
Electric grammars. Algorithmic design and construction of experimental music
circuits

Simone Pappalardo
Conservatorio Statale di Musica “O. Respighi” di Latina

simpapp@yahoo.it

Andrea Valle
CIRMA-StudiUm - Università di Torino

andrea.valle@unito.it

ABSTRACT

The paper discusses a generative approach to the design
of experimental electronic circuits for musical application.
The model takes into account rewriting rules inspired by L-
systems constrained by domain-specific features depend-
ing on electronic components, and generates families of
circuits. An integrated production pipeline is introduced,
that ranges from algorithmic design to simulation up to
hardware printing.

1. INTRODUCTION

A generative approach has been intensely pursued in the
digital domain, i.e. where a certain generative system has
an established connection between software and final out-
put. Computer music has worked extensively on algorith-
mic composition techniques that have been applied since
its inception both to event organization and audio gener-
ation [1]. On the other side, physical computing [2] has
successfully tried in recent years to fill the gap between
computation and the physical world, by linking algorith-
mic design to a heterogeneous set of production systems,
e.g. in the extensive applications of 3D printing. Concern-
ing electronics, and in particular electronic circuit design,
it can be observed that the latter is a complex task, as it
involves accurate selection of components in relation to a
specific desired output. Thus, algorithmic techniques are
used on the design side mostly for circuit optimization. As
an example, evolutionary algorithms have been used to de-
sign circuits: the rationale is that in some cases a certain
performance is expected and the algorithm is iteratively
run so to design a circuit to fit the targeted performance [3].
In this sense, generation is constrained by an expected re-
sult rather than focusing on the exploration of new behav-
iors (see also [4] for AI techniques based on an evolution-
ary computation for circuit design). Moreover, hardware
layout for electronic components involves many critical
steps, depending on both component features (packaging)
and routing constraints (e.g. non overlapping of routes).
Thus, a completely automated pipeline as required by a
truly generative approach, linking algorithmic models to

Copyright: c© 2017 Simone Pappalardo et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

final physical output (i.e. electronic components) is a dif-
ficult task. On the other side, nowadays available tech-
nologies seem promising in favoring such an approach, as
a panoply of Electronic Design Automation (EDA) soft-
ware solutions are available, that can be directly linked to
automatic circuit printing. In the following, we discuss a
generative methodology for audio circuit design, propose
an application, and describe an integrated pipeline solution
from circuit modeling to PCB printing.

2. ALGORITHMIC DESIGN FOR AUDIO
CIRCUIT

Generative approaches to art and creativity are typically
intended as ways to yield complex structures by defining
compact formal procedures. A plethora of models and
techniques has been defined in the last decades, includ-
ing, among the others, formal grammars, fractals, cellular
automata [5]. As such approaches are formal, they have
been applied/mapped to various aesthetic domains, includ-
ing e.g. visual art and music composition. The rationale
at their base is to shift the focus from the final work to the
meta-level, that of a system capable of generating various
“legal”, “well-formed” outputs. In turn, outputs may be
evaluated, e.g. filtered in terms of acceptance/refusal in re-
lation to some (un)desired features, and the evaluation may
be used to tune the system by means of a feedback loop. In
short, algorithmic techniques like the aforementioned ones
are mostly used to explore the output space of a system.
In the domain of sound production, analog audio synthesis
–far from being a dead end– has survived to digital audio
and it is at the moment flourishing among musicians, in
particular in hybrid systems that retain analog audio gen-
eration while assigning control to digital modules. In the
field of electronic circuits for music applications, modular
systems that can be assembled in various ways are a stan-
dard solution since the inception of analog electronic mu-
sic, and recently various efforts have been made to create
miniature, highly reconfigurable modular systems (e.g. lit-
tleBits 1). However, as the assembly is left to the user, all
these systems are not suited for generative techniques. In
this sense, the generative process should move to a lower
hardware level. A generative approach to audio circuit de-
sign has not been investigated, as far as we know, as typi-
cal audio circuits implement well-defined schemes that are
a priori constrained in relation to specific needs, e.g. noise
reduction optimization or adherence to a certain already es-

1 http://littlebits.cc

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-351

mailto:simpapp@yahoo.it
mailto:andrea.valle@unito.it
http://creativecommons.org/licenses/by/3.0/
http://littlebits.cc

tablished model, as in the case of guitar pedal effects. On
the other side, many experimental music practices focus
on the manipulation of analog audio circuits with a clear
exploratory aim [6]. As an extreme example, the popular
practice of circuit bending [7] even proposes a paradoxi-
cal “anti-theory” as a knowledge background for a totally
empirical approach to electronic hacking. Differently from
the previous empirical approaches but sharing the same ex-
ploratory perspective, we propose a generative approach to
audio circuit design for experimental music. The main aim
of our project is to produce families of circuits, sharing
some basic features, that can be printed automatically, so
that each board is unique while retaining a family resem-
blance with the other from the same generative model.
The design methodology is a three-step process:

1. Model retrieval: as a first step, an already estab-
lished audio circuit is taken into account, so to start
with a well-know and working example;

2. Functional decomposition: the circuit is theoreti-
cally decomposed into functional units that can be
thought as closed elements provided with inputs and
outputs. These units can include various electronic
component configurations. Granularity at the single
component level (e.g. diode) is too basic to provide
an operative base for generation, as too many con-
straints would have to be taken into account.

