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Abstract

In the framework of finite order variational sequences generalized
Jacobi morphisms for General Relativity are explicitly represented by
means of variational vertical derivatives and compared with classical
results concerning the variation of the Einstein tensor.
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1 Introduction

In this note we shall evaluate the Jacobi morphism for the Hilbert–Einstein
Lagrangian and verify that the result provides an alternative way to get the
variation of the Einstein tensor. We consider the geometrical formulation of
calculus of variations on finite order jets of a fibered manifold in terms of
variational sequences introduced by Krupka [10, 11].

We introduce the notion of iterated variation of a section as an i–parameter
‘deformation’ of the section by means of vertical flows and thus define the
i–th variation of a morphism in the variational sequence, which, in turn,
is very simply related to the iterated Lie derivative of the morphism itself.
Relying on previous results of us [6] on the representation of the Lie deriva-
tive operator in the variational sequence we can then define an operator on
the quotient sheaves of the sequence, the variational vertical derivative. We
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relate the second order variation of a generalized Lagrangian with the varia-
tional Lie derivative of generalized Euler–Lagrange operators associated with
the Lagrangian itself [4, 5]. In particular, we show then that Euler–Lagrange
equations as well as Jacobi equations, for a given Lagrangian λ, can be ob-
tained from a unique variational problem for the Lagrangian δ̂λ (the vari-
ational vertical derivative of λ), in terms of its generalized symmetries (see
also [3]). The generalized Jacobi morphism is then represented as a new ge-
ometric object in the variational sequence. It turns out that the generalized
Jacobi morphism is closely related with the generalized Helmholtz morphism.

As an application of the above mentioned results, the Jacobi morphism
for the Hilbert–Eistein Lagrangian is calculated and a proposition stating its
equivalence with the variation of the Eistein tensor is proved.

2 Variational sequences on jets of fibered man-

ifolds

Our framework is a fibered manifold π : Y → X, with dimX = n and
dimY = n + m (see e.g. [12]). For r ≥ 0 we are concerned with the r–jet
space JrY ; in particular, we set J0Y ≡ Y . We recall the natural fiberings
πrs : JrY → JsY , r ≥ s, πr : JrY → X, and, among these, the affine fiberings
πrr−1. We denote multi–indices of dimension n by underlined Greek letters
such as α = (α1, . . . , αn), with 0 ≤ αµ, µ = 1, . . . , n; by an abuse of notation,
we denote with λ the multi–index such that αµ = 0, if µ 6= λ, αµ = 1, if
µ = λ. We also set |α| .= α1 + . . . + αn and α!

.
= α1! . . . αn!. The charts

induced on JrY are denoted by (xλ, yiα), with 0 ≤ |α| ≤ r; in particular, we

set yi0 ≡ yi. The local vector fields and forms of JrY induced by the above
coordinates are denoted by (∂

α
i ) and (diα), respectively.

For r ≥ 1, we consider the natural complementary fibered morphisms
over the affine fibering JrY → Jr−1Y

D : JrY ×X TX → TJr−1Y , ϑ : JrY ×Jr−1Y TJr−1Y → V Jr−1Y , (1)

which induce the natural fibered splitting

JrY ×Jr−1Y T
∗Jr−1Y =

(
JrY ×Jr−1Y T

∗X
)
⊕ C∗r−1[Y ] , (2)

where C∗r−1[Y ] ' JrY ×Jr−1Y V
∗Jr−1Y .
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The above splitting induces also a decomposition of the exterior differen-
tial on Y , (πr+1

r )∗◦d = dH+dV , where dH and dV are called the horizontal and
vertical differential , respectively. If f : JrY → IR is a function, then we set
Dα+λf

.
= DλDαf , where the operator Dλ is the standard formal derivative.

