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Università di Urbino “Carlo Bo”

Ugo Merlone

Università di Torino

Abstract

We propose a simple dynamic adjustment mechanism, equivalent to the stan-
dard replicator dynamics in discrete time, to study the time evolution of a
population of players facing a binary choice game, and apply this mechanism
to minority games in order to investigate the effects of memory on the sta-
bility of the unique Nash equilibrium. Two different kinds of memory are
considered, one where the players take into account the current and the pre-
vious payoffs in order to decide the strategy chosen in the next period, and
the other one where the players consider the whole series of payoffs observed
in the past through a discounted sum with exponentially fading weights.
Both the memory representations proposed lead to an analytically tractable
two-dimensional dynamical system, so that analytical results can be given
for the stability of the Nash equilibrium, However, a global analysis of the
models performed by numerical methods and guided by the analytical results
shows that some complexities arise for intermediate values of the memory pa-
rameter, even if the stabilization effect of uniform memory is stated in both
cases.

JEL Classification: C72, C73.

Keywords: Binary games, Minority games, Replicator dynamics, Memory,
Stability.

1. Introduction

Collective behavior has been studied by several disciplines such as so-
ciology [21], politics [26], social psychology [2], industrial organization [17],
marketing [29], and communication [35] to name a few. In fact, according to
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[20], several processes such as residential segregation, voting, crowd behav-
ior, diffusion of innovations and consumption choices can be considered as
situations in which people adopt new norms or abandon existing ones.

Several contributions have examined binary choice games with external-
ities, i.e. a social system composed by a population of agents facing a bi-
nary choice such that the payoff obtained by each agent as a consequence of
the option chosen is affected by the number of agents currently making the
same choice (see e.g. [31], [32], [21]). In particular, repeated binary choice
games, expressed in the form of discrete dynamical systems, have recently
been studied by [5], [6], and different kinds of long run behaviors have been
evidenced, such as convergence to an equilibrium situation or endless self
sustained endogenous oscillations, both periodic and chaotic. When consid-
ering how individuals or populations change their strategy over time based
on payoff comparisons, it is common to consider the approach of evolutionary
games. In particular, according to [12], “the replicator equation is the first
and most important game dynamics studied in connection with evolutionary
game theory”.

In this paper, we propose a dynamic model in discrete time, based on a
particular kind of replicator dynamics proposed in [7] and discussed in [24],
to describe the time evolution, and, in particular, the long run behavior of
a binary choice game. The mathematical model proposed is expressed by an
elegant one-dimensional discrete dynamical system that simply states that,
at each time step t, a fraction of agents will change their choice at time t+ 1
by switching to the option that is observed to give a higher payoff in the
current time period. Such an evolutionary model is applied to a well known
class of binary games, denoted as minority games, characterized by the prop-
erty that the players who select the option chosen by the minority are more
rewarded. It is well known in the literature, and quite intuitive, that a pop-
ulation of agents that repeatedly play, in discrete time periods, a minority
game, tends to exhibit oscillations between the two strategies. In fact, play-
ers who choose the majority strategy are oriented to revise their decision
towards the option chosen by minority, and as a result, oscillatory behav-
iors are typically observed. Such oscillations may either converge in the long
run to an equilibrium situation – generally a Nash equilibrium characterized
by identical payoffs associated to the two choices – or continue indefinitely,
endogenously self-sustained by overshooting phenomena, without settling to
any stationary equilibrium in the long run (see e.g. [32], [5]). Quite famous
are the examples in the paper by Schelling (1973) such as the one concerning
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the binary choice about whether to use the car or not, depending on the traf-
fic congestion, or the celebrated ‘El Farol Bar Problem’ proposed by Arthur
in [3].

Minority games have also been proposed as simple stylized models able
to capture the essence of some features of the financial markets [10]. Fur-
thermore, [18] pointed how this situation could be useful as a special case of
market entry games.

In order to find adaptive mechanisms that stabilize the oscillations in
repeated minority games, several authors have proposed the introduction of
memory in the decision process, i.e. the players’ decisions are not only based
on the current payoffs observed, but also take account of payoffs observed in
the past. However, the effects of memory is revealed to be not univocal, and
several ambiguous conclusions can be found in the literature. (A comparison
of the titles of references [8] and [9] is quite emblematic.)

