comprising one vector, six scalars and four Majorana fermions, thus filling the N = 4
vector multiplet. Following [17] one can actually extend this set-up to allow for non-trivial pe-
riodicity conditions. The simplest construction compatible with eight supercharges, amounts to 
splitting T 6 = T 4 × S1(R5) × S1(R4) and impose on the various fields the boundary conditions

φ(x4 + 2πR4) = eiQ φ(x4) , (2.1)

where x4 is the compact coordinate along the Scherk–Schwarz circle S1(R4) and Q is a sym-
metry charge that rotates the coordinates on the T 4 in a way that preserves supersymmetry. For 
instance, if we decompose T 4 = T 2 × T 2 and z1 and z2 are the two complex coordinates on 
the two T 2’s, Q acts as z1 → eiαz1 and z2 → e−iαz2. This action on the coordinates clearly in-
duces a natural action on the components of the gauge fields along the T 4 and on their fermionic 
partners.

As it is well known [17], this coordinate-dependent compactification induces shifts of the p4
momenta p4 → p4 + α/R4 and thus induces a mass gap for the hypermultiplet proportional to 
α/R4, while the Kaluza–Klein masses only scale like 1/R4. Since in the field theory, the boost 
of the Scherk–Schwarz deformation is arbitrary, one can properly decouple the two scales and a 
limit exists where all Kaluza–Klein states are decoupled while the massive hypermultiplet still 
participates to the dynamics. It is in this limit that one recovers the N = 2∗ gauge theory.
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Notice that in general, the Scherk–Schwarz deformation may act non-trivially on the gauge 
group degrees of freedom thus breaking the original gauge group G → G1 × G2. In this case, 
one is left with an N = 2∗ theory with gauge group G1 × G2 coupled to a massless hyper-
multiplet in the bi-fundamental representation. To avoid these extra states we have chosen the 
Scherk–Schwarz deformation to have a trivial action on the gauge degrees of freedom. More-
over, in the following we shall restrict our attention to the Abelian case, deferring a discussion of 
the non-Abelian theory to the conclusions.

2.2. The Scherk–Schwarz construction in string theory

An easy way to realise N = 2∗ in string theory is in terms of D-branes. In order to give mass 
to the hypermultiplet we employ the Scherk–Schwarz deformation discussed previously in the 
field theory context. Concretely, we use the well-known connection between Scherk–Schwarz 
reductions and freely-acting orbifolds [24–26], whereby the non-trivial boundary conditions are 
traded for a simultaneous action of the rotation on the T 4 coordinates and a shift along the S1(x4)

circle.
As before, in order to make contact with the Nekrasov computation of the perturbative free-

energy on the Ω background, we are actually interested in the field-theory limit of suitable string 
amplitudes. As a result, we need to introduce a clear hierarchy within the Kaluza–Klein and 
Scherk–Schwarz masses that allows for a consistent decoupling limit. This is in principle a prob-
lem since, in string theory, continuous global symmetries do not exist and they are typically 
broken to discrete ones. Moreover, a compact T 4 together with the requirement of supersymme-
try implies that the allowed symmetries are the discrete rotations ZN , with N = 2, 3, 4, 6. As a 
result, in this setup, the Kaluza–Klein scale and the Scherk–Schwarz scale do not decouple [16]
and the field theory limit does not yield N = 2∗.

This problem could be circumvented if a ZN with arbitrarily large N were allowed. For this 
reason we shall assume that the T 4 be replaced by the non-compact space C2. This choice actu-
ally leads automatically to the decoupling of the gravitational sector, since the four-dimensional 
Newton constant vanishes and, as we shall see, yields the desired gauge theory in five and/or four 
dimensions.

Taking this into account, our set-up consists then of a single D5-brane placed on the C2 origin 
of the M1,3 ×S1

m ×S1
R ×C2/ZN space. Here, with a slight change of notation, S1

m is the Scherk–
Schwarz circle with radius RSS = m−1, while S1

R is a spectator circle. For generic values of its 
radius R one describes a five-dimensional N = 2∗ gauge theory, while the four-dimensional 
theory is recovered in the R → 0 limit.

The orbifold group ZN acts on the two complex coordinates (z1, z2) ∈ C
2 as the rotation

(z1 , z2) → (e2iπ/Nz1 , e−2iπ/Nz2) . (2.2)

The fact that the twist is opposite in the two planes preserves N = 2 supersymmetries and, 
because the space is non-compact, there is no restriction on the order N . The mass of the hy-
permultiplet is then generated by combining the ZN rotation with an order-N shift along the 
Scherk–Schwarz circle S1

m

S1
m � ym → ym + 2π

Nm
. (2.3)

Note that the non-compactness of the space C2/ZN is also required for the consistency of 
this minimal D-brane construction. In fact, were the space compact one should have imposed 
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tadpole conditions for the (untwisted) RR forms [14,15]. Their cancellation would have called 
for an orientifold plane or for anti-brane that would have compromised the simple N = 2∗ gauge 
theory construction. Twisted tadpole conditions, which should be imposed independently of the 
compactness or not of the transverse space, are also absent in this construction since, because 
of the free action of the Scherk–Schwarz deformation, only massive states with odd winding 
number do propagate in the transverse channel.

This said, the partition function associated to a single D5 brane then reads

A = 1

N

[
N−1∑
�=0

ρ
[ 0

�

] ∑
r∈Z

e2iπr�/N Pr(1/m)

]∑
s∈Z

Ps(R) , (2.4)

Here, Pn(ρ) = q
1
2 (n/ρ)2 = e−πt(n/ρ)2

is the generic contribution of the quantised momenta, while 
we have introduced the compact notation ρ

[0
�

]
to encode the contribution of the world-sheet 

bosons and fermions, where

ρ
[ 0

0

]= 1
2

∑
a,b=0,1

(−1)a+b+ab
θ4
[

a/2
b/2

]
η12

, (2.5)

and

ρ
[ 0

�

]= 1
2

∑
a,b=0,1

(−1)a+b+ab
θ2
[

a/2
b/2

]
η6

(
2 sin(π�/N)

θ
[

a/2
b/2+�/N

]
θ
[ 1/2

1/2+�/N

]
)

×
(

2 sin(−π�/N)
θ
[

a/2
b/2−�/N

]
θ
[ 1/2

1/2−�/N

]
)

, (2.6)

for � �= 0.
To analyse the spectrum it is convenient to separate

ρ
[ 0

�

]= β
[ 0

�

]− ϕ
[ 0

�

]
, (2.7)

into space-time bosons, the β
[0

�

]
with a = 0, and space-time fermions, the ϕ

[0
�

]
with a = 1. 

