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Abstract 

Neutralino dark matter is studied in the context of a supergravity scheme where the soft scalar mass terms are not 
constrained by universality conditions at the grand unification scale. We analyse in detail the consequences of the relaxation 
of this universality assumption on the supersymmetric parameter space, on the neutralino relic abundance and on the event 
rate for the direct detection of relic neutralinos. 

1. Introduction 

The phenomenology of neutralino dark matter has been studied extensively in the Minimal Supersymmetric 
extension of the Standard Model (MSSM) [ 11. This model incorporates the same gauge group as the Standard 
Model and the supersymmetric extension of its particle content. The Higgs sector is slightly modified as 
compared to that of the Standard Model: the MSSM requires two Higgs doublets HI and Hz in order to 
give mass both to down- and up-type quarks and to cancel anomalies. After Electra-Weak Symmetry Breaking 
(EWSB), the physical Higgs fields consist of two charged particles and three neutral ones: two scalar fields 
(h and H) and one pseudoscalar (A). The Higgs sector is specified at the tree level by two independent 
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Fig. I. The (r,~,/z. p) plane for tan0 = 8. The lines of constant rnx = 30 GeV. 60 GeV, 90 GeV are displayed as dashed lines. The lines 

of constant P = 0. I, 0.5, 0.9, 0.99 are shown as solid lines. The dotted region denotes the domain forbidden by present LEP data. 

parameters: the mass of one of the physical Higgs fields and the ratio of the two vacuum expectation values, 
usually defined as tan/3 = u*/L~ G (Hz)/(HI). Th e supersymmetric sector of the model introduces some 
other free parameters: the mass parameters Ml, M2 and Ms for the supersymmetric partners of gauge fields 
(gauginos) , the Higgs-mixing parameter p and, in general, all the masses of the scalar partners of the fermions 
(sfermions). 

In the MSSM it is generally assumed that the gaugino masses are equal at the grand unification scale MoCT: 
M,( MG(~) E ml/2 and hence are related at lower scales by 

M,:M2:M3=al:a2:a3 (1) 

where the cy, (i = 1, 2, 3) are the coupling constants of the three Standard Model gauge groups. The neutralinos 
are mass-eigenstate linear superpositions of the two neutral gauginos (7 and 2) and the two neutral higgsinos 
(fir and l??) 

x = a17 + a22 + a3Aj + aJf;r2. (2) 

The neutralino sector depends, at the tree-level, on the following (low-energy) parameters: MI = $ tan* BwM2, 
M2 zz 0.8nzti;l, ,U and tan /3. Neutralino properties are naturally discussed in the (mt/2, pu) plane, for a fixed 
value of tan p. As an example. in Fig. 1 the lines of constant mass for the lightest neutralino (m,) and constant 
gaugino fractional weight (P E a: + a:) are plotted in the (ml,*, p) plane for tanp = 8. We observe that the 
mass of the lightest neutralino increases from the bottom left to the top right, while the neutralino composition 
changes from higgsino dominance in the top-left region of the plane to gaugino dominance in the bottom-right. 
The regions forbidden by accelerator data are also displayed in Fig. 1. 

The low-energy MSSM scheme is a purely phenomenological approach, whose basic idea is to impose as 
few model-dependent restrictions as possible. In this approach the lightest neutralino is a favourite candidate for 
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cold dark matter. This scheme has been employed extensively in the analysis of the size and the relevance of 
various possible signals of neutralino dark matter: direct detection [ 2-41, signals due to neutralino annihilation 
in celestial bodies, namely the Earth and the Sun [5,6], and signals from neutralino annihilation in the galactic 
halo [ 7 ] . The MSSM provides a useful framework in which neutralino phenomenology may be analysed without 
strong theoretical prejudices which could, a posteriori, turn out to be incorrect. This scheme is also frequently 
employed in analyses of the discovery potential of future accelerators [ 81, 

At a more fundamental level, it is natural to implement this phenomenological scheme within the supergravity 
framework [ 9- 111. One attractive feature of the ensuing model is the connection between soft supersymmetry 
breaking and EWSB, which would then be induced radiatively. The essential elements of the model are described 
by a Yang-Mills Lagrangian, the superpotential, which contains all the Yukawa interactions between the standard 
and supersymmetric fields, and by the soft-breaking Lagrangian, which models the breaking of supersymmetry. 
Here we only recall the soft supersymmetry breaking terms 

+ { [ A!,h!,,zoH~ RI> + A:l,,h:,&,H,& + A:bh$,&H2ii’/, + h.c.] - B,uH,H? + h.c.} 

+ C Mi( AlAi + hi/\,) (3) 

where the 4, are the scalar fields, the Ai are the gaugino fields, HI and Hz are the two Higgs fields, 0 and 
1 are the doublet squark and slepton fields, respectively, and 0, b and I? denote the SCJ(2)-singlet fields for 
the up-squarks, down-squarks and sleptons. In Eq. (3), m, and M, are the mass parameters of the scalar and 
gaugino fields, respectively, and A and B denote trilinear and bilinear supersymmetry breaking parameters, 
respectively. The Yukawa interactions are described by the parameters h, which are related to the masses of the 
standard fermions by the usual expressions, e.g., m, = hfu2. 

The supergravity framework is usually implemented with a number of restrictive assumptions about unification 
at Mcm-: 

(i) Unification of the gaugino masses: M;( Mom) = rnli2, 
(ii) Universality of the scalar masses with a common mass denoted by mu: m,( Mot,-r) = me, 

(iii) Universality of the trilinear scalar couplings: A’(MG~) = Ad(M~m) = A”( MG~) E Aomo. 
These conditions have strong consequences for low-energy supersymmetry phenomenology, and in particular 
for the properties of the neutralino as dark matter particle. Typically, the lightest neutralino is constrained to 
regions of gaugino dominance, that entail a large relic abundance (in wide regions of the parameter space 
R,h’ exceeds the cosmological upper bound) and a small direct detection rate for neutralino dark matter. 
Indirect signals from the neutralino, such as high-energy neutrinos from the Earth and Sun, and the products 
of annihilation in the halo, are practically undetectable [ 1 I]. 

The above assumptions, particularly (ii) and (iii), are not very solid, since universality may occur at a scale 
higher than Mom, i.e., the Planck scale or string scale [ 121, in which case renormalization above MG~ may 
weak universality in the mi, e.g., between scalars in 5 and lJ representations of SU(5) [ 131. Moreover, in 
many string models the my’s are not universal even at the string scale. 

In a number of recent works [ 14,151, deviations from some of the unification conditions have been considered. 
In particular, in Ref. [ 141 phenomenological consequences for neutralinos of a relaxation of assumption (ii) 
have been analysed in the regime of large values of tan p. It has been shown that deviations from condition 
(ii) may entail a changeover in neutralino composition from a gaugino-like state to a higgsino-like state (or at 
least to a higgsino-gaugino mixed state), with important consequences for neutralino phenomenology. 

In this paper, we first explore, over the full range of tan /3, the various scenarios which may occur when 
condition (ii) is relaxed, with an approach which is similar to the one adopted in the large-tan fl analysis 
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of Ref. [ 141. We then discuss in detail the ensuing consequences for neutralino dark matter, with particular 
emphasis for its direct detection. 