The motivation of this paper is to modify the evolutionary model pro-
posed by [14] in order to consider how past payoffs can affect current choices
in two different ways. The two ways we consider are both based on a weighted
average of the past outcomes and lead to a two-dimensional discrete dy-
namical system characterized by analytical tractability. The first proposed
method assumes that the players, in order to decide the next period strat-
egy choice, consider a weighted average, i.e., a convex combination of the
current payoffs and those observed in the previous time period (memory of
length one). The second method is the same considered in [14], and consid-
ers a weighted sum of all previously observed payoffs with exponentially (or
geometrically) distributed weights that discount past outcomes. Both these
generalization of the evolutionary model without memory are performed in
a way that does not modify the equilibrium points of the original model, and
only affects their stability properties. Our analytical results, expressed by
three propositions concerning local stability of the Nash equilibrium as well
as the local bifurcations leading to oscillatory behavior, give threshold values
of the memory parameter that depend on the speed of reaction by which
the players react to perceived differences in observed payoffs. On the basis
of these analytical results on local properties of the dynamic models around
the Nash equilibrium, we also perform numerical explorations of global prop-
erties of the same models. In this way we are able to examine the long run
outcomes obtained starting from initial conditions far from the Nash equi-
librium. Furthermore, we can analyze the dynamic effects observed when
parameters’ constellations are considered with values quite different with re-
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spect to the ones close to the stability ranges according to the proposition
proved. These numerical results reveal new, and sometimes unexpected,
properties of the evolutionary models with memory, so that some interest-
ing lessons on the methods used to study nonlinear dynamical systems are
drawn. In fact, phenomena of multistability, i.e. coexistence of several at-
tracting sets that characterize the long run dynamics, are observed. The
presence of these coexisting attractors, each with its own basin of attraction,
give rise to a strong path dependence, sometimes called “corridor stability”
in the economic literature (see [27]), and cannot be revealed by the analytical
study of local stability based on the standard linearization procedure of the
dynamical systems.

This paper is organized as follows. Section 2 presents the basic setup of
a model of repeated binary game with evolutionary dynamics based on the
exponential replicator. Section 3 proposes the generalization of the model
by considering a finite memory of length 1, and gives the proposition on
the effects of memory on local stability of the Nash equilibrium, as well
as the numerical analysis of some global dynamic properties, in particular,
the coexistence of attractors. Then, infinite and exponentially discounted
memory is introduced and results are proved about the stabilizing effects
of memory. Section 4 concludes and indicates further applications of the
methods outlined in this paper.

2. A Model of binary choice with evolutionary dynamics

Let us consider a population in which agents form unitary continuum.
Each agent faces a binary choice between two strategies: R and L. At time t
let x(t) ∈ [0, 1] be the fraction of agents playing R; consequently 1−x(t) play
L at the same time. Assume that the individual payoff of an agent employing
a given strategy at time t depends only on the number of agents making the
same choice or the other, say R(t) = R(x(t)) and L(t) = L(x(t)).

This framework is general enough to include several games such as the well
known n-players prisoner’s dilemma or minority games (e.g. [11]). Schelling
[31, 32] proposes several vivid and stimulating examples, taken from eco-
nomics, social sciences and everyday life, which can be represented in this
framework.

We now introduce a discrete-time evolutionary process to describe the
number of agents that at each time period t = 0, 1, 2, . . .update their choice,
under the assumption that the payoff obtained by both fractions of players at
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time t, i.e. R (x(t)) and L (x(t)), are common knowledge. The time evolution
of the fraction x(t) of players choosing R is assumed to be monotonically
influenced by the “gain” function

g(x) = R(x)− L(x) : [0, 1]→ R (1)

in the sense that higher gains cause an increase of the fraction of agents choos-
ing R. A typical monotone selection dynamics is given by the one proposed
in [7]. This dynamics eliminates dominated strategies and is analyzed in [24];
we consider this dynamics as, according to [34], experimental investigations
have found that subjects generally avoid dominated strategies.

x(t+ 1) = f(x(t)) = x(t) exp(αR(x(t)))
x(t) exp(αR(x(t)))+(1−x(t)) exp(αL(x(t)))

= x(t)
x(t)+(1−x(t)) exp(−αg(x(t)))

(2)

where α > 0 is the speed of reaction, a parameter that expresses the propen-
sity to switch to the opposite choice as a consequence of a payoff gain ob-
served in the current time period. It is worth remarking that, if x(0) ∈ [0, 1],
then x(t) ∈ [0, 1] for each t ≥ 0, as follows from the evident inequality
0 ≤ x

x+(1−x) exp(−αg(x))
≤ 1. Moreover, it is straightforward to see that x∗ = 0

and x∗ = 1, which correspond to “pure strategies” where “all players play
L” and “all players play R”, respectively, are boundary equilibrium points.
Interior equilibria exist at any x∗ such that g (x∗) = 0, i.e. are characterized
by identical payoffs, as we are considering minority games.