Moreover, it suffices to concentrate on the bosons since the fermions will follow by supersym-
metry. We write

β
[ 0

0

]= V4
O4

η10
+ O4

V4

η10
, (2.8)

and

β
[ 0

�

]= V4
O4(�/N)

η4
+ O4

V4(�/N)

η4
, (2.9)

where

O4(�/N) = 1
2

[(
2 sin(π�/N)

ϑ3(�/N |τ)

ϑ1(�/N |τ)

)2

+
(

2 sin(π�/N)
ϑ4(�/N |τ)

ϑ1(�/N |τ)

)2
]

,

V4(�/N) = 1
2

[(
2 sin(π�/N)

ϑ3(�/N |τ)

ϑ1(�/N |τ)

)2

−
(

2 sin(π�/N)
ϑ4(�/N |τ)

ϑ1(�/N |τ)

)2
]

,

(2.10)
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are the SO(4) level-one characters with non-trivial argument. A q-Taylor expansion of the previ-
ous expressions yields

O4(�/N) � 1 + 2
[
5 + 2 cos(2π�/N) + cos(4π�/N))q + . . .

]
,

V4(�/N) � 4 cos(2π�/N) + 8
[
1 + 4 cos(2π�/N) + cos(4π�/N)

]
q + . . . .

(2.11)

Combining this expansion for the characters of the internal SO(4) with their space-time coun-
terpart, and taking into account that fermions have similar expansions as a consequence of 
supersymmetry, one arrives at the following expansion for the light states of the annulus par-
tition function

A0 � (V4 − 2S4)

[
1

N

N−1∑
�=0

e2iπr�/Nq
1
4 (rm)2

]

+ (4O4 − 2C4)

[
1

N

N−1∑
�=0

cos(2π�/N)e2iπr�/N q
1
4 (rm)2

]
. (2.12)

Since,

1

N

N−1∑
�=0

e2iπr�/N =
{

1 if r = 0 mod N ,

0 otherwise ,
(2.13)

and

1

N

N−1∑
�=0

cos(2π�/N)e2iπr�/N = 1

2N

N−1∑
�=0

(
e2iπ(r+1)�/N + e2iπ(r−1)�/N

)

=
{

1
2 if r = ±1 mod N ,

0 otherwise ,

(2.14)

one finds that the vector multiplet has KK masses along the shifted direction given by

M2
V = 1

2 (Nkm)2 , k = 0,±1,±2, . . . (2.15)

whereas there are two hypermultiplets with masses

M2
H1

= 1
2 (1 + kN)2m2 , k = 0,1,2, . . . , (2.16)

and

M2
H2

= 1
2 (1 − kN)2m2 , k = 1,2, . . . . (2.17)

If we take N very large the second set of hypermultiplets becomes very massive, and we are left 
with an Abelian massless vector multiplet and a neutral hypermultiplet with mass 1

2m2.

3. The one parameter deformation

In the previous Section we have constructed the Abelian N = 2∗ theory and derived its par-
tition function in the flat Minkowski space. Following Nekrasov [8] the gauge theory on the 
non-trivial Ω background amounts at computing a set of topological amplitudes [3,5] involving 
two gravitons and a certain number of (anti-)self-dual graviphotons or, alternatively, the topo-
logical string partition function [1,2,4]. We start in this Section with the simple Ω background 
depending on a single parameter h̄ = ε1 = −ε2.
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3.1. The topological amplitude

Let us compute the topological amplitudes associated to the R2F 2g−2 higher-derivative cou-
pling in the vacuum described in Section 2. Here R is the self-dual Riemann tensor and F is 
the anti-self-dual graviphoton field-strength, where space-time indices are omitted for notational 
simplicity. Since we are interested in the behaviour of the gauge sector, it suffices to compute 
the previous amplitude on the Riemann surface with the topology of an annulus. Moreover, it 
is simpler to compute the supersymmetry-related amplitude involving four gravitini and 2g − 4
anti-self-dual graviphotons.

Ag =
〈
(V +

grav)
2 (V −

grav)
2 V

2g−4
gph

〉
. (3.1)

The vertex operators for the gravitini and the graviphotons are given by

V ±
grav(ξμα,p) = ξμαe−ϕ/2Sαeiφ3/2σ± (∂̄Zμ + i(p · χ̃ )χ̃μ

)
eip·Z , (3.2)

Vgph(ε,p) = εμ

[
(∂X + i(p · χ)ψ)(∂̄Zμ + i(p · χ̃ )χ̃μ)

− e−(ϕ+ϕ̃)/2pνS
α(σμν)α

βS̃β ei(φ2+φ̃3)/2 �+�̃−] eip·Z

+ (left ↔ right) . (3.3)

Here, Z1,2, X, Z4,5 denote the complexified bosonic coordinates of the non-compact space-time, 
the T 2 and the non-compact C2 directions transverse to the branes which are acted upon by the 
ZN twist, respectively. Similarly for the fermionic fields χ1,2, ψ , χ4,5, and S, e±iφ3/2, � denote 
the corresponding spin fields in the NS (Neveu–Schwarz) and R (Ramond) sectors, respectively, 
while the tilde refers to the right-moving sector of the closed string (arbitrarily defined). Finally, 
ϕ is associated to the bosonised superghost.