3. Rule-based re-organisation: functional units are con-
sidered as symbols to be arranged in strings follow-
ing a specific formalization.

While conceptually separated, the three steps are tightly in-
tegrated, as there is a constant feedback loop among search-
ing for suitable audio circuits, investigating about their fit-
ting into a modular approach, and assessing the robust-
ness in scaling up component assembly via generative pro-
cedure. In the following, we will discuss the previous
methodology in relation to a case study.

3. MODEL RETRIEVAL AND FUNCTIONAL
DECOMPOSITION IN A TEST CASE

In this section we discuss audio analog electronics, that is,
in reference to the previous process, both models (1) and
decomposition (2). We will discuss a specific test case to
show various emerging issues, but the former is meant as
an example of the previously introduced, general method-
ology. As already said, while it might be desirable to un-
couple electronic circuit design from generative modeling,
there is a feedback loop between the domain to be genera-
tively modeled (electronic circuits) and the modeling sys-
tem (see later). In general terms, our basic design choice
was targeted to define an expansion procedure of a certain
basic circuit. Indeed, other circuit designs may be taken
into account as candidates.

Our aim has been to look for an already established audio
schematic (methodology, step 1) provided with two fea-
tures. First, it should be expandable by iterating a limited
set of basic units, as the goal of the main electronic circuit

Figure 1. Diode clipping circuit.

Figure 2. Diode clamping circuit.

is to link some independent object characterized by audio
input and output (methodology, step 2). Second, it should
provide a spectral enrichment (a music desideratum) with-
out a final amplitude overload (an audio constraint related
to generative procedure, as iteration results in stacking an
undefined number of components).
In relation to step 1, it can be observed that diodes ap-
plications have been widely used in audio. in particular,
diode clipping (Figure 1) is often used in analog and audio
circuits to create distortion effects or to protect a device’s
input from possible current overloads: as a consequence,
various schematics implementing this technique are avail-
able (e.g. [8]). Diodes used in analog effects for guitar
generally clip when the input signal voltage reaches the
forward threshold voltage of the component. For our cir-
cuit we decided to work with Schottky diodes so to have a
very low clipping threshold (typically 0.2 V against 0.7 V
of a silicon type).

In classical analog distortion guitar effects, the amplitude
of the input signal is limited in either directions by a fixed
amount. Indeed, in these devices, the reference threshold
voltage for diodes is the circuit ground, so that the input
signal clips at the small forward voltage of the forward bi-
ased diode. In practical applications, the threshold voltage
of the diode, and thus therefore the signal clipping point,
can be set to any desired value by increasing or decreas-
ing the reference voltage [9]. It is therefore theoretically
possible to modulate the clipping threshold of a wave by
setting an audio-controlled variable threshold as the for-
ward biasing of the diode. In our case, the threshold of the
diode is controlled by a clamping circuit [10] (Figure 2). In
order both to isolate the effects of two circuits (clamping
and clipping) and to control impedances to implement a
simulation of an audio-modulated diode with Spice3 [11],
we improved the theoretical schematics in Figures 1 and
2 by introducing two operational amplifiers, to be used as
voltage followers. The resulting circuit is shown schemat-
ically in Figure 3. It is still a theoretical circuit but suffi-
cient to obtain a simulation of a “carrier” sine wave (220
Hz) dynamically clipped by another sinusoidal “modula-
tor ” (439 Hz). Figure 4 shows a new simulation of the

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-352

out

Figure 3. Half wave diode-modulated clipping (dmc)

0ms 30ms 60ms 90ms
V4.2-

V2.0-

V0.2 V(out)

Figure 4. Half wave dmc withC = 220 Hz andM = 1239
Hz.

same schematic, this time featuring a 220 Hz carrier and
1239 Hz modulator. This schematic allows the modulation
of the negative half-waves of a carrier sine by changing at
audio rate the voltage reference at the anode of a diode.
In order to modulate both negative and positive parts of
the carrier sine wave, Figure 5 shows the implementation
of a duplication/reversal of the clamping schematic. Such
a clamping circuit is intended to limit a third modulating
wave in the positive range. This signal is used to induce a
fluctuation in the voltage at cathode of a further diode that
modulates the positive part of the carrier half-wave.