In the following, we first discuss which constraints can be applied to the parameters when specific physical 
requirements are imposed. In Section 2, we summarize the conditions implied by radiative EWSB and define 
the type of departure from universality examined in this paper. Then, in Section 3 we establish some upper 
bounds on the supergravity parameters by requiring that radiative EWSB does not occur with excessive fine 
tuning among different terms. In Sect.IV we analyse in detail the constraints due to the requirement that EWSB 
takes place radiatively. Subsequently, in Section 5 cosmological constraints, derived from the evaluation of 
the neutralino relic abundance, are discussed. Other constraints, from experimental data on b + sy processes 
and on the mass of the bottom quark mh, are applied in Section 6. In Section 7 the effects of these various 
constraints are first displayed in the (rn,/z, m) plane for fixed tan /3 and Ao, and then shown in the (ml/z, ,u) 
plane, which provides the most useful representation for discussing neutralino phenomenology. We recall some 
specific properties of the neutral Higgs bosons in Section 8. Finally, in Section 9 event rates for direct detection 
of neutralino dark matter are discussed. Conclusions are presented in the last section. 

2. Radiative EWSB 

We recall that the tree-level scalar potential for the neutral Higgs fields may be written in the form 

V, = (Mi, + CL*) IHt I2 + (M$ + ,LL*) j&j2 - Bp(HtHz + h.c.) + quartic D terms. (4) 

The parameters of this potential must obey the following physical conditions: 

sin 2p = 
-2B,u 

kf2,,+ ML2 +2/s' 

MS=2 ML, - A4$ tan’ /3 

tan* /3 - 1 
- 2p2, 

(5) 

(6) 

M2,=M~,+M;~+2/2>0. (7) 

Here MA is the mass of the CP-odd neutral Higgs boson (see Section 8 below), and Eq. (7) must in fact 
be strengthened to MA 2 (MA)),,, where (MA)lb is the experimental lower bound [ 161. For instance, for 
tan p 2 3? (MA)[b N 45 GeV. Notice that the sign of p is defined according to the convention of reference 
[ I]. We remark that although Eqs. (4)-( 7) are expressed at the tree level, in our actual calculations l-loop 
corrections to Vi [ 171 have been included. The MQ'S (as well as the sfermion and the gaugino masses and the 
parameters A, B and ,u) evolve from the MG~ scale down to the MZ scale according to the Renormalization 
Group Equations (RGEs). This is how Eq. (6) may be satisfied, even if MH, and MH~ are equal at MG~. 

In this work we consider deviations from universality in the scalar masses at MG~, which split MH, from 
MH?. This effect is parameterized as 

M2Hpf~b-d = mi( 1 + 4). (8) 

The parameters 6; which quantify the departure from universality for the Mi, will be varied in the range 
( - 1, + I), but are taken to be independent of the supersymmetry parameters. This is an Ansatz, since, when 
evolving the scalar masses from the unification scale (Planck scale or string scale) to the GUT scale MGW, 
the deviation parameters are in general functions of all the supersymmetry parameters [ 181. 

Following a common procedure, Eq. (5) is used to replace the parameter B by tan/I. Thus the set of 
independent parameters becomes rn1/2, mo, Ao, tan p, and p2 is given in terms of these parameters by Eq. (6), 
suitably corrected by l-loop effects: only the sign of p remains undetermined. Obviously, values of ,!.L* are 
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accepted only if they exceed the experimental lower bound &, which is derived from the lower limit on the 
chargino mass [ 161: Ipibl N 45 GeV. 

We have solved the RGEs using the l-loop beta functions including the whole supersymmetric particle 
spectrum from the GUT scale down to Mz, neglecting the possible effects of intermediate thresholds. Two-loop 
and threshold effects on the running of the gauge and Yukawa couplings are known not to exceed 10% of the 
final result [ 191. While this is of crucial importance as far as gauge coupling unification is concerned [ 191, it 
is a second-order effect on the evolution of the soft masses. Since neutralino properties are studied over a wide 
range of variation for the high scale parameters, such a degree of refinement is not required here. 

In order to specify the supersymmetry phenomenology, boundary conditions for the gauge and Yukawa 
couplings have to be specified. Low-scale values for the gauge couplings and for the top-quark and the tau- 
lepton Yukawa couplings are fixed using present experimental results. In particular, we assign for the top mass 
the value m, = 178 GeV [ 201. In addition, we require the unification of the bottom and tau Yukawa couplings 
at the GUT scale, as would be suggested by a unifying group that includes an SU( 5)-like structure [ 2 I]. 

The values of MM, and MHz at the Mz scale, obtained from the RGEs, may be parameterized in the following 
way: 

M?H, = aim:/2 -t bimz + ciA;mi + d,Aomom,p. (9) 

(Notice that, in our notation, all running quantities written without any further specification are meant to denote 
their values at Mz.) The coefficients in the expression (9) are functions of tanp and of the Si’s. They are 
displayed in Fig. 2 (a,b) for the case of universal scalar masses, (i.e., St = 0). The coefficients for Mi, turn 
out to be very stable as functions of tan p, except for small tanp. More precisely, a:! N -2.5 for tan p 2 4 
with all the other coefficients much smaller (of order 0.1). As far as ML, is concerned, whereas ct and dl are 
again very stable (of order O.l), at and bi vary rapidly as functions of tan p. This property of at and bi is 
due to the very fast increase of h” for increasing tanp. 

When a departure from mo universality is introduced, the coefficients in Eq. (9), except for ai and al, 
become functions of the parameters ~3;: bi, cl and dl depend on 6, and b2, c2 and d2 on ~52. Whereas the b,‘s 
are rapidly-increasing functions of the &‘s, the ci’s and the di’s are rather insensitive to these parameters. 

Stringent constraints on the parameters ml/z, mo, A0 and tan p follow from the request that the Mg,‘s, 
evaluated from Eq. (9)) satisfy Eqs. (6)-( 7). Explicitly, we require that p2 and Mi, given by the expressions 

p2 = 
,,2;- ,{(~~ - 

aztan’j3)m:,2+(bl -b2tan2P)mi 

M22 + (cl -c:!tan’/?)AEmi+ (dl -d2tan2p)Aomami/2} - 2 

M2, = JIm:,2 + Jzrni + J3 Aimi + J4Aomomlp - 2, (10) 

M~=(a1+a~+2J~)m~,~+(b~+b2+2J~)m~ 

+ (CI + cz + 2Jx)Airni + (dl + d2 + 2J4)Aomomlp - M$ 

3 K1mtj2 f KImi f K3Airni -I- K4Aomomlp - M: (11) 

satisfy the conditions: p2 > pTh, MA 2 (M~)lb mentioned earlier. 
The coefficients J, and Ki in Eqs. (lo), ( 11) are plotted as functions of tan p in Fig. 2 (c,d) for the case 

of ma universality. In Fig. 2c we notice that all the Ji’S are positive, with JI dominating over the others: for 
tan /3 2 4, one has J1 N 2.4. As far as the coefficients Ki are concerned, we see in Fig. 2d that only two 
of them are sizeable: K1 and K2. They are both decreasing functions of tan& with KI > K2. At very large 
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Fig. 2. Coefficients of the polynomial expressions (9)-( I I ) as functions of tan p: (a) coefficients of Mi,: 01 solid line. hi dashed line. 