In the following, we consider an important class of binary choice games
known as minority games characterized by the property that players gain
higher payoff when they choose the strategy chosen by the minority of players,
i.e. R(x) is higher than L(x) when x is small, whereas R(x) is less than L(x)
for values of x close to 1. A typical example is shown in Figure 1, where the
payoff functions are linear, expressed by

R(x) = ax+ b ; L(x) = cx+ d with c > a and 0 <
b− d
c− a

< 1. (3)

For the sake of simplicity we shall use these linear payoff functions in the
numerical computations given in this paper, even if the analytical results
will be stated for more general nonlinear payoff functions such that:

Assumptions on minority games payoff functions. R : [0, 1] → R
and L : [0, 1] → R are differentiable functions such R(0) > L(0), R(1) <
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L(1) and they intersect in only one interior point x∗ ∈ (0, 1) where R(x∗) =
L(x∗).

A first consequence of these assumptions is that g′(x∗) ≤ 0. In the fol-
lowing, we shall assume, without loss of generality, that g′(x∗) < 0.

When the evolutionary mechanism (2) is applied under these assumptions,
a dynamic behavior characterized by oscillations around the unique Nash
equilibrium x∗ is obtained. These oscillations may converge or not to the
Nash equilibrium in the long run according to its stability properties, as
stated by the following proposition:

Proposition 1. Under the assumptions on payoff functions stated above, the
Nash equilibrium x∗ is locally asymptotically stable, with oscillatory conver-
gence, provided that

α < αf = − 2

x∗(1− x∗)g′(x∗)
(4)

where the derivative g′(x∗) = R′(x)−L′(x) < 0 is the relative slope of the two
payoff curves at their unique intersection x∗. As the parameter α increases
across the threshold value αf , then a flip (or period doubling) bifurcation
occurs.

Proof. The local stability condition immediately follows from the condition
for local asymptotic stability −1 < f ′(x∗) < 1; see [13]. From (2) this
condition becomes

−1 < 1 + αx∗ (1− x∗) g′(x∗) < 1.

Being g′(x∗) < 0 the right inequality is always satisfied, whereas the left one
gives (4).

A typical graph of the one-dimensional map (2) with payoff functions (3)
is shown in Figure 1b, obtained with parameters a = −0.5, b = 0.5, c = 0.8,
d = 0 and α = 7. In this case, the Nash equilibrium x∗ = d−b

a−c = 5
13

is
unstable (being α > αf = 6.5) and the long run dynamics of the minority
game settles on a stable cycle of period 2 (shown in the figure) starting from
any initial condition x(0) ∈ (0, 1).

As the speed of reaction α is further increased, the well known period-
doubling route to chaos is observed, as shown in the bifurcation diagram
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Figure 1: Left: Payoff functions R (x) and L (x) as formalized in (3). Right: Graph of (2),
the dynamics of x (t+ 1) = f (x (t)) with α = 7 and payoff functions (3) with parameters
a = −0.5, b = 0.5, c = 0.8, d = 0.

of Figure 2. This is a quite expected and well known dynamic behavior in
repeated minority games, characterized by contrarians’ switches of choices
associated with overshooting effects (represented by high values of the speed
of reaction α). In the following, we shall investigate the effects on the sta-
bility properties of the Nash equilibrium and, more generally, on the global
dynamics of the model, after the introduction of memory effects in this simple
evolutionary model proposed.