Figure 5 shows a Spice3 simulation with positive modula-
tor = 1123 Hz, negative modulator = 439 Hz, and carrier
= 220 Hz.

The outlined schematic can be expanded by a systematic
development, through a nesting and multiplication of mod-
ulating objects around the axis of the carrier signal, thus
fulfilling the requirement of step 2 of our methodology,
that prepares rule-base organization (step 3). In order to al-
low the nesting of elements, we took advantage of typical
features of operational amplifiers. These components (op
amps, as commonly referred), thanks to their impedance
features and their ease of use, allow to simply cascade sev-
eral parts, adding the possibility of frequency control by

0ms 40ms 80ms 120ms
V4.2-

V0.0

V4.2 V(out)

C1

0.1µf 1N5817

D1

V2

SINE(0 2 439)

V1 SINE(0 2 220)

U1

D2
1N5817

V39

V49

U2
R1
1Meg

C2

0.1µf
1N5817

D3

V5

SINE(0 2 1123)

U3

D4
1N5817

V+
-V V+

-V

V+
-V

out

V+
-V

.TRAN 500ms Carrier

Modulator -

Modulator +

Figure 5. A modified version for full wave modulation
dmc.

Figure 6. a) dc+.

means of inserting few capacitors. In our schematic model
we add both a voltage follower object to use for coupling
the various circuit each other, and an op amp input am-
plifier to filter, amplify and/or attenuate three input sig-
nals: carrier, negative modulator, positive modulator. The
schematic model can be, then, decomposed into five units
(see later): dc+, dc-, buffer, sig in, sig out.
Figures 6 to 10 show all the schematics of the final single
objects. Figure 11 shows the complete root circuit ready
for a Spice simulation. Colored blocks represent previ-
ously discussed components, that is, a → dc+; b → dc-;
c → buffer; d →sig in; e → sig out (for other letters, see
Section 4, and the companion Figure 13). Figure 12 shows
a physical test implementation of the “root” circuit, a min-
imal assemblage of the components that acts as starting
state for generation.

4. RULE-BASED RE-ORGANIZATION

In general terms, many formalisms are available as gen-
erative models to govern an arrangement of audio compo-
nents. In our case, we have explored L-systems [12]. L-

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-353

Figure 7. b) dc-.

Figure 8. c) buffer.

systems have been proposed in biology as formal models
to describe natural shapes that exhibit a clear generative
behavior, i.e. an accumulation of features resulting from a
growing pattern. They have originally proven successful in
modeling plants, and then inspired algorithmic approaches
to biological morphologies (shells, sponges, seaweed) [13]
[14]. As formal systems, and apart from their interpreta-
tion in the biological domain, they have been widely used
in generative art, including algorithmic music composi-
tion. In relation to our case, the choice of L-systems has
been driven by considering an electric circuit, if not a tree,
at least as a sort of vegetable rhizome. Hence the idea of
recursively expanding a basic topology into a more com-
plex network. Analogously to what happened in the model
retrieval step, other formalisms may be explored.
L-systems are formal grammars in which a set of paral-
lel rewriting rules (“production rules”) is applied against
an initial sequence of symbols (the “axiom”). Production
rules allow to generate new sequences of symbols against
which the former can be applied again. Even if the result-
ing morphology depends on the interpretation of symbols
in a certain domain, the formal system structurally encodes
features of a recursive organization. The following model
for audio analog electronic circuit is inspired by L-systems.
It can be defined as

E = (V, ω, P)

where

V = {a, b, c, d, e}

is the set of symbols,

ω = d ∗@1 d ∗@2 d ∗@3 c1@4 a2@4 b3@4 c4@5 e5@∗

Figure 9. d) sig in.

Figure 10. e) sig out.

is the axiom, and P :

a→ c3@(k + 1) b2@(k + 1) c(k + 1)@(k + 2) a(k + 2)@4

b→ c2@(k + 3) a3@(k + 3) c(k + 3)@(k + 4) b(k + 4)@4

is the production ruleset.
As a variation on standard L-systems, the proposed model
includes integers associated to each symbol in the form
i@o, where @ is a syntactic separator. The symbol k repre-
sents an integer associated to the complete rewriting n (i.e.
application of all rules), so that k = n × 4. Empty spaces
and brackets have only a typographical meaning for sake
of readability. In the interpretation context, only the string
resulting from the last rewriting is taken into account. Each
symbol from V is associated to the relative electric compo-
nent (see Section 3). The symbols i and o are interpreted as
labels respectively for input and output ports. Thus, a sym-
bol like b2@14 indicates that the component b has an input
port labeled 2 and an output port labeled 14. The symbol
∗ represents a null value: it can be seen that components d
have a null input, as they are signal generators that feed the
circuit, while e has a null output, being itself the output of
the system. In order to define the topology of the circuit,
port labels are taken into account, and input ports are con-
nected to output ones with the same label, the signal flow-
ing from output to input. Graphical interpretation of the
strings allows to inspect visually the resulting electronic
topologies. The following graphs have been obtained by
automatically scripting the dot language for graph visual-