(‘1 dot-dashed line and (11 dotted line. (b) coefficients of M$,,: (11 solid line, hi dashed line, c2 dot-dashed line and (12 dotted line. (c) 

coefficients of pL?: JI solid line, J2 dashed line, .I? dot-dashed line and Jd dotted line. (d) coefficients of Mi: KI solid line, K: dashed 

line, KI dot-dashed line and K4 dotted line. 

tan j3 these coefficients become very small, and K2 even becomes negative (but still small in magnitude) at 
tan 0 2 SO. 

In the case of non-universality, the coefficients 1, and K;, except for /I and K1, become functions of the 
parameters 6,. We will see in Section 4 that many important features of the supersymmetry parameter space 
depend on the signs of the two coefficients J2 and K2, We show in Figs. 3 and 4 how their signs depend on 
the values of the 6;‘s. In Fig. 3 the lines 52 = 0 are plotted in the (~52, 61) plane for a few values of tan /3: for 
each value of tan p, J2 is negative in the region above the relevant 52 = 0 line and positive below. Similarly, in 
Fig. 4 the K2 = 0 lines are displayed in the same (82, St) plane at fixed tan 0: K2 is negative above the K2 = 0 
lines. and positive below. 

We now make a few comments related to Eq. ( II), since the value of M,, plays a very crucial role in 
a number of important neutralino properties. This is due to the fact that many physical processes involving 
neutralinos are mediated by the neutral Higgs bosons. Thus the value of MA determines the size of the relevant 
cross sections both through Mi-dependence in propagators and, in an implicit way, through the couplings of 
the h and H bosons to quarks and to the lightest neutralino x (see Section 8). As a consequence, a small value 
of MA has the effect of enhancing the magnitude of the relevant cross sections. 

What values of MA do we obtain from Eq. (1 l)? Because of the properties of the coefficients Ki previously 
analysed, MA turns out to be a rapidly-decreasing function of tanp. In Fig. 5, MA is displayed at the represen- 
tative point ma = 50 GeV, ml/z = 200 GeV (l-loop corrections to MA have been included in the calculation). 
One notices that MA is 0( Mz) for tan fl 2 45. This feature provides one of the most appealing scenarios for 
neutral ino phenomenology. 
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Fig. 3. In the (82. 61 ) plane, the lines where J2 = 0 at fixed tan p 

dot-dashed line; tan p = 2, dotted line. 
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Fig. 4. In the (62, 61 ) plane, the lines where K2 = 0 at fixed tan fi are displayed: tan p = 53. solid line: tan p = 40, dashed line: tan p = 8. 

dot-dashed line. 

:1ot1 

-I 1 

-- ..-_ 
. 

> .-. .__ i 

2 200 -A, 

2 
t 

*l 

100 F- 
‘, .\,.,I 

0”” II,” 
I,, I. 

0 10 20 30 40 50 

tanp 

Fig. S. Graph of MA as a function of tan p at the representative point rn(l = SO GeV, ml,;! = 200 GeV. 

3. Constraints due to the absence of fine tuning 

Before we exploit fully the two constraints /;L~ > &, MA > ( MA)lh to restrict the parameter space, we 
apply the general criterion that the expression (10) is satisfied without excessive tuning among the various 
terms [22,10]. In radiative EWSB the physical value of M z, which sets the EW scale, may be written as 

M; = 2(J,& + J& -t &Aim:, + J~Aomom,,2 - p’). (12) 

Accidental compensation (fine tuning) among different terms in Eq. (12) may occur. We explicitly require the 
absence of too-strong fine tuning, i.e., cancellations among exceedingly large values of the parameters ml/~, 
1~. A0 and p. Denoting by T,I~ a parameter which quantifies the degree of fine tuning, we require [22] that 

(13) 

where .Y; denotes any of the previous parameters. For instance, for A0 = 0, Eq. ( 13) provides the following 
conditions 

(14) 
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where in the last approximate equality we have taken v/ = 100, which means that we allow an accidental 
compensation at the 1% level. The upper bound on me depends on tan p and the ai’s, whereas that on ml/2 
varies only with tan /3 (because of the nature of the Ansatz (8) : see the comment after Eq. (8) > . 

For the sake of illustration, we give some numerical examples, taking again vf = 100. For tanp = 8, we 
have. for 61 = 82 = 0, rnli2 5 400 GeV, mo ,$ 1.5 TeV. For two other pairs of values of the ai’s, which will be 
discussed later on, we obtain mo 5 2.4 TeV for 61 = -0.2, 82 = 0.4 and mo 5 3.0 TeV for 61 = -0.8, 62 = 0.2. 
At tan j3 = 53 we have ml/;! 5 415 GeV and mo 5 (1.7-1.9) TeV, depending on the values for the aI’s. These 
inequalities imply for the neutralino mass mx 5 170 GeV. 

In the following, when graphical representations for the parameter space are shown, we display no-fine-tuning 
upper bounds obtained from the general expression ( 13) with qf = 100. These upper bounds are denoted by 
dashed lines in Figs. 9-14. 

4. Constraints due to radiative EWSB 

The EWSB constraints are given by the set of Eqs. (5)-(7), or equivalently by Eqs. ( lo)-( 1 l), together 
with the conditions p2 2 ,L& and MA > (MA)~,. From these equations the values of mo and ml/z (or ,u and 
~~12) are constrained and thus some domains in the (ml/z, mo) or (rn1/2, p) planes can be excluded. Let us 
start this discussion by analyzing the condition MA > ( MA)lt,, with MA given by Eq. ( 11). For the sake of 
simplicity, we put Aa = 0 for the moment. To discuss the role of MA > ( MA)jb in placing bounds on ml/2 and 
me, we first rewrite it explicitly as 

K~nzf,,, + K-zrng 2 Mi + (MA)& (15) 

The nature of this quadratic form in the (m1/2, mo) plane obviously depends on the signs of the two coefficients 
K1 and K2. As we have seen in Sect.11, it turns out that, whereas Kt is always positive, the sign of K2 depends 
on the values of tan j3 and of the 6i’s. Two different situations may occur, depending on the sign of K2. In the 
case K2 > 0 the region allowed by (15) is the one above an elliptical branch centered in the origin of the 
(nzli2, me) plane. Therefore, both parameters mli2 and mo are bounded from below. When K2 < 0, the region 
allowed by Eq. ( 15) is the one between the ml/;! axis and an upward-moving hyperbolic branch. Thus, whereas 
1y1~/2 is still bounded from below, mo is now constrained from above. The upper bound on mo is particularly 
stringent when K2 is large and negative and Kt is not large. This occurs, for instance, at very large values of 
tan /? in the case of mo universality. 

This discussion may be extended straightforwardly to the case A0 # 0. In this case the constraint MA > 
(MA),,) may be written explicitly as 

KI$~, + K& + K&jmt + Kdommp 2 M$ + (MA)& (16) 

The nature of this quadratic form depends on the sign of its determinant. When this determinant is positive, 
an elliptical branch in the (mli2, mo) plane provides lower bounds on the two variables. On the other hand, a 
negative determinant entails an upward-moving hyperbolic branch which places an upper bound on me. These 
branches are part of tonics whose axes are somewhat tilted with respect to the (mlp, mo) axes. 