Following [3,5], it is convenient to choose the polarisations and the momenta of the 2g vertex 
operators as follows

V +
grav(ξ21,p1) , V +

grav(ξ22,p1̄) , V −
grav(ξ2̄1,p1) , V −

grav(ξ2̄2,p1̄) (3.4)

for the four gravitini, and

Vgph(ε2,p1) , Vgph(ε2̄,p1̄) (3.5)

for the 2g − 4 graviphotons.
With these kinematic factors, upon performing the sum over the various spin structures, the 

amplitude (3.1) reduces to correlators in the odd spin structure involving only fields with indices 
along the space-times directions. These do not depend on the orbifold twist acting on the in-
ternal coordinates, and thus the corresponding correlators can be extracted from the generating 
functions

GBose(h̄) =
〈

exp
ˆ̄h
t

∫
d2σ
[
Z1(∂̄ − ∂)Z2 + Z̄1(∂̄ − ∂)Z̄2

]〉

= (πh̄)2

sin2(π ˆ̄h)

[
H1( ˆ̄h; t/2)

]−2
, (3.6)

for the bosonic coordinates, and
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GFermi(h̄) =
〈

exp
ˆ̄h
t

∫
d2σ
[
(χ1 − χ̃1)(χ2 − χ̃2) + (χ̄1 − ˜̄χ1)(χ̄2 − ˜̄χ2)

]〉

=
[
H1( ˆ̄h; t/2)

]2
, (3.7)

for the fermionic fields. Here we have introduced the dressed deformation ˆ̄h = 2h̄t (rm − is/R), 
and

H1(z; τ) = θ1(z|τ)

2 sin(πz)η3(τ )

∏
m∈Z
n>0

(
1 − z2

|m + z − nτ |2
)

. (3.8)

In the odd spin structure, the contribution of the twisted world-sheet fermions cancels against 
the contribution of the twisted world-sheet bosons, and thus the generating amplitude simply 
reads

F (h̄) = − 4

N

N−1∑
�=1

∑
r,s∈Z

sin2
(

π�

N

)
e2iπr�/N

∞∫
0

dt

t

(πh̄)2

sin2(π ˆ̄h)
Pr(1/m)Ps(R) . (3.9)

Using simple trigonometry, we can cast the previous expression in the form

F (h̄) = −2
∑
r,s∈Z

[
1

N

N−1∑
�=1

(1 − cos (2π�/N)) e2iπr�/N

] ∞∫
0

dt

t

(πh̄)2

sin2(π ˆ̄h)
Pr(1/m)Ps(R)

= −2
∑
r,s∈Z

[
1

N

N−1∑
�=0

(1 − cos (2π�/N)) e2iπr�/N

] ∞∫
0

dt

t

(πh̄)2

sin2(π ˆ̄h)
Pr(1/m)Ps(R)

=
⎡
⎢⎣−2

∑
r=0 mod N

s∈Z

+
∑

r=±1 mod N
s∈Z

⎤
⎥⎦

∞∫
0

dt

t

(πh̄)2

sin2(π ˆ̄h)
Pr(1/m)Ps(R) , (3.10)

where in the second step we have extended at no cost the sum over � to include the � = 0 term, 
while in the last step we have explicitly enforced the constraint on the KK momenta along the 
Scherk–Schwarz direction. The string excitations do not participate in this BPS saturated ampli-
tude, and the field theory limit corresponds just to the N → ∞ limit, where the Kaluza–Klein 
excitations along the Scherk–Schwarz direction decouple, leaving only a massless vector mul-
tiplet and a neutral hypermultiplet with mass m. They correspond, respectively, to r = 0 and 
r = ±1 in

F (h̄) = (πh̄)2 (−2δr,0 + δr,1 + δr,−1)

∞∫
0

dt

t
Pr(1/m)

∑
s∈Z

Ps(R)

sin2(π ˆ̄h)

≡ (πh̄)2
∑

μ=0,±m

d(μ)F (h̄,μ) ,

(3.11)

with d(0) = −2 and d(±m) = 1.
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3.2. Evaluating the integral

Although the full amplitude F (h̄) is finite, each individual contribution F(h̄, μ) is not. The 
integrals (3.11) are in fact divergent in the UV (t → 0) and thus need a proper regularisation. To 
this end, it is convenient to perform the change of variable

πt

R2
(s + iμR) → t for s ≥ 0 ,

− πt

R2
(s + iμR) → t for s < 0 ,

(3.12)

so that eq. (3.11) becomes

F(h̄,μ) = −
∞∫

0

dt

t

1

sinh2(2Rh̄t)

[ ∞∑
s=0

e−t (s−iμR) +
∞∑

s=1

e−t (s+iμR)

]
. (3.13)

The sums over s can be easily performed, while it is convenient to expand

1

sinh2(2Rh̄t)
= −4

∞∑
g=0

B2g (2g − 1)

(2g)! (4Rh̄t)2g−2 , (3.14)

with B2g the Bernoulli numbers. As a result,

F(h̄,μ) =
∞∑

g=0

F2g(h̄,μ)

= 4
∞∑

g=0

B2g (2g − 1)

(2g)! (4Rh̄)2g−2

∞∫
0

dt

t
t2g−2 eitμR + e−t (1+iμR)

1 − e−t
. (3.15)

The amplitude in eq. (3.1) computes the coefficient of h̄2g in the h̄-expansion of F (h̄) in 
eq. (3.11). Although Ag is strictly-speaking valid only for g ≥ 2, the Taylor expansion of F (h̄)

starts from g = 0, and the coefficients of g = 0 and g = 1 are actually meaningful, and agree 
with the results of [5] and [9], valid for g ≥ 1 and g ≥ 0, respectively. These terms could be 
checked independently by computing the gravitational R2 (for g = 1) and gauge F 2 couplings 
(for g = 0).