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-354

U1

V19

9
V2

C1

330nF R2
100k

R4

949meg

R5

51k

100k R1

V4

SINE(0 1 405)
U2

R3

267k
R6

47k
R7

33k

C3

20pF

C4

330nF

C5

10µF

D1

1N5817
V5

SINE(0 1 440)
U3

R8

267k
R9

47k
R10
33k

C2 20pF

C6

330nF

C7

10µF

U4C8

330nF R11
100k

R12

949meg

R13

51k

100k R14

V3

SINE(0 1 440)
U5

R15

267k
R16

47k
R17
33k

C920pF

C10

330nF

C11

10µF

D2

1N5817

C12

330nF R18
47k

U6 R19

50k
R20
50k

C13

2.2µF
C14

330nF R21
47k

U7

V+

V+

-V

-V

out

V-
V+

-V

V+
-V

V+
-V

V+

V+
-V

V+
-V

V+
-V

.TRAN 500ms

d*@3

d*@1

d*@2

b3@4

a2@4

c1@4 c4@5 e5@*

Figure 11. Root circuit (axiom).

Figure 12. Root circuit, first test.

ization [15]. Figure 13 shows the topology of the circuit
of Figure 11 in relation to its modeled decomposition into
the axiom ω. Each component is colored in relation to its
type, and labeled according to the mapped symbol, like in
Figure 11. It can be seen that output ports are connected to
input ports with the same identifier. Figure 14 shows the
first application of the ruleset (n = 1).

The definition of the formal system has been driven by se-
mantic constraints, i.e. by taking into account viable elec-
tronic connections. While increasing n, the resulting string
shows some spurious artifacts, in terms of its electronic in-
terpretation. Figure 15 shows the topological graph with
n = 2 (labels have been replaced with the component
types). It is apparent from Figure 15 that buffers at the
graph’ side are misplaced in the electronic interpretation,
as they are isolated. To solve this issue, a recursive pruning
strategy is applied to the graph, so that no isolated buffers
are present in the final graph. Figure 16 shows the graph
of Figure 15 after pruning.

5. AN INTEGRATED PIPELINE

While algorithmic modeling of electronic circuit topolo-
gies can have a theoretical interest, it is indeed very far
from a practical application. The aim of a generative ap-
proach is indeed to obtain circuits whose complexity can-
not be reached by hand design and that are (o should be)
still guaranteed to work by the system definition itself. This
requires an integrated automatic pipeline, ideally from for-
mal model seamlessly to PCB printing. The implemented
solution is shown in Figure 18. Grey boxes represent used

b3@4

c4@5

d*@1

c1@4

e5@*

d*@3

a2@4

d*@2

Figure 13. Axiom, with connection labels.

a7@4

c4@5

c2@8

c8@9

c3@6

c6@7

e5@*

d*@2

b2@6a3@8

d*@1

c1@4

d*@3

b9@4

Figure 14. First rewriting, with connection labels.

softwares, while white boxes are internal blocks developed
to perform specific functions. Plain text labels represent
textual data. The generative model has been implemented
in SuperCollider [16], an audio-targeted programming lan-
guage that features high-level data collection manipula-
tion. The SuperCollider component performs two task:
generation and mapping. L-Generator is the module im-
plementing the L-system generation: it takes an L-system
specification as a textual input, and output a string (as a
result of rewriting). The string is fed into the Parser that
converts it into a data structure apt to be further manipu-
lated by the Pruner module. The resulting data structure
can then be mapped into other formats. The mapping task
can be seen as a software gluing process. The DotGener-
ator creates a dot file to be subsequently rendered by the
dot program as a visual file. As discussed, this is instru-
mental in rapidly understanding the behavior of the gener-
ation process. LTGenerator creates input files (in the “asc”
ASCII format) for the LTSpice IV software [17]. LTSpice
IV includes simulation of the circuit via Spice3 (includ-
ing audio generation, a crucial features in our case) and
schematic drawing. In order to generate asc files, compo-
nent descriptions are stored in specification templates (spec
file), in which opportune textual replacements for identi-
fiers and positions are performed. Component circuits (a–
e) are algorithmically placed on the board by following a
simple carriage return strategy over a fixed width grid and
using textual labeling of input and output as internal ref-

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-355

buffer

buffer buffer

dc+ dc+

dc+

buffer buffer

dc-dc-

buffer

out

dc-

buffer

buffer buffer

buffer

dc-

sigIn

buffer dc+

buffer

sigIn

buffer buffer

sigIn

Figure 15. Second rewriting.