Similar implications follow from the constraint ,u* > &, which may be written explicitly as (for Ao = 0) 

(17) 

This quadratic form may be discussed in much the same way as the one in Eq. ( 15). From the properties 
seen in Section 2 it turns out that the coefficient J1 is always positive, whereas the coefficient Jz is positive in 
the universal case, but may be negative when deviations from mo universality are introduced. Thus it follows 
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that the condition p2 > f& puts lower bounds on mt/2 and either lower or upper bounds on mo, depending 
on the sign of 52 (due to analytic properties identical to those discussed previously below Eq. (15)). The 
condition p2 2 ,u& sets a very stringent upper bound on mo, whenever 32 is negative and large in magnitude. 
The extension to the case A0 # 0 may be repeated here in a way similar to the above discussion for Eq. (16). 

Thus we have seen that two important constraints, p2 2 & and MA 2 (MA)& are at work in bounding ml/2 
and mo, when EWSB is required to occur radiatively. When J2 and K2 are positive, the two conditions place 
lower bounds on ml/2 and ma. Similar constraints are established by the requirements that also the sfermion 
masses and mx satisfy the relevant experimental bounds. These last conditions are not explicitly discussed here, 
but they are taken into account in our evaluations. 

It is worth emphasizing that the most dramatic impact of the conditions p2 2 ~1~ and MA > (MA) oh over 
the parameter space occurs when either J2 or K2 (or both of them) are negative. Under these circumstances, 
as we have seen above, ,!L’ > ,u;~ and MA 2 ( MA)[~ may place stringent upper limits on mg, bounding the 
neutralino parameter space considerably. Which of the two conditions prevails over the other depends on the 
specific regions of the full parameter space and on the values of the Si’s. In Section 7 we will illustrate the 
implications of these constraints in a few specific examples. 

5. Cosmological constraint 

Let us turn now to the evaluation of the neutralino relic abundance OX/r2 and to the requirement that the 
lightest neutralino is not overproduced, i.e., L&h2 5 1. 

The neutralino relic abundance fixh2 is evaluated following the standard procedure [23-261, according to 
which OX h2 is essentially given by flxh2 0: (v~,,,,u)$, where < rrann u >int is the thermally-averaged annihilation 
cross section, integrated from the freeze-out temperature to the present temperature. The standard expansion 

((TZl”” c) =a+bx+..* may be employed, with x = T/m,, except at s-channel resonances (Z, A, H, h) , where 
a more precise treatment has to be used for the thermal average [24]. In the evaluation of (a,,~) the full 
set of annihilation final states ( ff pairs, gauge-boson pairs, Higgs-boson pairs and Higgs-gauge boson pairs), 
as well as the complete set of Born diagrams are taken into account [26]. We recall that one of the largest 
contributions to the annihilation cross section is provided by diagrams with the exchange of the pseudoscalar 
Higgs boson A. (More relevant properties of the Higgs bosons are discussed in Section 8.) We note that the 
constraint f&h2 I 1 is very effective for small and intermediate values of tanj3, but is not restrictive for large 
values of tanp. The strong restriction in the former case comes from the large value of MA implied by small 
and intermediate values of tanp (see Fig. 5) (also the couplings of A to x and fermions are small for these 
values of tanp). 

We show in Figs. 6-8 a few examples where flxh2 is given as a function of mx in the form of scatter 
plots. These scatter plots have been obtained by varying the parameters mo and ml/2 on a equally-spaced linear 
grid over the ranges 10 GeV 5 no 5 2 TeV, 45 GeV 2 ml12 _ < 500 GeV. Furthermore, we remark that all 
evaluations presented in this paper are for positive values of p, since negative values of ,CL are disfavoured by 
the constraints due to mb and b -+ sy processes (see Section 6). The configurations shown in Figs. 6-8 satisfy 
the constraints due to radiative EWSB, discussed previously. 

In Fig. 6 is shown the case tan/I = 8 and Si = 0. Here, as expected because of the intermediate value of 
tan p, many neutralino configurations provide Oxh2 > 1, whilst only a few give axh2 5 1. (Also, MA is large 
here because of sizeable values of K2 (see Fig. 2d), which helps increase Oxh2.) An exception occurs when 
m, = Mz/2, since in this case the annihilation cross section is greatly enhanced due to the Z-pole contribution. 

In Fig. 7 we display Oxh2 in a case of non-universality (St = -0.2, S2 = 0.4, for definiteness). It is easier to 
find flxh2 I 1 in this case, since here the departure from ma universality implies a changeover of the neutralino 
composition from the gaugino dominance of the previous example to higgsino dominance (this point will be 
elucidated in Section 7). This implies a larger x-x annihilation cross section and consequently a smaller relic 
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abundance. Thus only a few neutralino configurations are excluded by the L&h2 5 1 condition. 
An example for O,h* in the case of large tan /? and & = 0 is shown in Fig. 8. We see that f&h* 5 1 imposes 

no constraint since, for this very large value of tan /3, annihilation cross sections are very large. 
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6. Constraints from b -+ sy and mb 

In the evaluation of the b + sy decay rate we have included the supersymmetric contributions arising from 
the charged Higgs loops and chargino loops given in Ref. [27]. The Higgs term always adds to the Standard 
Model value and usually entails too large a value for the rate. On the other hand, the chargino contribution gives 
rise to a destructive interference for ,LL > 0 (in our convention for the sign of ,u) At large tan p supersymmetric 
contributions may be sizeable: unless the destructive interference protects the decay rate, it can very easily be 
driven out of the present experimental bounds. In the light of this property, the positive /L scenario appears to 
be the favourite one and, as already remarked, in this paper we only show results for this case. In comparing 
our predictions with observations we have taken into account that, as discussed in Ref. [ 281, large theoretical 
uncertainties are present, mainly due to QCD effects. In particular, predictions depend very strongly on the 
choice of the renormalization scale, leading to an inaccuracy of order 25%. To account for this effect we have 
relaxed the experimental bounds of Ref.[29] by the same amount, keeping the renormalization scale fixed at 
the representative value of 5 GeV. Thus, our requirement is that the rate of 0 ---) sy decay falls into the range 
0.8 x 1O-J < BR(6 i sy) 5 5.3 x IO-“. 

The supersymmetric corrections to the bottom mass include contributions from bottom-squark-gluino loops 
and from top-squark-chargino loops [ 301. In the present analysis, the bottom mass is computed as a function 
of the other parameters and required to be compatible with the present experimental bounds. Theoretical 
uncertainties in the evaluations of mb arise both from the running of the RGE’s and from assumptions about 
Yukawa unification. Since our choice is to solve RGE’s at the l-loop level and without thresholds, we estimate 
an uncertainty of the order of 10% in our prediction for rnb. In addition, a relatively small departure (see Ref. 
[ 3 I ] ) from bottom-T Yukawa unification at the GUT scale may significantly change the bottom mass result. To 
take into account such uncertainties we have chosen to weaken the bounds on ml, given in [ 321 by an amount 
of 10%. Thus we require rnh to fall into the range 2.4 GeV 6 mh( MZ) 5 3.7 GeV. 
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7. Allowed regions in neutralino parameter space 

We discuss now in a few examples how the various constraints analysed in the previous sections complement 
each other in shaping the allowed regions in the parameter space. We start with the (ml/z, ma) representation, 
and later display our results in the (ml/z, p) plane which provides the most useful representation for neutralino 
phenomenology. 