The following sheaves will be needed in the sequel.
i. For r ≥ 0, the standard sheaves Λp

r of p–forms on JrY .
ii. For 0 ≤ s ≤ r, the sheaves Hp

(r,s) and Hp
r of horizontal forms , i.e. of

local fibered morphisms over πrs and πr of the type α : JrY → ∧pT ∗JsY and
β : JrY → ∧pT ∗X, respectively.

iii. For 0 ≤ s < r, the subsheaf Cp(r,s) ⊂ H
p
(r,s) of contact forms , i.e.

of sections α ∈ Hp
(r,s) with values into ∧p(C∗s [Y ]). There is a distinguished

subsheaf Cpr ⊂ Cp(r+1,r) of local fibered morphisms α ∈ Cp(r+1,r) which project
down onto JrY .

According to [13], the fibered splitting 2 yields naturally the sheaf split-
ting Hp

(r+1,r) =
⊕p

t=0 C
p−t
(r+1,r) ∧ Ht

r+1, which restricts to the inclusion Λp
r ⊂⊕p

t=0 Cp−tr ∧ Hth
r+1, where Hph

r+1
.
= h(Λp

r) for 0 < p ≤ n and h is defined
to be the restriction to Λp

r of the projection of the above splitting onto the
non–trivial summand with the highest value of t.

2.1 Generalized Euler–Lagrange and Helmholtz–Sonin
morphisms in variational sequences

We refer now to the theory of variational sequences on finite order jet spaces,
as it was developed by Krupka. By an abuse of notation, denote by d kerh
the sheaf generated by the presheaf d kerh. Set Θ∗r

.
= kerh + d kerh.

Definition 1 The r–th order variational sequence associated with the fibered
manifold Y → X is the resolution by exact sheaves of the costant sheaf IRY

(see [10]):

0→ IRY → Λ0
r →E0 Λ1

r/Θ1
r →E1 Λ2

r/Θ2
r →E2 . . .→EI−1 ΛIr/ΘI

r →EI ΛI+1
r →d . . .→d 0

(3)

The quotient sheaves in the variational sequence can be conveniently
represented. If k ≤ n, then the sheaf morphism h yields the natural iso-
morphism Ik : Λk

r/Θ
k
r → Hkh

r+1
.
= Vkr : [α] 7→ h(α). If k > n, then

the projection h induces the natural sheaf isomorphism Ik : (Λk
r/Θ

k
r) →

(Ck−nr ∧Hnh
r+1)/h(d kerh)

.
= Vkr : [α] 7→ [h(α)] [13].
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Let α ∈ C1
r ∧Hnh

r+1. Then there is a unique pair of sheaf morphisms

Eα ∈ C1
(2r,0) ∧Hnh

2r+1 , Fα ∈ C1
(2r,r) ∧Hnh

2r+1 , (4)

such that (π2r+1
r+1 )∗α = Eα − Fα, and Fα is locally of the form Fα = dHpα,

with pα ∈ C1
(2r−1,r−1) ∧Hn−1

2r.

Let β ∈ C1
r ∧ C1

(r,0) ∧Hn
r . Then there is a unique morphism

H̃β ∈ C1
(2r,r) ⊗ C1

(2r,0) ∧Hn
2r

such that, for all Ξ : Y → V Y , Eβ̂ = C1
1

(
j2rΞ⊗H̃β

)
, where β̂

.
= jrΞcβ,

C1
1 stands for tensor contraction and c denotes inner product. Furthermore

there is a unique pair of sheaf morphisms

Hβ ∈ C1
(2r,r) ∧ C1

(2r,0) ∧Hn
2r , Gβ ∈ C2

(2r,r) ∧Hn
2r , (5)

such that π2r
r
∗
β = Hβ − Gβ and Hβ = 1

2
A(H̃β), where A stands for an-

tisymmetrisation. Moreover, Gβ is locally of the type Gβ = dHqβ, where
qβ ∈ C2

2r−1 ∧Hn−1
2r−1, hence [β] = [Hβ].