The generic integral

Ig =
∞∫

0

dt

t
t2g−2 e−at

1 − e−t
, (3.16)

is convergent for g > 1, and admits a well known analytical continuation to arbitrary g on the 
complex plane by deforming the integration domain to the Hankel contour

Ĩg = − 1

2i sin(π(2g − 2))

(0+)∫
∞

dt (−t)2g−3 e−at

1 − e−t
. (3.17)

Taking into account the definition of the Hurwitz zeta function,
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ζ(σ ;a) = −Γ (1 − σ)

2πi

(0+)∫
∞

dt (−t)σ−1 e−at

1 − e−t
, (3.18)

the generic term in the sum is thus

F2g(h̄,μ) = 4
B2g (2g − 1)

(2g)! (4Rh̄)2g−2 Γ (2g − 2)

× [ζ(2g − 2;−iμR) + ζ(2g − 2;1 + iμR)
]

. (3.19)

This combination is regular for g > 1, while care is needed to extract the g = 0 and g = 1
contributions. For the latter one has

4
(2g − 1)

Γ (2g + 1)
(4Rh̄)2g−2 �(2g − 2) (ζ(2g − 2;−iμR) + ζ(2g − 2;1 + iμR))

∼ 1

g − 1
(ζ(0;−iμR) + ζ(0;1 + iμR))

− (1 − 2 log(4Rh̄)) (ζ(0;−iμR) + ζ(0;1 + iμR))

+ 2
(
ζ ′(0;−iμR) + ζ ′(0;1 + iμR)

)
, (3.20)

as g → 1, and

4
(2g − 1)

Γ (2g + 1)
(4Rh̄)2g−2 �(2g − 2) (ζ(2g − 2;−iμR) + ζ(2g − 2;1 + iμR))

∼ − 1

(4Rh̄)2

[
1

g
(ζ(−2;−iμR) + ζ(−2;1 + iμR))

+ (3 − 2γ + 2 log(4Rh̄)) (ζ(−2;−iμR) + ζ(−2;1 + iμR))

+ 2
(
ζ ′(−2;−iμR) + ζ ′(−2;1 + iμR)

)]
, (3.21)

as g → 0. The Hurwitz zeta function satisfies remarkable identities, among which

ζ(−m;a) = −Bm+1(a)

m + 1
,

ζ ′(0;a) = logΓ (a) − 1
2 log(2π) ,

ζ(0;a) = 1
2 − a ,

ζ(−2;−ia) + ζ(−2;1 + ia) = 0 ,
(3.22)

where Bn(a) is the Bernoulli polynomial. Moreover,

− 2

(4h̄R)2

[
ζ ′(−2;−iμR) + ζ ′(−2;1 + iμR)

]
= 1

2(4πh̄R)2

[
Li3
(
e2πμR

)
+ Li3

(
e−2πμR

)]

= 1

(4πh̄R)2

[
Li3
(
e−2πμR

)
+ 2

3 iπ3 B3(−iμR)
]

= 1

(4πh̄R)2

[
Li3
(
e−2πμR

)
− 1

12 (2πμR)3 + 1
4 iπ(2πμR)2 + 1

6π2 (2πμR)
]

. (3.23)

Combining all this, one finally gets

F2(h̄,μ) = − 1
3 log (2 sinh (πμR)) + iπ

, (3.24)

6
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and

F0(h̄,μ) = 1

(4πh̄R)2

[
Li3
(
e−2πμR

)
− 1

12 (2πμR)3 + 1
4 iπ(2πμR)2 + 1

6π2 (2πμR)
]

.

(3.25)

As a result, one finds

F(h̄,μ) = 1

(4πh̄R)2

[
Li3
(
e−2πμR

)
− 1

12 (2πμR)3 + 1
4 iπ(2πμR)2 + 1

6π2 (2πμR)
]

− 1
3 log (2 sinh (πμR)) + iπ

6
+ 4

∞∑
g=2

B2g

2g (2g − 2)
(4Rh̄)2g−2

× (ζ(2g − 2;−iμR) + ζ(2g − 2;1 + iμR)) . (3.26)

Different expressions are possible for F(h̄, μ). For instance, noting that

ζ(2g − 2;−imRr) + ζ(2g − 2;1 + imRr) =
∑
n∈Z

1

(n − imRr)2g−2

= (2πi)2g−2

(2g − 3)! Li3−2g

(
e−2πmRr

)
, (3.27)

where in the last equality we have Poisson summed the series, one can recast eq. (3.26) as

F(h̄,μ) = 1

(4πh̄R)2

[
Li3
(
e−2πμR

)
− 1

12 (2πμR)3 + 1
4 iπ(2πμR)2 + 1

6π2 (2πμR)
]

− 1
3 log (2 sinh(πμR)) + iπ

6

+ 4
∞∑

g=2

B2g

2g (2g − 2)! (8πiRh̄)2g−2 Li3−2g

(
e−2πμR

)
. (3.28)

The contribution of the massive hypermultiplet, corresponding to μ = ±m, can be straight-
forwardly derived from the previous expression. The contribution of the vector multiplet is a 
bit subtler since setting μ = 0 would yield a logarithmic divergence in the g = 1 term. This 
is precisely what one would expect from a field theory viewpoint and a suitable regularisation 
yields2

− 1
3

d

ds

⎡
⎣ (ΛR)s

�(s)

∞∫
0

dt

t
t s e−t

⎤
⎦

s=0

= − 1
3 log (ΛR) . (3.29)

3.3. The perturbative free energy

According to Nekrasov [8], the topological amplitude we have just considered should compute 
the perturbative contribution to the pre-potential of the N = 2∗ theory on the one-parameter Ω
background,

2 In the following expression we have used the fact that, for the vector multiplet contribution, the only dimensionless 
combination in the constant term in the h̄ expansion is ΛR.
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(πh̄)−2 F (h̄) = 8
(
γh̄(m;R) − γh̄(0;R)

)
, (3.30)

with

γh̄(x;β) = βx3

12h̄2
− x2

2h̄2
log(βΛ) − βx

24
+

∞∑
n=1

1

n

e−βnx

(e−βnh̄ − 1)(eβnh̄ − 1)
. (3.31)

Indeed, upon the redefinitions

2πR → R , 4ih̄ → h̄ , (3.32)

in eq. (3.28), and the use of the identity

Lis(z) + (−1)s Lis(1/z) = (2πi)s

Γ (s)
ζ

(
1 − s; 1

2 + log(−z)

2πi

)
, (3.33)

one gets

(πh̄)−2 F (h̄) =
∑

μ=0, ±m

d(μ)F (h̄,μ)

= 8

h̄2R2

[
ζ(3) − Li3

(
e−mR

)
+ 1

12 (mR)3 − 1
2 iπ(mR)2 − 1

6π2mR
]

+ 2
3

[
log(ΛR) − log

(
2 sinh

(
mR

2

))]

+ 8
∞∑

g=2

B2g

2g (2g − 2)! (Rh̄)2g−2
[
Li3−2g

(
e−mR

)
− ζ(3 − 2g)

]
, (3.34)

that matches precisely the result of [8,9], up to irrelevant constants depending on the regularisa-
tion scheme.