3. The two-dimensional model with finite memory of length 1

The evolutionary models considered in the previous section are based on
current payoffs, that is, the players’ decisions about the next period strategy
choice are based on the knowledge of current payoffs only. A generalization
of this assumption consists in replacing the current payoff with a weighted
average of it and some of the previously observed ones. In other words, we
consider a form of memory in the switching function (2) that describes the
number of players that decide to switch their strategy under the evolutionary
pressure driven by the payoff observed during the more recent M time periods

UR(t) =
M∑
k=0

ωkR(t− k); UL(t) =
M∑
k=0

ωkL(t− k) (5)

where M is the length of memory and ωk are the weights, normalized ac-

cording to
M∑
k=0

ωk = 1. Of course, for M = 0, the case with no memory is
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Figure 2: Bifurcation diagram showing x(t), the fraction of agents playing R, with bifur-
cation parameter α ∈ [0, 20] and the other parameters as in Figure 1.

obtained, and, for M > 0, the distribution of weights can be used to modu-
late the “shape” of past memory, and how much it differs from the case with
no memory. The model (2) with (5), given by

x(t+ 1) =
x(t)

x(t) + (1− x(t))e−α(UR(t)−UL(t))

becomes a difference equation of order M + 1, equivalent to a M + 1 dimen-
sional discrete dynamical system. In order to investigate the memory effects
and maintain, at the same time, a low dimensionality so that the model is
still analytically tractable, we shall consider the case of finite memory of
length 1 with weights ω0 = ω and ω1 = (1− ω), that is,

UR(t) = (1− ω)R(x(t)) + ωR(x(t− 1))
UL(t) = (1− ω)L(x(t)) + ωL(x(t− 1))

(6)

where ω ∈ [0, 1]. This way, the model reduces to the one without memory,
i.e. only current payoff is considered, for ω = 0, whereas agents only consider
the payoff of the previous period (ignoring the current one) for ω = 1. A
uniform average of the two payoffs is obtained when ω = 1

2
, i.e. when consid-

ering the arithmetic mean. As usual, after the introduction of the auxiliary
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variable y(t) = x(t−1), the model is expressed by a two dimensional discrete
dynamical system{

x(t+ 1) = x(t)eα((1−ω)R(x(t))+ωR(y(t)))

x(t)eα((1−ω)R(x(t))+ωR(y(t)))+(1−x(t))eα((1−ω)L(x(t))+ωL(y(t)))

y(t+ 1) = x(t)
(7)

It is easy to check that the equilibria are the same, i.e. y∗ = x∗ with x∗ = 0,
x∗ = 1 or x∗ at the interior intersection R(x∗) = L(x∗). However, the
stability conditions are influenced by the “memory parameter” ω, as stated
by the following proposition:

Proposition 2. Let x∗ ∈ (0, 1) be such that R(x∗) = L(x∗) where R(x) and
L(x) satisfy the assumptions stated above, and let

αx∗ (1− x∗) g′(x∗) > −4. (8)

Then the fixed point E= (x∗, x∗) of (7) is locally asymptotically stable if ωf <
ω < ωh, with

ωf =
1

2
+

1

αx∗ (1− x∗) g′(x∗)
(9)

and

ωh = − 1

αx∗ (1− x∗) g′(x∗)
(10)

If the memory parameter ω exits the stability interval [ωf , ωh] decreasing
through the lower bound ωf , then it loses stability through a flip bifurcation,
whereas if ω exits the stability interval increasing through the upper bound
ωh, it loses stability through a supercritical Neimark-Sacker bifurcation.

Proof. The Jacobian matrix of (7) computed at the equilibrium E becomes

J (E) =

[
1 + α (1− ω)x∗ (1− x∗) g′(x∗) αωx∗ (1− x∗) g′(x∗)

1 0

]
(11)

hence Tr (E) = 1+α (1− ω)x∗ (1− x∗) g′(x∗) and Det (E) = −αωx∗ (1− x∗) g′(x∗)
are, respectively, the trace and the determinant of the matrix (11). A suffi-
cient condition for the local asymptotic stability of E is that the eigenvalues of
(11), solutions of the characteristic equation P (z) = z2−Tr (E)·z+Det (E) =
0, are located inside the unit circle of the complex plane. A necessary and
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sufficient condition for this is given by the following system of inequalities
(known as Schur or Jury’s conditions; see e.g. [19], [16], [30])

P (1) = 1−Tr (E)+Det (E) > 0; P (−1) = 1+Tr (E)+Det (E) > 0; 1−Det (E) > 0
(12)