out

buffer

bufferbufferbuffer

dc+ dc+

buffer

dc- dc-buffer

buffer

buffer

dc-

sigIn

bufferdc- dc+

sigIn

buffer

sigIn

dc+

Figure 16. Second rewriting, pruned.

erences. Figure 23 shows the circuit of Figure 17, as con-
verted by LTGenerator into asc format and drawn by LT-
Spice VI, with a zoomed component for sake of readability.
Figures 20 and 19 show sonograms and waveforms from
Spice 3 audio simulation of a very large circuit, obtained
by four rewritings. It can be seen that complex spectra are
easily obtained, with many partials in various harmonic re-
lations. Spectra are sensitive to small parameter variations,
thus ensuring a varied palette that can be exported as a user
control (e.g. in the case of the three modulating frequen-
cies, the latter can be associated to rotary controls on the
final board). While Figure 19 illustrates a fixed spectrum,
Figure 20 shows an evolving one, resulting from real-time
parameter tweaking. While these results from extensive
tests –matching the typical flavor of analog audio modu-
lation but in a very rich way– are very encouraging, the
main (in fact, surprising) drawback of simulation is that
it has proved to be far from accurate (see later), so a real
test phase has to be performed on the final hardware cir-
cuits. The asc format is also used as an interchange format
to communicate with EasyEDA 2 , a web-based EDA tool
suite. EasyEDA has functionalities to facilitate (even if not
to fully automate) routing for printed circuit board layouts
and to directly manufacture printed circuit boards. In this
way, it is possible to link the formally generated specifica-

2 https://easyeda.com/

tion file to PCB printing. Figure 22 shows the root circuit
PCB (i.e. the axiom) obtained by running the autorouting
procedure in EasyEDA.

6. OPEN ISSUES

At the moment of writing, we have tested physical circuits
on breadboard, generated layout diagrams, run extensive
simulations, while we have still not printed PCBs. Thus,
we cannot evaluate the very final product of the pipeline.
In any case, two main issues have emerged.
Simulation vs. Reality. For each object, various tests
were made in order to find the best configuration in terms
of matching between Spice3 simulation results and real
physical behavior (tested on breadboard implementations).
This is a crucial point, as –in order to simulate with a good
approximation the circuit even after several expansions by
the generative system– it is essential that the Spice simula-
tion is very close to the actual behavior of the circuit. Oth-
erwise, unpredictable, non-functional results may emerge
in the printed circuit. As a matter of facts, real circuits as-
sembled on breadboard have always shown relevant differ-
ences in their behavior if compared to Spice3 simulations.
Three main factors account for these differences:
– the power supply quality which must be opportunely and
recursively filtered, unlike in the simulated schematic;
– the extensive need, between input and output of several
op amp, for decoupling capacitors, not necessary (at least
in the same amount) in the simulated circuit;
– the placement of the components on the board, that may
create ground loops, again absent from Spice.
The physical circuit is usually more sensitive to small, some-
times timy, variations in the starting conditions. Here, non-
linearity of the components seems to be more visible. For
example, in our case, small variations in the signal ampli-
tudes (modulating and/or carrier) result in large differences
in the resulting output. The simulation in Spice seems to
smooth out the nonlinearity of the components. In this
sense, the diode clamping (circuits a-dc+ and b-dc-) is the
most sensitive to small variations of the input signals. We
tried physically different circuits to limit and optimize the
results. in order to allow a more flexible modulation of the
threshold of the diode we chose to use a circuit that allows
us to select by means of a potentiometer the amount of dc-
offset output. A different amounts of offset corresponds to
a greater or lesser depth of action of the modulating diode.
Pipelining. Figure 21 shows an ideal, 5-step model. First,
an abstract topology of the circuit, such as the ones in Fig-
ure 14-16, is generated (1). Then, the topology is mapped
onto an actual electronic topology, incorporating data from
real electronic components, but without any metrics re-
ferred to the final circuit layout, so that a simulation can be
rendered (2). The electronic circuit should be rendered as a
schematic in order to provide a standard visual feedback on
the result (3). Finally, the circuit schematic should be con-
verted into a description of the physical layout, including
component packaging and routes (4), so to be delivered for
PCB printing (5). Candidates for step 1 include substan-
tially all available programming languages, better if shifted
towards high-level due to data manipulation in the formal

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-356

https://easyeda.com/

dc+

op amp op amp op amp op amp op amp

dc+dc+ dc+ dc+

dc-

op amp op amp op amp

out

sigIn

op ampdc-

op amp

dc+

dc- dc- dc-

op ampdc+

sigIn

dc-op amp op ampop amp op amp dc- dc-dc+ op ampop amp op amp

sigIn

Figure 17. Third rewriting, pruned.