3.4. The four-dimensional theory

As anticipated in Section 2 the four-dimensional theory can be obtained as the R → 0 limit, 
whereby the tower of Kaluza–Klein states along the spectator circle decouples and one is left 
with an effective four-dimensional model. In order to compute this limit, we note that

Li−n(z) = ∂n+1

∂zn+1
Li1(z) = − ∂n+1

∂zn+1
log(1 − z) = 1

(1 − z)n+1

n−1∑
k=0

〈
n

k

〉
zn−k (3.35)

where

〈
n

k

〉
=

m+1∑
k=0

(−1)k
(

n+1

k

)
(m + 1 − k)n (3.36)

are the Eulerian numbers. By taking z = e−y , in the limit y → 0 it is immediate to see that

Li−n

(
e−y
)= 1

yn+1

n−1∑
k=0

〈
n

k

〉
+ O(y−n) = n!

yn+1
+ O(y−n) , (3.37)

where we have used 
∑n−1 〈 n 〉 = n!. Inserting this behaviour in eq. (3.34) we easily get
m=0 m
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(πh̄)−2 F → 2
3 log

(
Λ

m

)
+ 8

∞∑
g=2

B2g

2g (2g − 2)

(
h̄

m

)2g−2

, (3.38)

which indeed corresponds to the perturbative contribution of the Nekrasov partition function on 
the one-parameter Ω background.

4. The two parameter deformation

We now turn to the study of N = 2∗ theories in the general Ω-background with the two 
parameters switched on, and in particular to the topological amplitude associated to it.3 The two 
parameters correspond to rotations in the two SU(2)’s of the four-dimensional Lorentz group 
(properly combined with rotations on the SU(2) R-symmetry) and thus it is natural to associate 
them to self-dual and anti-self-dual configurations of gauge fields. Therefore, if the ε− deforma-
tion is related to the insertion of an anti-self-dual graviphoton field strength in the topological 
amplitude, the second parameter ε+ can be introduced by adding insertions of self-dual config-
urations. Indeed, after many attempts [30,31], it was showed in [10] that the correct topological 
amplitude now involves anti-self-dual graviphotons and self-dual backgrounds for the partners 
of gauge coupling on the D5 branes.

4.1. The topological amplitude

Following [10], we now turn to compute the amplitude

Ag,n =
〈
(V +

grav)
2 (V −

grav)
2 V

2g−4
gph V 2n

S′+

〉
, (4.1)

where, as usual, it is more convenient to replace the two gravitons by four gravitini with vertex 
operator given in eq. (3.2). The vertex operator Vgph for the anti-self-dual graviphotons is again 
given by eq. (3.3), while

VS′+(ε,p) = εμ

[
(∂X + i(p · χ)ψ) (∂̄Zμ + i(p · χ̃ ) χ̃μ)

+ e− 1
2 (ϕ+ϕ̃) pν Sα̇

(
σ̄ μν
)α̇

β̇
S̃β̇ e

i
2 (φ3+φ̃3) �̂+ ˆ̃

�−] eip·Z

+ (left ↔ right) , (4.2)

is the vertex operator of the self-dual vector multiplet, whose scalar is the (complex conjugate) 
of the S′ modulus.

As before, since we are interested in the one-loop amplitude with open-string fields running 
in the loop, it suffices to restrict our attention to the Riemann surface with the topology of an 
annulus. This amplitude is quite involved even when polarisation vectors and momenta are suit-
ably chosen as in Section 3.1. This is a consequence of the fact that now all vertices contribute 
in all possible ways to the amplitude. Following [10], after tedious computations and careful 
regularisation of the one-loop determinants, one is lead to the generating functions

GBose(ε±) =
〈

exp

[
ε̂−
t

∫
d2σ
[
Z1(∂̄ − ∂)Z2 + Z̄1(∂̄ − ∂)Z̄2

]

3 Backgrounds involving more general deformations have been discussed in [27–29].
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+ ε̂+
t

∫
d2σ
[
Z1(∂̄ − ∂)Z̄2 + Z̄1(∂̄ − ∂)Z2

]]〉

=
[
H1

(
ε̂− − ε̂+

2
;0; t

2

)
H1

(
ε̂− + ε̂+

2
;0; t

2

)]−1

× π(ε− − ε+)

sinπ(ε̂− − ε̂+)

π(ε− + ε+)

sinπ(ε̂− + ε̂+)
, (4.3)

for the bosonic coordinates,

GFermi(ε−) =
〈
exp

ε̂−
t

∫
d2σ
[
(χ1 − χ̃1)(χ2 − χ̃2) + (χ̄1 − ˜̄χ1)(χ̄2 − ˜̄χ2)

]〉

=
[
H1

(
ε̂−
2

;0; t

2

)]2

, (4.4)

for the space-time fermions, and

GK3 Fermi(ε+) =
〈
exp

ε̂+
t

∫
d2σ
[
(χ4 + χ̃4)(χ5 + χ̃5) + (χ̄4 + ˜̄χ4)(χ̄5 + ˜̄χ5)

]〉

= −4 sin2
(

π�

N

)
H1

(
ε̂+
2

; �

N
; t

2

)
H1

(
ε̂+
2

;− �

N
; t

2

)

×
(

cos2 πε̂+ − cot2 π�
N

sin2 πε̂+
)