Let us first clarify a few graphical conventions adopted in our (ml/z, mo) and (ml/l, p) plots. Regions 
are left empty when at least one of the following constraints is not satisfied: (i) experimental bounds on 
Higgs, neutralino and sfermion masses [ 16,331, (ii) the x is the Lightest Supersymmetric Particle (LSP), (iii) 

. 
radiative EWSB and p2 2 ,u& MA 2 ( MA)[~. Regions forbidden by the cosmological constraint (0,/z* I 1) 
are explicitly denoted by dots and those disallowed by the b -+ sy, rn,, constraints (but not by the previous ones) 
are denoted by crosses (crosses are displayed only in the (ml/;?, mo) plane, but not in the (ml/z, p) plane, 
to simplify these plots). The allowed domains are denoted by squares when they satisfy &h* > 0.01, or by 
diamonds otherwise in the (ml/z, ma) plots. They are denoted by squares in the (ml/z, CL) plots, independently 
of the fl,h* value. To simplify the discussion, we first take A0 = 0. We comment on the Ao # 0 case at the 
end of this section. 

As a first example, let us consider the representative point tan p = 8. For this intermediate value of tan p, 
the cosmological constraint is expected to be very effective in view of the arguments discussed in Section 5. 
This is actually the case for universal mg, when both K2 and J2 are positive (see Fig. 2)) so that the conditions 
of radiative EWSB do not set any upper limit on mo (Fig. 9a). The empty region in the lower part of these 
ligures is forbidden by the experimental bound on mx. As shown in this figure, in wide regions (denoted by 
dots) fixh2 > 1. Thus the cosmological constraint places a very stringent upper bound on mo for ml/2 2 150 
GeV. However, for smaller values of ml/z, an allowed horizontal region extends up to mo N 2 TeV. In fact, 
along this strip, mx N Mz/2 and then fl,h* < I is satisfied (see the discussion in Section 5). 

Moving away from the universal point towards a region where 52 is negative, we expect p* > ,& to be 
effective in placing a stringent upper bound on mo. This is actually the case in the example shown in Fig. lOa, 
which refers to the representative point Si = -0.2, & = 0.4 (J2 = -0.07). Here it is the bound p* > ,& which 
provides the most stringent constraint in disallowing the large (empty) domain on the right side. Nevertheless, 
flxh2 5 1 is still effective in excluding an internal region that would otherwise be allowed (see the discussion 
below). 

Keeping tan /? = 8, we complete our discussion by considering the representative point Si = -0.8,82 = 0.2 
shown in Fig. 1 la, which gives an example where J2 is very small. The peculiarity of this example will become 
clear when we discuss the relevant situation in the (rnlp, p) plane, to which we now turn. 

The shape and general properties of the physical region in the (ml/z, ,u) plane are dictated by the constraints 
previously derived, and they are determined most notably by 52. It is convenient to distinguish the two cases 
(i) 52 > 0 and (ii) 32 < 0. For case (i) at fixed ml,*, ,u increases for increasing me with the consequence that 
the allowed physical region extends to the right of the mo = mO,,,in line in the (ml/z, CL) plane, allowing for 
the neutralino only a gaugino-dominated region ( mO,min is the minimum allowed value of me). In the case (ii) 
(52 < 0), starting from the mo = mo,,i, line and increasing mo at fixed ml/z, one moves to the left and then 
one may reach regions of sizeable higgsino-gaugino mixing or even of higgsino dominance. Case (i) applies 
in particular to the case of m0 universality (Si = 0) for any value of tan p, This is clear from Fig. 3, which 
shows that in the (62, Si) plane the origin is below any J2 = 0 line. An example of this situation is displayed 
in Fig. 9b (for tan j3 = 8). 

However, as we have seen in Section 2, when the assumption of rnc universality is relaxed, then 52, which in 
the universal case is positive and small, may very easily become negative and sizeable. In this case a changeover 
in neutralino composition from an originally gaugino-like state into a higgsino-like one occurs. This remarkable 
property, discussed in Ref. [ 141 for large tanp, is in fact valid over the whole range of tanp, if the degree 
of non-universality is increased for decreasing tan p. An example of case (ii) (52 < 0) is shown in Fig. lob, 
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Fig. 9. (a) Parameter space in (rnt/2, m(t) plane for tanfl = 8, 61 = 0 and 82 = 0. Empty regions are excluded by: (i) accelerator 

constraints, (ii) radiative EWSB conditions, (iii) neutralino is not the LSP Dots represent the region where O,h* > 1. Regions with 

crosses are excluded by b - sy and m,, constraints. In the regions denoted by squares, 0.01 < fl,!z? < I. The region without fine-tuning 
is inside the box bounded by dashed lines. (b) Parameter space represented in the (NZ,/~, p) plane. Solid lines correspond to the extreme 
values of rnt). Notations are the same as in (a), but crosses are omitted here. 

where the allowed region extends widely into the higgsino region. It is instructive to compare Fig. 9 with Fig. 
10. Looking at sections (a) of these figures, we notice that changing the values of the 8;‘s from the set S; = 0 
to the set 61 = -0.2, ~52 = 0.4 relaxes substantially the cosmological constraint. Parts (b) of these figures 
provide the explanations for this feature. In fact, whereas in the former case the neutralino is mainly a gaugino, 
in the latter case x is higgsino-like or mixed. As we already remarked, this implies an increase of the x-x 
annihilation cross section and a reduction of the relic abundance. The physical region also displays an extension 
to the right, in the example of Fig. 1 lb, but here the effect is very tiny, due to a very small 52 and to the severe 
upper bound on ma for ml/z 2 180 GeV. This is the first case to show a very marked (ml/T, pu) correlation. 

Now we turn to the case of large tan p, where new features appear. First, the MA 2 ( M,J)[~ condition is no 
longer protected by large values of KI, and may become effective in restricting the parameter space. Secondly, 
the nzb and b + sy conditions are now rather stringent over large domains and not only occasionally relevant as 
in the smaller tanp cases. Thirdly, the cosmological constraint is usually overwhelmed by the other conditions. 
In Figs. 12a, 13a, 14a we have, for tanp = 53, the following sequence of examples. (i) 61 = O,& = 0 (Fig. 
12a): here K2 < 0, 52 > 0, and since K2 is negative and sizeable in magnitude, the constraint MA > ( MA)u, 
sets an extremely stringent upper bound on mo and thus forbids the wide (empty) region on the right. (ii) 
Si = O,& = -0.3 (Fig. 13a): here one still has K2 < 0, J2 > 0, but lK21 is smaller than in the previous case, 
so the constraint MA > (MA) 11~ is still very effective but less compelling than in the case (i). Also, the role of 
the nzb and the b + sy conditions is more significant here. (iii) St = 0.7, S:! = 0.4 (Fig. 14a): here K2 > 0, 
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J2 < 0, MA > ( MA)/~ gives a lower bound on ml/z and the ,u’ 1 p;,, condition provides the frontier of the 
empty domain on the right. 