SW

HW

L-Generator

string

Parser Prunerdata structure data structure

DotGenerator

dot file

LtGenerator

asc file

LtSpice

audio file

EasyEDA Dot

graphic file

l-system

spec file

graphic filegraphic file

Generation

Mapping
SuperCollider

PCB

Figure 18. Implemented integrated pipeline.

Time (s)
0 0.5

0

2·104

Fr
eq

ue
nc

y (
H

z)

0.25

Time (s)
0 0.5

-0.577

0.5909

0

Time (s)
0 0.5

0

2·104

Fr
eq

ue
nc

y (
H

z)

0.25

Time (s)
0 0.5

-0.577

0.5909

0

Figure 19. LTSpice audio simulation with 4 rewritings,
55, 44, 3345.7 Hz.

model. A standard candidate for step 2 is indeed Spice3,
that takes as its input a so-called netlist, i.e. a textual spec-
ification of components and connections, and is able to run
simulation (including audio) and perform various analysis.
Various software packages are available for steps 4 and 5,
like e.g Autodesk Eagle. Actual available softwares for
electronic layout are intended as computer-aided software
for interactive editing toward the final layout organization,
not as automated tools. A critical issue in relation to the
ideal pipeline is that all the data should automatically tran-
sit from one step to the other. As an example, our choice
(EasyEDA) has been determined by file format compatibil-
ity with LTSpice IV. On one side, schematic capture soft-

Time (s)
0 1

0

2·104

Fr
eq

ue
nc

y (
H

z)

0.5

Time (s)
0 1

-0.6162

0.6022

0

Time (s)
0 1

0

2·104

Fr
eq

ue
nc

y (
H

z)

0.5

Time (s)
0 1

-0.6162

0.6022

0

Figure 20. LTSpice audio simulation with 4 rewritings,
439, 440, 442.5 Hz.

Generative design Electronic modelling Circuit visualisation Layout organisation PCB printing

1 2 3 4 5

Figure 21. Ideal pipeline.

wares (as required by 4) are intended for design, and in-
cludes Spice3 as a simulation engine, so that typically they
are able to export netlist files but not to import them. This
depends on the fact that such a passage would require au-
tomatic layout for drawing circuit schematic. In our case,
we solved by defining a grid algorithm. On a different but
correlated side, EDA softwares (5) aim at computer-aided
layout design, but not at a fully automatic one. Autorout-
ing facilities are available, but, as final physical layout de-
pends on such a large number of parameters, automation
is only partially possibles. Of course, very large, auto-
matically generated circuits still require a large amount of
hand-operated fine tuning of the layout before printing.

7. CONCLUSIONS

While still at a prototypical stage, we believe that our ap-
proach has shown potential interest for experimental computer-
design of audio analog synthesis, as can be seen from re-
sulting signals in Figure 20 and 19. Generative models
allow to describe not circuits, but families of circuits, that
share some features but may differ one from each other by
details. Thus, with automatic PCB routing, it could be pos-

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-357

Figure 22. PCB for root circuit via autorouting.

sible to create singleton, unique synthesizers/processors.
Indeed, the most delicate point is the layout for PCB print-
ing of large generated circuits, that is still not robust from
an automation perspective. But, once fine-tuned in relation
to real physical behavior, circuits can be simulated, and
only the final step (5) requires handcrafted operations. As
a future work, we are planning to print PCB boards and
test real final complex circuits, to analyze other analog cir-
cuits in order to decompose them, so that other generative
models may be taken into account.