2.2 Generalized Jacobi morphisms in variational se-
quences

The Lie derivative operator with respect to the r-th order prolongation jrΞ
of a projectable vector field (Ξ, ξ) can be conveniently represented on the
quotient sheaves of the variational sequence in terms of an operator, the
variational Lie derivative LjrΞ [6]. In particular, if p = n + 1 and η ∈ Vn+1

r ,
then

LjrΞη = E(Ξcη) + H̃dη(j2r+1Ξ) . (6)

Definition 2 Let ψktk , with 1 ≤ k ≤ i and i any integer, be the flows gen-
erated by the vertical (variation) vector fields Ξk. Let σ : X → Y be a
section. An i–th variation of σ generated by (Ξ1, . . . ,Ξi) is a smooth section
Γi : I × X → Y , 0 ∈ I ⊂ IRi, such that Γi(0) = σ and Γi(t1, . . . , ti) =
ψiti ◦ . . . ◦ ψ

1
t1
◦ σ .

Definition 3 Let α : JrY → ∧kT ∗JrY and let Γi be an i–th variation of the
section σ generated by an i–tuple (Ξ1, . . . ,Ξi). We define the i–th variation

of the morphism α to be δiα
.
= ∂i

∂t1...∂ti
|t1,...,ti=0(α ◦ jrΓi(t1, . . . , ti)).
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The following Lemma states the relation between the i–th variation of a
morphism and its iterated Lie derivative (see also [8]).

Lemma 1 Let α : JrY → ∧kT ∗JrY and LjrΞk
be the Lie derivative op-

erator with respect to jrΞk. Let Γi be the i–th variation of the section
σ by means of the variation vector fields Ξ1, . . . ,Ξi on Y . Then we have
δiα = (jrσ)∗LjrΞ1 . . . LjrΞi

α.

Definition 4 We call the operator δ̂i
.
= [δiα] = jrσ

∗LΞi
. . .LΞ1 [α] the i–th

variational vertical derivative operator.

This enables us to represent variations of morphisms in the variational
sequence and we can thus state the following important main Theorem [4, 5].

Theorem 1 The operator δ̂ is a functor defined on the category of varia-
tional sequences.

Proof. Let α ∈ (Vnr )Y . Let d, d̄ be the exterior differentials and δ̂,
¯̂
δ

the vertical variational derivative on JrY and δ̂JrY , respectively. We have

d̄δ̂α =
¯̂
δdα. QED

Proposition 1 Let λ ∈ (Vnr )Y , δ̂λ ∈ (Vnr )V Y . We have δ̂2λ = Ē(Ξ̄2cδ̂λ) +
H̃h(dδ̂λ)(Ξ̄2), where H̃h(dδ̂λ) is the unique morphism belonging to C1

(2r,r)⊗C1
(2r,0)∧

Hn
2r such that, for all Ξ1 : Y → V Y , EjrΞcdδ̂λ = C1

1(j2rΞ1⊗H̃h(dδ̂λ)); here C1
1

stands for tensor contraction.

Proof. In fact we have up to divergences δ̂2λ = ˆ̄δLjrΞ2λ = LjrΞ̄2
δ̂λ, so

that the assertion follows by a straightforward application of the representa-
tion provided by Equation 6 and by linearity properties of δi.

QED

By means of a simple calculation it is very easy to see that the following
holds true.

Lemma 2 Let χ(λ)
.
= H̃h(dδ̂λ). We have χ(λ) : J2rY → C∗r [V Y ] ∧ (∧nT ∗X)

and d̄Hχ(λ) = 0.

The following is an application of an abstract result due to Kolář [9],
concerning a global decomposition formula for vertical morphisms.
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Theorem 2 Let χ(λ) be as in the above Lemma. Then we have χ(λ) =
Eχ(λ) + Fχ(λ), where Eχ(λ) : J4rY → C∗0 [V Y ] ∧ (∧nT ∗X), and locally, Fχ(λ) =
d̄HMχ(λ), with Mχ(λ) : J4r−1Y → C∗r−1[V Y ] ∧ (∧n−1T ∗X).

Definition 5 We call the morphism J (λ)
.
= Eχ(λ) the generalized Jacobi

morphism associated with the Lagrangian λ.

3 The Jacobi morphism for the Hilbert-Einstein

Lagrangian

In the following we evaluate the Jacobi morphism for the Hilbert–Einstein
Lagrangian and verify that the result provides an alternative way to get the
variation of the Einstein tensor.