The (nziiz, ,u) representations for large tan p and for the representative 6, points discussed above are 
displayed in Figs. 12b-14b. We start from the universal case of Fig. 12b. Here we expect gaugino-dominated 
configurations. However, because the values of mo are strongly limited from above (see Fig. 12a), we have the 
extremely correlated states shown in Fig. 12b. In the case of Fig. 13b one has J2 > 0, and gaugino-dominated 
states occur. No strong (ml/z, ,u) correlation shows up in this case. The opposite case, J2 < 0, is shown in 
Fig. 14b, where higgsino-dominated configurations appear. 

It is worth adding a few comments about the examples of Figs. 11 and 12, where the physical regions in 
the (1ni/2, pu) plane show a very pronounced correlation in the two variables. This feature occurs whenever 
I JzI~~; GE JI mf,=, Le., whenever mo is severely bounded from above and/or /.J21 is very close to zero. As far 

as the values of IJzI/J r are concerned, we notice that in the universal case (see Fig. 2c), except for small 
values of tan p, Jz/Jl N 0.04 (in fact, for tan fi 2 4, J1 2~ -UT z 2.5, J2 2 --bz E 0.1). Thus for 6i = 0 a 
strong (?rri/z, pu) correlation occurs whenever mo 5 U(ml,;?). This happens in the example of Fig. 12, where 
nza is severely bounded by the MA 2 (M~)lh condition, and in the case of Fig. 11, where the correlation is 
enforced by a very small value of J2: 32 = 0.06. A (m ij2, ,u) correlation is also exhibited in Fig. 9b for the 
range ml\2 2 150 GeV, where mo is bounded by the cosmological constraint. 

In general, we do not consider these physical regions with a strong (ml,;?, p) correlation as unnatural, since 
they are usually realized without much tuning. We recall that the size of the coefficients JI and J2 is dictated 
by the RGEs with their intrinsic cancellations, and that one naturally has J1 = O(a few), J2 = O(O.l-0.01). As 
we have seen, these properties, combined with severe upper bounds on mo, are sufficient to generate the (ml/z, 
Jo) correlation. 
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Fig. Il. The same as in Fig. 9, but with 61 = -0.8 and 82 = 0.2. 

We turn now to the A0 # 0 case. First we recall that A0 is constrained in the range lAoI 5 3 from the absence 
of charge and color breaking [34]. Thus, allowing A0 # 0 does not change essentially the general picture 
previously discussed. The previous scenarios still occur, but at different points in the parameter space. Two 
specific comments are in order here: (i) independently of its sign, A0 disfavours the changeover from gaugino 
dominance to higgsino dominance in the neutralino composition, (ii) a negative A0 reduces the value of MA as 
compared to the A0 = 0 case, and so either provides a light A boson (and hence interesting phenomenology) 
or enforces a more stringent constraint on the parameter space. 

8. Neutral Higgs bosom 

Neutralino direct detection, to be discussed in the next section, is based on neutralino-nucleus scattering. In 
this process, exchanges of neutral Higgs bosons play a dominant role, provided the Higgs masses are not too 
heavy. It is convenient to recall here some relevant properties of the couplings of x with matter via Higgs 
exchange. As was already mentioned in the Introduction, the two Higgs isodoublets HI, H2 yield 3 neutral 
Higgs mass eigenstates: one CP-odd (A) state, whose mass MA is given by expression ( 11) and two CP-even 
states (of masses Mh, MH, Mh < MH), which are obtained from Z$, @ by a rotation through an angle LY 

H=coscu#+sincu@, h = -sincu@ +cosa@. (18) 

It is important to notice here that (Y depends very sensitively on MA, being very close to zero for tan p 2 4 
and rising very fast to 7r/2 for MA 5 O( Mz) (see Fig. 15). 

The angle a plays a crucial role in determining the size of the neutral h, H-quark couplings. Here, as we are 
interested in X-nucleus scattering, we discuss explicitly only the couplings involving the CP-even states, since 
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Iz, H are dominant compared to A. The low-energy neutralino-quark effective Lagrangian generated by Higgs 
exchange may be written as follows [35] 

Here F/,,H is the ratio of the Higgs-neutralino coupling to the W(2) gauge coupling, which depends on the 
composition of x 

Fjl = UI( ~3 sin (Y + a4 cos cy) , FH = ~2 (~3 cos CY - ~4 sin a) 

and the k, are given, for the up-type quarks and the down-type quarks respectively, by 

(20) 

H h 

ku sin cy / sin p cos ff/ sin p 

kd COSCY/COS~ -sincujcosp, (21) 

Note that, in general, since tanp > 1, the strength of the coupling to the down-type quarks is bigger than 
the one to the up-type quarks, and C e~ usually gets a sizeable contribution when the h boson is exchanged 
(h is lighter than H and is therefore favored because of the propagator denominator in Eq. ( 19)) and when 
a E 7-r/2, i.e., when MA 6 O( Mz). When this regime does not apply, the size of C,R is much suppressed. 

The cross section for elastic neutralino-nucleus scattering which follows from the effective Lagrangian ( 19) 
will be given in Section 9.2. 
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9. Direct detection 

Much experimental activity is under way in the direct search for neutralino dark matter and the perspectives 
for significant improvements in experimental sensitivities are encouraging [ 361. In this class of experiments, a 
relic neutralino would be detected by the amount of energy released by its elastic scattering off nuclei in an 
appropriate apparatus. A signature would be provided by a yearly modulation of the signal, whose observations 
would require high statistics and extremely good stability in the detector response. Here we evaluate the event 
rates for this process extending previous analyses to the non-universal Si # 0 case. Various materials are being 
used in the current experiments and others are under investigation for future detectors. In this paper we analyse 
two of the most interesting materials: Ge (in its natural composition) [37-391 and 129Xe [40]. 

9.1. Differential rates 

The nuclear recoil spectrum may be evaluated from the expression 

dR 
2Ejy= 

where 

Ro,i = NT$ci(v). 

(22) 

(23) 

In Eqs.(22)-(23) we use the following notations: the subscript i refers to the two cases of coherent and spin- 
dependent effective interactions, NT is the number of the target nuclei per unit of mass, px is the local neutralino 
matter density, and ER is the nuclear recoil energy given by ER = m$dv2( 1 - cosO*)/m~, where 8* is the 
scattering angle in the neutralino-nucleus center-of-mass frame, rnN is the nuclear mass, mred is the neutralino- 
nucleus reduced mass and u is the relative velocity. The maximum value of ER is Ey = 2mzep2/mN. 
Returning to (22)-( 23), F( ER) denotes the nuclear form factor, and gi is the (coherent/spin-dependent) 
neutralino-nucleus cross section. The factor I(ER) is given by 

~‘nm, ( En 1 

(24) 
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where .f(c) is the velocity distribution of neutralinos in the Galaxy, as measured in the Earth’s rest frame, 
and cml,,(E~) is given by u,,,i”(ER) = (m,vER/(2&,)) ‘I2 The averages appearing in Eqs. (22)-(24) denote . 
averages over the velocity distribution in the Earth’s rest frame. An explicit formula for I(ER) in the case of a 
Maxwellian velocity distribution may be found in Ref. [4]. 