U0C1

330nF R2
100k

R3

949meg

R4

51k

100k R5 D6

1N5817

C7

330nF R8
47k

U9

U10C11

330nF R12
100k

R13

949meg

R14

51k

100k R15 D16

1N5817

U17C18

330nF R19
100k

R20

949meg

R21

51k

100k R22 D23

1N5817

C24

330nF R25
47k

U26

C27

330nF R28
47k

U29C30

330nF R31
47k

U32

U33

R34
33k

R35

267k

R36

47k

C37
20pF

C38

330nF

C39

10µF

C40

330nF R41
47k

U42

C43

330nF R44
47k

U45

U46C47

330nF R48
100k

R49

949meg

R50

51k

100k R51 D52

1N5817

C53

330nF R54
47k

U55U56C57

330nF R58
100k

R59

949meg

R60

51k

100k R61 D62

1N5817

U63C64

330nF R65
100k

R66

949meg

R67

51k

100k R68 D69

1N5817

C70

330nF R71
47k

U72

U73C74

330nF R75
100k

R76

949meg

R77

51k

100k R78 D79

1N5817

U80C81

330nF R82
100k

R83

949meg

R84

51k

100k R85 D86

1N5817

C87

330nF R88
47k

U89C90

330nF R91
47k

U92

C93

330nF R94
47k

U95

U96

R97
33k

R98

267k

R99

47k

C100
20pF

C101

330nF

C102

10µF

C103

330nF R104
47k

U105

U106C107

330nF R108
100k

R109

949meg

R110

51k

100k R111 D112

1N5817

C113

330nF R114
47k

U115U116C117

330nF R118
100k

R119

949meg

R120

51k

100k R121 D122

1N5817

C123

330nF R124
47k

U125

C126

330nF R127
47k

U128

U129C130

330nF R131
100k

R132

949meg

R133

51k

100k R134 D135

1N5817

C136

330nF R137
47k

U138

U139C140

330nF R141
100k

R142

949meg

R143

51k

100k R144 D145

1N5817

C146

330nF R147
47k

U148

R149

50k
R150

50k

C151

2.2µF

U152

R153
33k

R154

267k

R155

47k

C156
20pF

C157

330nF

C158

10µF

U159C160

330nF R161
100k

R162

949meg

R163

51k

100k R164 D165

1N5817

U166C167

330nF R168
100k

R169

949meg

R170

51k

100k R171 D172

1N5817

C173

330nF R174
47k

U175U176C177

330nF R178
100k

R179

949meg

R180

51k

100k R181 D182

1N5817

U183C184

330nF R185
100k

R186

949meg

R187

51k

100k R188 D189

1N5817

V1

VV2

V

V+
-V

V+

15 4

V+
-V

2 16

V+
-V

V+

3 16

V+
-V

V+

15 4

V+
-V

3 14

V+
-V

16 17

V+
-V

3 14

v+
-v

* 2

V+
-V

16 17

V+
-V

14 15

V+
-V

V+

3 16

V+
-V

14 15

V+
-V

V+

15 4

V+
-V

V-

2 14

V+
-V

3 14

V+
-V

V-

17 4

V+
-V

V+

15 4

V+
-V

4 5

V+
-V

14 15

V+
-V

16 17

v+
-v

* 1

V+
-V

2 16

V+
-V

V-

2 14

V+
-V

1 4

V+
-V

V-

2 14

V+
-V

14 15

V+
-V

3 14

V+
-V

V-

17 4

V+
-V

16 17

V+
-V

V+

3 16

V+
-V

2 16

*
5

v+
-v

* 3

V+
-V

V-

17 4

V+
-V

V-

2 14

V+
-V

2 16

V+
-V

V-

17 4

V+
-V

V+

3 16

v+
-v

U0C1

330nF R2
100k

R3

949meg

R4

51k

100k R5 D6

1N5817

C7

330nF R8
47k

U9

U10C11

330nF R12
100k

R13

949meg

R14

51k

100k R15 D16

1N5817

U17C18

330nF R19
100k

R20

949meg

R21

51k

100k R22 D23

1N5817

C24

330nF R25
47k

U26

C27

330nF R28
47k

U29C30

330nF R31
47k

U32

U33

R34
33k

R35

267k

R36

47k

C37
20pF

C38

330nF

C39

10µF

C40

330nF R41
47k

U42

C43

330nF R44
47k

U45

U46C47

330nF R48
100k

R49

949meg

R50

51k

100k R51 D52

1N5817

C53

330nF R54
47k

U55U56C57

330nF R58
100k

R59

949meg

R60

51k

100k R61 D62

1N5817

U63C64

330nF R65
100k

R66

949meg

R67

51k

100k R68 D69

1N5817

C70

330nF R71
47k

U72

U73C74

330nF R75
100k

R76

949meg

R77

51k

100k R78 D79

1N5817

U80C81

330nF R82
100k

R83

949meg

R84

51k

100k R85 D86

1N5817

C87

330nF R88
47k

U89C90

330nF R91
47k

U92

C93

330nF R94
47k

U95

U96

R97
33k

R98

267k

R99

47k

C100
20pF

C101

330nF

C102

10µF

C103

330nF R104
47k

U105

U106C107

330nF R108
100k

R109

949meg

R110

51k

100k R111 D112

1N5817

C113

330nF R114
47k

U115U116C117

330nF R118
100k

R119

949meg

R120

51k

100k R121 D122

1N5817

C123

330nF R124
47k

U125

C126

330nF R127
47k

U128

U129C130

330nF R131
100k

R132

949meg

R133

51k

100k R134 D135

1N5817

C136

330nF R137
47k

U138

U139C140

330nF R141
100k

R142

949meg

R143

51k

100k R144 D145

1N5817

C146

330nF R147
47k

U148

R149