(4.5)

for the fermions associated to the non-compact C2/ZN surface. In these expressions, � denotes 
the sector projected by the �-th power of the orbifold generator, while we have introduced the 
dressed deformation parameters ε̂± = ε±t (rm − is/R) with ε± = ε1 ± ε2, and

H1 (z;w; t) = θ1 (z + w|it)
2η3(it) sinπ (z + w)

∏
m∈Z,n>0

(
1 − z2

|m + z + w − itn|2
)

. (4.6)

Putting together the various contributions, one gets

Ag,n

[ 0
�

]= −4 sin2
(

π�

N

) ∞∫
0

dt

t

∑
r,s∈Z

(
cos2(πε̂+) − cot

(
π�

N

)
sin2(πε̂+)

)

× Pr(1/m)Ps(R)ZK3
[ 0

�

]
× π2(ε− − ε+)(ε− + ε+)

sinπ(ε̂− − ε̂+) sinπ(ε̂− + ε̂+)

[
H1

(
ε̂−
2

;0; t

2

)]2

×
H1

(
ε̂+
2 ; �

N
; t

2

)
H1

(
ε̂+
2 ;− �

N
; t

2

)
H1

(
ε̂−−ε̂+

2 ;0; t
2

)
H1

(
ε̂−+ε̂+

2 ;0; t
2

) , (4.7)

where ZK3
[ 0

�

]
is the standard contribution of the (non-compact) K3 bosons in the � projected 

sector,

ZK3
[ 0

�

]=
⎧⎪⎨
⎪⎩

t−2 for � = 0 ,

e2πir�/N
2η3 sin

(
π�
N

)
θ1

(
� |it
) 2η3 sin

(
− π�

N

)
θ1

(
− � |it

) , for � �= 0 .
(4.8)
N N
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Note that in this two-parameter case, the contributions of the twisted world-sheet fermions 
and bosons do not cancel any longer, and the infinite tower of string modes now contribute to the 
amplitude. As a result, the field theory limit we are interested in should decouple both the string 
oscillators and the Kaluza–Klein modes along the Scherk–Schwarz direction. This is achieved 
by taking t → ∞ in the theta and H1 function4 and N → ∞ in the momentum sum. One thus 
finds

F (ε+, ε−) = lim
t,N→∞

1

N

N−1∑
�=0

Ag,n

[ 0
�

]

= 1
4π2(ε− − ε+)(ε− + ε+)

[
−2FV (ε+, ε−;0) + FH (ε+, ε−;m)

+ FH (ε+, ε−;−m)
]
, (4.9)

with

FV (ε+, ε−;0) =
∞∫

0

dt

t

∑
s∈Z

1

sin(π(ε̂− − ε̂+))

1

sin(π(ε̂− + ε̂+))
cos(2πε̂+) e−πt(s/R)2

,

FH (ε+, ε−;±m) =
∞∫

0

dt

t

∑
s∈Z

1

sin(π(ε̂− − ε̂+))

1

sin(π(ε̂− + ε̂+))
e−πt(m2+(s/R)2) .

(4.10)

4.2. Evaluating the integrals

Although the full amplitude F (ε+, ε−) is finite, each individual contribution FH,V(ε+, ε−; μ)

is not. The integrals (4.10) are in fact divergent in the UV (t → 0) and thus need a proper 
regularisation. To this end, we perform the same change of variable as in eq. (3.12), we sum the 
geometric series over the Kaluza–Klein momenta s, we expand

1

sinh(2Rε1t) sinh(2Rε2t)
= 4 e−2ε+Rt

∞∑
g1,g2=0

Bg1 Bg2

g1!g2! (−4Rε1t)
g1−1 (−4Rε2t)

g2−1

= 4 e2ε+Rt
∞∑

g1,g2=0

Bg1 Bg2

g1!g2! (4Rε1t)
g1−1 (4Rε2t)

g2−1 ,

cosh(2Rt(ε1 + ε2))

sinh(2Rε1t) sinh(2Rε2t)
= 2

∞∑
g1,g2=0

Bg1 Bg2

g1!g2!
(
1 + (−1)g1+g2

)
(4Rε1t)

g1−1 (4Rε2t)
g2−1 ,

(4.11)

and we deform the integration domain into the Hankel contour, as in Section 3.2. Following these 
steps, one gets the coefficients

4 Remember that, in the Schwinger representation of the annulus amplitude, the t modulus is proportional to 1/α′ and 
thus t → ∞ indeed corresponds to the limit α′ → 0 where all massive string excitations effectively decouple.
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FH
g1,g2

(m) = 4
Bg1 Bg2

g1!g2! (g1 + g2 − 3)! (4R)g1−1 (4R)g2−1

× [ζ(g1 + g2 − 2;−2ε+R − imR)

+ (−1)g1+g2 ζ(g1 + g2 − 2;1 + 2ε+R + imR)
]
, (4.12)

for the massive hypermultiplet, and

FV
g1,g2

(0) = lim
μ→0

2
Bg1 Bg2

g1!g2! (g1 + g2 − 3)! (1 + (−1)g1+g2
)

(4R)g1−1 (4R)g2−1

× [ζ(g1 + g2 − 2;−iμR) + ζ(g1 + g2 − 2;1 + iμR)
]

, (4.13)

for the vector multiplet, in the double series expansions

FA(ε+, ε−;μ) =
∞∑

g1,g2=0

FA
g1,g2

(μ) ε
g1−1
1 ε

g2−1
2 , (A = V,H) . (4.14)

These expressions are regular for g1 +g2 > 2, but need a proper analysis for g1 +g2 ≤ 2. Follow-
ing a similar procedure as in Section 3.2, one finds for the one-loop contribution with g1 +g2 = 2

FH
2,0(m) = FH

0,2(m) = 1
3FH

1,1(m) = − 1
3 log (2i sinh (2πiε+R − πmR)) , (4.15)

and

FV
2,0(0) = FV

0,2(0) = 1
3FV

1,1(0) = − 1
3 log (ΛR) . (4.16)

Similarly, one could derive the contributions with g1 + g2 < 2, however these do not carry any 
physical information in the rigid N = 2∗ theory, and thus we do not dwell with them here.