The differential rates to be discussed below will be expressed in terms of the electron-equivalent energy E,, 
rather than in terms of ER. These two variables are proportional: E,, = QER where Q is called the quenching 
factor: typical values of Q will be discussed shortly. 

9.2. Neutralino-nucleus elastic cross sections 

The total cross sections for neutralino-nucleus elastic scattering have been evaluated following standard 
procedures [3,4,35,41,42]. Here we only summarize some of the main properties. Neutralino-quark scattering 
is described by amplitudes with Higgs-boson exchanges and Z-boson exchange in the t-channel, and by 
amplitudes with squark exchanges in the s- and u-channels. The neutral Higgs bosons considered here are the 
two CP-even bosons: h, H and the CP-odd one: A, whose couplings were previously discussed in Section 8. 

The relevant properties for these amplitudes are: ( 1) Higgs-boson exchanges contribute a coherent cross 
section which vanishes only when there is no zino-higgsino mixture in the neutralino composition [ 351, (2) 
Z-boson exchange provides a spin-dependent cross section which receives contributions only from the higgsino 
components of x, (3) squark exchanges contribute a coherent cross section (due to zino-higgsino mixing) as 
well as a spin-dependent cross section (due mainly to the gaugino components of x) [ 411. As examples we 
recall here only the expressions for the coherent cross section due to the exchange of a Higgs boson (h or H) 
and the spin-dependent one due to Z exchange. 

The former cross section is easily evaluated from the effective Lagrangian of Eq. ( 19) [ 3.51 

Z' m;Z.H 
h,Hmrrd 2 A2 (25) 

where A is the nuclear mass number and ffh,H is given by 

The quantity f may be expressed conveniently in terms of the TN sigma-term u?rN and of a parameter a which 
is related to the strange-quark content of the nucleon y by 

a=Y(m.sl(m,,+md)), y=2 w W) 
(NIL& + ddlN)’ 

(27) 

One has 

where 

(29) 

Unfortunately, the values of both the quantities y and CT,,! are somewhat uncertain. Here, for y we use the 
central value of the most recent evaluation: y = 0.33 f 0.09, obtained from a lattice calculation [43]. For 
gr,+‘, which is derived by phase-shift analysis and dispersion relation techniques from low-energy pion-nucleon 
scattering cross-sections [ 44,451, we employ the value of Ref. [ 451: u,N = 45 MeV. We then find the results: 
glr = 123 MeV, gd = 288 MeV (we use 2(m,/( m, + md) ) = 29 [46] ). We note that these values further 
reinforce the role of the down-type quarks as compared to the up-type ones. 



20 

Table I 

I! Berezinsky er (11. /Astroparticle Physics 5 (I 996) 1-26 

Characteristics of some current experiments. In the second column is reported the quenching factor Q, in the third column the electron- 
equivalent energy at threshold, in the fourth the square of the form factor at threshold, and in the last column the present experimental 

sensitivity. 

Nucleus Q Ei{ (keV) F*(E;, evts/ (kg d keV) 

Ge 1381 0.25 2 0.87 3.0 
Ge 1391 0.25 12 0.4 1 0.2 

Xe 1401 0.80 40 0.07 0.8 

We point out that the Higgs-nucleon couplings for nucleons bound in a nucleus may be renormalized by 
the nuclear medium. As a consequence, the strength of I might in principle be reduced to some extent [ 471. 
However, this effect is neglected here. 

Now let us turn to the spin-dependent cross section due to Z exchange. This may be cast into the usual form 

141,421 

(30) 

In this paper we use this formula for 73Ge (this isotope is present at the level of 7.8% in the natural composition 
of Ge) and to ‘29Xe. For these nuclei we employ the values of A2 obtained in the odd-group model [ 31, where 
only the odd nuclear species in odd-even nuclei are explicitly taken into account. The Aq’s in Eq. (30) denote 
the fractions of the nucleon spin carried by the quarks q in the nucleon of the odd species, and the T&,‘s stand 
for the third components of the quark weak isospin. The values for the Aq’s are taken from Ref. [ 481. 

It is worth noticing that the event rates for neutralino direct detection with the materials considered here are 
largely dominated by coherent effects in most regions of the parameter space. In the small domains where spin- 
dependent effects dominate over the coherent ones the total rates are usually too small to allow detection. The 
experimental strategy of employing materials enriched in heavy isotopes of high spin is interesting for a search 
for hypothetical dark matter particles which interact with matter via substantial spin-dependent interactions. 
However, this approach does not appear to be very fruitful for neutralinos. 

One more ingredient which enters the event rate in Eq. (22) is the nuclear form factor, which depends 
sensitively on the nature of the effective interaction involved in the neutralino-nucleus scattering. For the 
coherent case, we simply employ the standard parameterization [49] 

F(ER) = 3j’(q’o) ,-l/2,2q2 
v-0 

(31) 

where q2 = 1412 = 2rnNER is the squared three-momentum transfer, s N 1 fm is the thickness parameter for the 
nucleus surface, ~0 = ( r2 - 5s2) ‘/2, r = 1.2 AlI3 fm and jt (4~) is the spherical Bessel function of index 1. 

The form factor in Eq. (3 1) introduces a substantial suppression in the recoil spectrum unless qro < 1. A 
noticeable reduction in dR/dER may already occur at threshold ER = E$ = FL/Q when rod! is not 
small compared to unity. The actual occurrence of this feature depends on parameters of the detector material: 

h nuclear radius, quenching factor, threshold energy Pee. The values of these parameters for the nuclei considered 
in this paper are reported in Table 1 [ 36,38-401, and the values of F2(EJ$) calculated from Eq. (31) are given 
in the same table. Since we consider in this paper mainly the value of the differential rate near threshold, 
F’( Elph) is the most relevant quantity. We see from the values in Table 1 that the reduction introduced by the 
form factor is moderate in Ge, but quite substantial in ‘29Xe. 

In general, for the spin-dependent case there are no analytic expressions for the form factors. However, 
numerical analyses have been performed for a number of nuclei. The general feature is that these form factors 
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have a much milder dependence on ER as compared to the coherent ones, because only a few nucleons 
participate in the neutralino-nucleus scattering in this case. In our evaluations we use the results of Refs. 
[49,50] for 13’Xe and 73Ge respectively. 

9.3. Local neutralino density 

We denote the local halo density by pf, for which we use the estimate pl = 0.5 GeV cm-3 [ 511. For the value 
of the local neutralino density px to be used in the rate of Eq. (23), for each point of the model parameter 
space we take into account the relevant value of the cosmological neutralino relic density. When fix/z2 is larger 
than a minimal ( flh2)min required by observational data and by large scale structure calculations we simply put 
px = p/. When fi,h* turns out less than ( Oh2)~,,, the neutralino may only provide a fractional contribution 
0,h*/( fih*),i, = 5 to Oh2; in this case we take px = p&. The value to be assigned to ( Oh2)k” is somewhat 
arbitrary. Here we set it equal to 0.1. 

It is worth remarking here that, due to this scaling procedure, for the direct detection rate one has: (i) 
Ro,; K p/a; for Oxh2 > (.C?h*),, and (ii) Ro,i (X pjtr~i cx plgi,/(g annU:)int for Oxh2 < ( Rh2) min. Thus the rate 
Ro., is large in the regions of the parameter space where ui is large. This is trivial in case (i), but it is also true 
in case (ii), since when ‘+; is large also c B,,n increases but in such a way that usually the ratio Ui/cT,“” increases 
too. Because of the relation l&h2 K (gannu);: it follows that Ro,i is large for neutralino configurations with 
modest values of the relic abundance, and vice versa. 