50k
R150

50k

C151

2.2µF

U152

R153
33k

R154

267k

R155

47k

C156
20pF

C157

330nF

C158

10µF

U159C160

330nF R161
100k

R162

949meg

R163

51k

100k R164 D165

1N5817

U166C167

330nF R168
100k

R169

949meg

R170

51k

100k R171 D172

1N5817

C173

330nF R174
47k

U175U176C177

330nF R178
100k

R179

949meg

R180

51k

100k R181 D182

1N5817

U183C184

330nF R185
100k

R186

949meg

R187

51k

100k R188 D189

1N5817

V1

VV2

V

V+
-V

V+

15 4

V+
-V

2 16

V+
-V

V+

3 16

V+
-V

V+

15 4

V+
-V

3 14

V+
-V

16 17

V+
-V

3 14

v+
-v

* 2

V+
-V

16 17

V+
-V

14 15

V+
-V

V+

3 16

V+
-V

14 15

V+
-V

V+

15 4

V+
-V

V-

2 14

V+
-V

3 14

V+
-V

V-

17 4

V+
-V

V+

15 4

V+
-V

4 5

V+
-V

14 15

V+
-V

16 17

v+
-v

* 1

V+
-V

2 16

V+
-V

V-

2 14

V+
-V

1 4

V+
-V

V-

2 14

V+
-V

14 15

V+
-V

3 14

V+
-V

V-

17 4

V+
-V

16 17

V+
-V

V+

3 16

V+
-V

2 16

*
5

v+
-v

* 3

V+
-V

V-

17 4

V+
-V

V-

2 14

V+
-V

2 16

V+
-V

V-

17 4

V+
-V

V+

3 16

v+
-v

Figure 23. LTSpice drawing from automatic generated asc
file, third rewriting, with a zoomed module.

8. REFERENCES

[1] C. Roads, The Computer Music Tutorial. Cambridge,
MA, USA: MIT Press, 1996.

[2] D. O’Sullivan and T. Igoe, Physical Computing. Sens-
ing and Controlling the Physical World with Comput-
ers. Boston, Mass.: Course Technology, 2004.

[3] M. M. B. Vellasco, R. S. Zebulum, and M. A. Pacheco,
Evolutionary Electronics: Automatic Design of Elec-
tronic Circuits and Systems by Genetic Algorithms.
Boca Raton, FL, USA: CRC Press, Inc., 2001.

[4] A. Thompson, P. Layzell, and R. S. Zebulum, “Ex-
plorations in design space: Unconventional electronics
design through artificial evolution,” IEEE TRANSAC-
TIONS ON EVOLUTIONARY COMPUTATION, vol. 3,
no. 3, pp. 167–196, 1999.

[5] E. R. Miranda, Composing music with Computers.
Burlington, MA: Focal Press, 2001.

[6] N. Collins, Handmade Electronic Music. The art of
hardware hacking. New York–London: Routledge,
2006.

[7] R. Ghazala, Circuit-Bending. Build your own alien in-
struments. Indianapolis: Wiley, 2005.

[8] R. Salminen. (2000) Design Your
Own Distortion. [Online]. Available:
http://www.generalguitargadgets.com/how-to-build-it/
technical-help/articles/design-distortion/

[9] P. Horowitz and W. Hill, The Art of Electronics, 3rd ed.
New York, NY, USA: Cambridge University Press,
1989.

[10] VV.AA. (2012) DIY Circuit De-
sign: Waveform Clamping. [Online]. Avail-
able: https://www.engineersgarage.com/tutorials/
diy-circuit-design-waveform-clamping?page=3

[11] T. Q. A.R.Newton, D.O.Pederson, and A.Sangiovanni-
Vincentelli, “SPICE3 Version 3f3 User’s Manual,” De-
partment of Electrical Engineering and Computer Sci-
ences, Berkeley, CA, Usser’s manual, 1993.

[12] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic
Beauty of Plants. New York: Springer, 1990.

[13] J. A. Kaandorp and J. Kübler, The Algorithmic Beauty
of Seaweeds, Sponges, and Corals. New York, NY,
USA: Springer-Verlag New York, Inc., 2001.

[14] H. Meinhardt, The Algorithmic Beauty of Sea Shells,
3rd ed. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2003.

[15] E. Gansner, E. Koutsofios, and S. North, Drawing
graphs with dot, 2006.

[16] S. Wilson, D. Cottle, and N. Collins, Eds., The Super-
Collider Book. Cambridge, Mass.: The MIT Press,
2011.

[17] G. Brocard, The LTSpice IV Simulator: Manual, Meth-
ods and Applications. Künzelsau: Swiridoff Verlag,
2011.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-358

http://www.generalguitargadgets.com/how-to-build-it/technical-help/articles/design-distortion/
http://www.generalguitargadgets.com/how-to-build-it/technical-help/articles/design-distortion/
https://www.engineersgarage.com/tutorials/diy-circuit-design-waveform-clamping?page=3
https://www.engineersgarage.com/tutorials/diy-circuit-design-waveform-clamping?page=3