Since for integer n,

ζ(n;x) + (−1)nζ(n;1 − x) = (2πi)n

(n − 1)!Li1−n(e
−2πix) , (4.17)

the terms with g1 + g2 > 2 admit the alternative representation

FH
g1,g2

(m) = 4
Bg1

g1!
Bg2

g2! (8πiR)g1−1 (8πiR)g2−1 Li3−g1−g2

(
e−2πmR+4πiRε+

)
,

FV
g1,g2

(0) = 2
Bg1

g1!
Bg2

g2! (8πiR)g1−1 (8πiR)g2−1(1 + (−1)g1+g2) ζ(3 − g1 − g2) .

(4.18)

4.3. The perturbative free energy

We are now in the position to compare our results with the field theory computation of [8,9]. 
To this end we redefine 2πR → R and 4iε → ε, and get

F (ε+, ε−)

−π2ε1ε2

∣∣∣∣ 2πR→R
4iεi→εi

= − 1
3

(
ε1

ε2
+ 3 + ε2

ε1

) [
log
(

2 sinh
(

ε+R
4 − mR

2

))
+ log

(
2 sinh

(
ε+R + mR

))
− 2 log (ΛR)

]

4 2
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− 4
∞∑

g1,g2=0
g1+g2>2

Bg1

g1!
Bg2

g2! (Rε1)
g1−1 (Rε2)

g2−1
[
(1 + (−1)g1+g2) ζ(3 − g1 − g2)

− Li3−g1−g2

(
e−mR+ 1

2 Rε+
)

− Li3−g1−g2

(
emR+ 1

2 Rε+
)]

. (4.19)

Aside from irrelevant terms which depend on the regularisation scheme and have no physical 
relevance, this expression matches precisely the field theory result [9]. This is perhaps more 
transparent if one uses the alternative representations

FH (ε+, ε−;m) = 4
∞∑

n=1

1

n

e−nmR+ 1
2 nRε+

(enRε1 − 1)(enRε2 − 1)

= 4 log
∞∏

k,�=1

(
1 − e−mR−(k− 1

2 )Rε1+(�− 1
2 )Rε2
)

,

(4.20)

and

FV (ε+, ε−;0) = 2
∞∑

n=1

1

n

1 + enRε+

(enRε1 − 1)(enRε2 − 1)

= 2 log
∞∏

k,�=1

(
1 − e−kRε1+(�−1)Rε2

)(
1 − e−(k−1)Rε1+�Rε2

)
.

(4.21)

4.4. The genus expansion

The previous expressions (4.18), although rather simple, do not provide an explicit Taylor-
series expansion in the parameters ε±. In order to make more transparent the relation of the free 
energy with the topological amplitude (4.1) and/or the genus-g partition function of the putative 
topological string,

F (ε+, ε−)

−π2ε1ε2
=
∑
g>0

∑
n≥0

Fg,n(m) ε
2g−2
− ε2n+ =

∑
g>0

∑
n≥0

[
−2FV

g,n(0) + FH
g,n(m)

]
ε

2g−2
− ε2n+ ,

(4.22)

it is convenient to express the deformation parameters ε1 and ε2 in terms of ε±, ε1,2 =
1
2 (ε+ ± ε−). With this re-writing, powers of ε− clearly count the genus expansion of the topolog-
ical free energy, while ε+ counts the insertions of the self-dual vectors. The limit ε− → 0 then 
reproduces the free energy in the case of a single parameter deformation.

To proceed with the ε± expansion, we neglect subtleties with the UV divergences, so that the 
formal contribution of the hypermultiplet and vector multiplet to the free energy (4.18) are given 
in terms of the (formal) double-series expansion

F (ε+, ε−)

−π2ε1ε2
=

∞∑
g1,g2=0

c(g1, g2) ε
g1−1
1 ε

g2−1
2 , (4.23)

where the coefficient is symmetric in g1 and g2, and may depend on mass deformation m and the 
radius of the fifth dimension R and, eventually also on ε+ in the case of the hypermultiplet. It is 
convenient to write
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F (ε+, ε−)

−π2ε1ε2
=

∞∑
g2=0

g2∑
g1=0

c(g1, g2) (ε1ε2)
g1−1
(
ε
g2−g1
1 + ε

g2−g1
2

)
−

∞∑
g=0

c(g, g) (ε1ε2)
g−1 ,

(4.24)

so that, after binomial expansion and standard manipulation of multiple sums, one gets

∑
g≥0

c(g, g) (ε1ε2)
g−1 =

∑
g≥0

∑
n≥0

c(g + n,g + n)

22g+2n−2

(
g+n−1

n

)
(−1)g−1 ε

2g−2
− ε2n+ , (4.25)

and
∞∑

g2=0

g2∑
g1=0

c(g1, g2) (ε1ε2)
g1−1
(
ε
g2−g1
1 + ε

g2−g1
2

)

=
∑
g≥0

∑
n≥0

[g+n/2]∑
g1=0

2 c(g1, n + 2g − g1)

2n+2g−2
Φg,g1(n) εn+ ε

2g−2
− , (4.26)

where we have introduced the symbol

Φg,g1(n) =
g1−1∑
�=0

(
n+2g−2g1

n−2�

) (
g1−1

�

)
(−1)�+g1+1 , (4.27)

such that Φg,g1(0) = (−1)g1+1.
Using standard manipulations of multiple series, properties of Bernoulli numbers and the 

following identity for the polylogarithms

Li−2n−a

(
e−mR+ 1

2 Rε+
)

+ Li−2n−a

(
emR+ 1

2 Rε+
)

= 2
∞∑

k=0

(
Rε+

2

)2k+1−a Li−2n−2k−1
(
e−mR

)
(2k + 1 − a)! , (4.28)

valid for non-negative integer n and a = 0, 1, one gets

FV
g,n(0) = −4

[(
Bg+n

(g + n)!
)2 (

g+n−1

n

)
(−1)g+1 − 2

n+g∑
g1=0

Bg1

g1!
B2n+2g−g1

(2n + 2g − g1)! Φg,g1(2n)