9.4. Results .for detection rates 

The most significant quantity in comparing experimental data and theoretical evaluations for direct detection 
is the differential rate dR/dE,, = (dR/dER)/Q (with dR/dER defined in Eq. (22)) rather than the total 
rates, obtained by integration over wide ranges of E,,. By using the differential rate instead of the integrated 
ones, one obtains the best signal-to-background ratio. Note that the experimental spectra, apart from an energy 
interval around threshold, usually show a very flat behaviour, whereas signals for light neutralinos are decreasing 
functions of the nuclear recoil energy. 

A complete procedure would then be to compare the experimental and theoretical rates over the whole E,, 
range. However, to simplify the presentation here, we give our results in terms of the rate integrated over 
a narrow range of 1 keV at a specific value of E,,, the one which appears the most appropriate for each 
experiment: typically it corresponds to a point close to the experimental threshold. To be definite we consider 
the following cases: 

(i) Ge (natural composition). Among the various running experiments [ 361, we select the two which, at 
present, appear to provide the most stringent limits: (a) Caltech-PSI-Neuchatel [ 381 with E:t = 2 keV, 
differential rate N 3 events/( kg day keV); (b) Heidelberg-Moscow [ 391 with E:“, = 12 keV, differential 
rate 2 0.2 events/(kg day keV). Correspondingly, for Ge we have evaluated our rate by integrating 
dR/dE,, over the range (2-3) keV for experiment (a) and over (12-13) keV for experiment (b). It 
turns out that the case (b) provides the most stringent bound also for light neutralinos. 

(ii) ‘29Xe. In this case, taking into account the features of the DAMA experiment [40], we have considered 
the rate R integrated over the range 40-41 keV. 

Our results are shown in Figs. 16-19. Figs. 16-18 report the rate for a Ge detector for the regions of 
the parameter space which are depicted in Figs. 12-14, respectively. In parts (a) and (b) of each figure, 
R is displayed in the form of a scatter plot, in terms of mx and of the relic abundance, respectively. The 
horizontal line denotes the present level of sensitivity in the Heidelberg-Moscow experiment. We notice that, 
in all cases shown in these figures, the experimental sensitivity is already, for some configurations, at the level 
of the predicted rate. Some points of the supersymmetric parameter space, denoted by filled squares in Figs. 
12- 14, are even already excluded by present data. The exploration potential of this class of experiments as the 
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Fig. 16. Scatter plot of the rate for direct detection with a Ge [ 391 detector for tanp = 53, 81 = 0 and 82 = 0, as a function of )tfx 

(n) and as a function of fJxh2 (b). Parameters are varied on a linear equally-spaced grid over the ranges: 10 CeV 5 mo < 2 TeV. 
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Fig. 17. The same as in Fig. 16, but with 61 = 0 and 82 = -0.3 

sensitivity is improved is apparent from these figures. Fig. 19 shows the rate R for ‘29Xe for the region of 
the parameter space displayed in Fig. 13: again the horizontal line gives the present experimental sensitivity. 
A comparison of Fig. 19 with Fig. 17 shows that the Ge experiments are currently more effective. However, it 
has to he noticed that experiments with liquid Xe may become extremely competitive in the future [ 401. 
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Fig. 19. Scatter plot of the rate for direct detection with a Xe [40] detector for tan/3 = 53, 6, = 0 and 82 = -0.3, as a function of 

?nx (a) and as a function of Oxh2 (b). Parameters are varied on a linear equally-spaced grid over the ranges: 10 GeV 5 ~1 < 2 TeV, 
45 GeV 5 ml/z 5 500 GeV. 

A few more remarks are in order here: 
(i) The cases displayed in Figs. 16-18 present the common feature of providing fair chances for direct detec- 

tion. This is not a surprise, since these representative points all belong to the category of configurations 
with small values of MA. As was stressed before, once we move away from these appealing physical 
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(ii) 

regions of the neutralino parameter space, the rates for direct detection may fall far below (by many 
orders of magnitude) the detection sensitivities (present or future). This unfortunate situation occurs, for 
instance, typically as we move towards smaller values of tan /3. However, one should keep in mind that 
the regime of very large tan& where signals may be sizeable, represents a very interesting scenario, 
deserving much attention and exploration. In fact this is one of the two options, very small or very large 
tan p, which seem to fit low-energy phenomenology at the best [ 521. 
The scatter plots in parts (b) of Figs. 16-19 show explicitly a property previously mentioned in Section 
9.3, namely that the scaling procedure adopted to evaluate the neutralino local density implies a R-flxh2 
correlation. Configurations which provide a measurable R usually entail a low 0 and viceversa. Only in 
a few cases the neutralino may be detectable by direct detection and also provide a sizeable contribution 
to n. 

10. Conclusions 

In the present paper we have discussed some possible scenarios for neutralino dark matter which originate 
from the relaxation of the assumption of Strict universality for soft scalar masses at Mom. 

This approach derives from the general consideration that many crucial theoretical points entering not only 
grand unified and supersymmetric theories, not to mention the Standard Model, are far from being understood 
and/or verified. For this reason, any new theoretical assumption has to be fully scrutinized. This is even 
more important because new assumptions in supersymmetric models are often introduced not because of solid 
arguments, but rather for the sake of simplicity and for the need to reduce the large number of free parameters 
that would otherwise prevent any firm prediction. 

In our work we have discussed different scenarios, by considering various physical constraints in a sort of 
hierarchical order, giving top priority to the requirement of radiative EWSB, implemented with a no-fine-tuning 
criterion, and to the cosmological relic neutralino density constraint. Some other assumptions, often introduced 
in the literature, have been relaxed in our work. This is in particular the case for universality in the soft scalar 
masses. However, it has to be remarked that the type of departure from universality that we have considered in 
our paper is far from being the most general one, as was noticed in Section 2. In particular, it only refers to 
the Higgs masses, and not to the sfermion masses. 

The implications of the various scenarios on neutralino relic abundances and rates for detection rates have 
been analysed, and the impact of a non-universality in mc has been discussed for the whole range of tan p. We 
have shown that the departure from mc universality is particularly interesting in two respects: 

(i) Small values of MA are allowed: this has in itself the dramatic consequence for direct detection of 
generating a large value for the angle cr and large couplings to matter of the lightest neutralino x. 

(ii) Higgsino or mixed higgsino-gaugino configurations appear for all tan j% this contrasts with the pure gaug- 
ino configurations favoured by strict mu universality. Consequences of such a departure from universality 
on the size of the neutralino relic abundance have been analysed for both large and small values of tan p. 
It has been shown that, because of the previous properties, deviations from universality may reduce the 
value of f&h*. 

The predicted rates for direct detection have been analysed in detail and compared with current and foreseen 
experimental sensitivities. The role of the previous properties in opening interesting perspectives for this kind 
of search has been elucidated. We find that presently-running experiments are already impacting interesting 
regions of the neutralino parameters space in some of the non-universal scenarios discussed here. 
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