To this aim, let us first of all write explicitely the coordinate expression
of χ(λ)

.
= H̃h(dδ̂λ), for a generic Lagrangian λ.

From the main Theorem, by functoriality of δ̂, we have h(dδ̂λ) = h(δ̂dλ).
Let now λ = Lω, then dλ = ∂

α
i (L)diα∧ω and δ̂dλ = ∂

σ
j (∂

α
i d

j
σL)∧diα∧ω, thus

finally h(δ̂dλ) = h(dδ̂λ) = ∂j(∂
α
i L)diα ∧ dj ∧ ω. As a consequence we have,

with 0 ≤ |µ| ≤ 2r + 1:

χ(λ)
.
= H̃h(dδ̂λ) = (7)

= (∂j(∂
µ

i L)−
s−|µ|∑
|α|=0

(−1)|µ+α| (µ+ α)!

µ!α!
Dα∂

α
j (∂

µ

i L))ϑiµ⊗ϑj ∧ ω
.
= χ

µ

ijϑ
i
µ⊗ϑj ∧ ω ;(8)

and by a backwards procedure, which is essentially an integration by parts
(see e.g. [9]), we get, up to divergencies:

J (λ) = (−1)|µ|Dµχ
µ

ijϑ
i⊗ϑj ∧ ω = (9)

(−1)|µ|Dµ

χµi j − s−|µ|∑
|α|=0

(−1)|µ+α| (µ+ α)!

µ!α!
Dαχ

µ+α

j i

ϑi⊗ϑj ∧ ω . (10)

Let now dimX = 4 and X be orientable. Let Lor(X) be the bundle of
Lorentzian metrics on X (provided that it has global sections). Local fibered
coordinates on J2(Lor(X)) are (xλ; gµν , gµν,σ, gµν,σρ).

The Hilbert–Einstein Lagrangian is the form λHE ∈ H4
2 defined by λHE =

LHEω, were LHE = r
√
g. Here r : J2(Lor(X)) → IR is the function such
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that, for any Lorentz metric g, we have r ◦ j2g = s, being s the scalar
curvature associated with g, and g is the determinant of g.

The function LHE is a linear function in the second derivatives of g; thus
λHE is a special Lagrangian. Owing to a well known property of λHE we
have EdλHE

∈ C1
(2,0) ∧H4

2 and a direct computation shows that EdλHE
= G

.
=

R− 1
2
s g, R being the Ricci tensor of the metric g and G the Einstein tensor.

The Jacobi morphism for λHE is

J (λHE)
.
= Eχ(λHE) =

=
1

2
[−∇λ∇λwβα + rβλwλα − rαλwλβ − 2Rβ

ραλw
ρλ + δβαrρλw

ρλ +

+ (Gβ
α +

1

2
sδβα)w +∇β∇λwλα +∇α(gβγ∇λw

λ
γ )− δβα∇λ(g

λγ∇ρw
ρ
γ)] ,

where ∇ is the covariant derivative with respect to the metric connection,
wαβ = γαβ − 1

2
gαβγ, γ = γλλ and γαβ = δgαβ is the variation of the metric

tensor.
Comparing with results in the literature [1, 2], we can conclude that

J (λHE)
.
= Eχ(λHE) = δ̂G. In fact, as a consequence of Proposition 1, we

have the following (see also [3, 8]).

Proposition 2 Let λHE be the Hilbert–Einstein Lagrangian, G the corre-
sponding Einstein tensor (i.e. the corresponding generalized Euler–Lagrange
morphism in the variational sequence) and δ̂ the variational vertical deriva-
tive operator. We have (up to divergencies):

δ̂2λHE = EλHE
+ Eχ(λHE) ≡ G+ δ̂G . (11)

This has relevant consequences. Among them, we recall that the variation
of the Einstein tensor has proved to be an important tool for the study of the
positivity of the energy in General Relativity. The Jacobi morphism, being
the adjoint operator of the Hessian [7], can be used to provide global results
in this direction. This topic will be developed elsewhere.
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