]

×
(

R

2

)2n+2g−2

ζ(3 − 2g − 2n) , (4.29)

for the contribution of the vector multiplet, and

FH
g,n(m) = −8 Li3−2g−2n

(
e−mR

) (R

2

)2g+2n−2

×
∞∑

k=0

[(
Bg+n−k

(g + n − k)!
)2

(g + n − k − 1)!
(g − 1)! (n − k)! (2k)! (−1)g+1

− 2
g+n−k∑ Bg1

g1!
B2g+2n−2k−g1

(2g + 2n − 2k − g1)!
Φg,g1(2n − 2k)

(2k)!

g1=0
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− θ(n − 1)
B2g+2n−2k−2

(2g + 2n − 2k − 2)!
Φg,1(2n − 2k − 1)

(2k + 1)!

]
(4.30)

for the contribution of the hypermultiplet, with θ(x) the Heaviside function. In these expressions 
we have been a bit cavalier with the range of the sum over k. It is understood that the maximum 
value k can assume is when the argument of any factorial becomes negative. Alternatively, we can 
analytically continue the above expressions in terms of Gamma functions and the finite range of 
the sum is automatically taken care by the poles of the Gamma function at non-positive integers.

As expected, in the special case ε1 = −ε2 = h̄ of a one-parameter deformation, these expres-
sions reproduce eq. (3.34). In fact, now only the term with n = 0 survives and the remarkable 
identity(

Bg

g!
)2

(−1)g − 2
g∑

g1=0

Bg1

g1!
B2g−g1

(2g − g1)! (−1)g1 = B2g

2g(2g − 2)! , (4.31)

satisfied by the Bernoulli numbers, together with Φg,g1(−2k) = (−1)g1+1δk,0, for k ≥ 0, leads 
to the desired result.

4.5. The four-dimensional limit

As usual, the four-dimensional free-energy is obtained by taking R → 0. In this limit the 
Kaluza–Klein states along the fifth direction decouple and one is left with an effective four-
dimensional N = 2∗ theory. Using eq. (3.37), one readily finds

F (ε1, ε2)

−π2ε1ε2
= 1

3

(
ε1

ε2
+ 3 + ε2

ε1

) [
log

(
Λ2

m2 − 1
4ε2+

)
+ const

]

+ 4
∞∑

g1,g2=0
g1+g2>2

Bg1

g1!
Bg2

g2! (g1 + g2 − 3)! εg1−1
1 ε

g2−1
2

×
(

1
2ε+ + m

)g1+g2−2 +
(

1
2ε+ − m

)g1+g2−2

(
m2 − 1

4ε2+
)g1+g2−2

. (4.32)

Using eqs. (4.29) and (4.30) one could have obtained the alternative expansion in powers of ε±. 
Notice that, as expected, for the choice ε1 = −ε2 = h̄ one recovers eq. (3.38).

5. The non-Abelian extension

The previous results can be straightfowardly generalised to the non-Abelian U(M) N = 2∗
gauge theory. In the D-brane construction this configuration is simply obtained by piling-up M
D-branes. Since the freely-acting orbifold of Section 2.2 does not act on the Chan–Paton factors, 
the annulus amplitude for the non-Abelian case is obtained from eq. (2.4) by simply multiplying 
it by M2. As a result, the free energies with one or two parameter deformations are also multiplied 
by M2.

The Coulomb branch is obtained by introducing suitable Wilson lines along the compact 
directions which break U(M) → U(1)M [14,32]. In the string realisation described in Section 2.2
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we have then the option of deforming the theory by introducing either Wilson lines am
i along the 

Scherk–Schwarz circle S1
m, or Wilson lines aR

i along the spectator circle S1
R , or both am

i and aR
i . 

The annulus amplitude reads in general

ACoulomb =
M∑

i,j=1

1

N

[
N−1∑
�=0

ρ
[ 0

�

]∑
r∈Z

e2iπr�/N Pr+am
i −am

j
(1/m)

]∑
s∈Z

Ps+aR
i −aR

j
(R) . (5.1)

To describe the field theory limit, it is convenient to introduce the complex Wilson line

ai = mam
i + i

aR
i

R
, (5.2)

so that the free energies read

(πh̄)−2 F (h̄) =
M∑

i,j=1

∑
μ=0,±m

d(μ)F (h̄;μ + ai − aj ) ,

F (ε+, ε−)

−π2ε1ε2
=

M∑
i,j=1

[
−2FV (ε+, ε−;ai − aj ) + FH (ε+, ε−;m + ai − aj )

+ FH (ε+, ε−;−m + ai − aj )
]
, (5.3)

with the F ’s given in eqs. (3.28) and (4.18) for the one parameter background and the two pa-
rameter background, respectively.

These results reproduce those of [13].

6. Conclusions

In this work, we presented a realisation of an Abelian N = 2∗ theory and its radius de-
formation in five dimensions in a D-brane set-up, whereby a freely acting orbifold breaks 
spontaneously N = 4 supersymmetry to N = 2, as a Scherk–Schwarz deformation. We then 
computed a series of generalised topological amplitudes on the world-sheet annulus, involving 
four gravitini, 2g − 2 anti-self-dual graviphotons and n self-dual gauge fields belonging to the 
multiplet of the D5-brane coupling modulus. We checked that in the field theory limit these 
amplitudes reproduce the perturbative part of the Nekrasov partition function in the Ω back-
ground [9], as a power expansion of the two deformation parameters, in agreement with the 
proposal of Ref. [10]. We also discussed the case of non-Abelian unitary gauge groups, general-
ising the work of Ref. [13].

Our results can be in principle extended to include non-perturbative contributions by using 
the open string description of D-brane instantons, following the formalism of Refs. [11,33,34]. 
Since the U(1) case presents several peculiarities despite its simplicity, we plan to come back to 
it in the future.
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