In our case, we have P (1) = −αx∗ (1− x∗) g′(x∗) > 0 for each set of param-
eters. Instead, the other two stability conditions become, respectively,

ω >
2 + αx∗ (1− x∗) g′(x∗)

2αx∗ (1− x∗) g′(x∗)
= ωf and ω < − 1

αx∗ (1− x∗) g′(x∗)
= ωh

where the condition (8) ensures that ωf < ωh, so that the stability range is not
empty. The value of ω at which P (−1) becomes negative represent a flip (or
period doubling) bifurcation value at which an eigenvalue exits the unit circle
through the value −1, and the one at which 1 − Det (E) becomes negative
represents a Neimark-Sacker bifurcation at which a couple of complex and
conjugate eigenvalues exit the unit circle of the complex plane (see e.g. [22]
or [28]).

It is worth noticing that, as expected, the stability condition

P (−1) = 2 + α (1− 2ω)x∗ (1− x∗) g′(x∗) > 0,

for ω = 0 reduces to the one given in Proposition 1 for the model without
memory. However, starting from a value of the speed of reaction α such that
−4 < αx∗ (1− x∗) g′(x∗) < −2, so that the interior equilibrium is unstable
when the evolutionary model without memory is considered, according to
Proposition 1, and the assumptions of Proposition 2 hold, then the equilib-
rium gains stability for intermediate values of the memory parameter, i.e.
when a weighted average is close to the arithmetic mean. Instead, both for
asymmetric averages that give too much weight to the current value or to
the previous value, instability prevails.

However, Proposition 2 only concerns the local stability of the unique
equilibrium point and gives information neither about its basin of attraction
nor about the kind of dynamic behaviors that characterize the long run evo-
lution of the system, when it loses stability through the local bifurcations
described in the Proposition. In order to obtain such information, a numer-
ical computation is proposed in the form of a bifurcation diagram obtained
with bifurcation parameter ω ∈ [0, 1], as the one shown in Figure 3, obtained
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Figure 3: Bifurcation diagram showing x(t), the fraction of agents playing R, with bifur-
cation parameter ω ∈ [0, 1], speed of reaction α = 0.8 and the other parameters as the
ones used in Figure 1.

with the linear payoff functions (3) and the same parameters as the ones used
in Figure 1 (left) and speed of reaction α = 8. With this set of parameters,
we have ωf = 0.0935 and ωh = 0.4065. As can be seen, the bifurcation
diagram in Figure 3 not only confirms the existence of the stability range an-
alytically computed in Proposition 2, but also provides numerical evidence
for the supercritical nature of the two local bifurcations, as a stable oscilla-
tion of period 2 is obtained as the memory parameter ω decreases below ωf ,
and a stable quasi-periodic motion along a closed invariant curve is observed
as ω increases above ωh. Moreover, a representation of the trajectories, the
attractors and the basins of attraction in the phase space (x, y) ∈ [0, 1]×[0, 1]
clearly show that a unique attractor exists for each constellation of param-
eters chosen along the bifurcation diagram of Figure 3, and such attractor
(that may be a fixed point if ω ∈ (ωf , ωh), a stable cycle of period 2 if ω < ωf
as well as a quasi-periodic, periodic or chaotic attractor for ω > ωh) is al-
ways globally asymptotically stable, in the sense that it attracts almost all
the trajectories starting from initial conditions (x0, y0) ∈ (0, 1)× (0, 1).

However, this is not the end of the story, because for higher values of
the speed of reaction α, quite different dynamic scenarios are obtained. For
example, the bifurcation diagram shown in Figure 4, obtained for α = 11,
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Figure 4: Left: Bifurcation diagram showing x(t), the fraction of agents playing R, with
bifurcation parameter ω and α = 11. Right: enlargement with ω ∈ [0.25, 0.35].

which gives ωf = 0.2 and ωh = 0.29, reveals a quite interesting, and un-
expected, dynamic scenario. (See in particular the enlargement shown in
Figure 4 (right) where the bifurcation parameter ω ∈ [0.25, 0.35] that reveals
a coexistence of two attractors: the stable equilibrium E with a stable cycle
of period 3 and then, for ω > ωh, a stable invariant curve with a stable cycle
of period 3.)

It is worth noting that the payoffs along these coexisting attractors are, in
general, different. For example, as it concerns the set of parameters used in
Figure 5, we have R (E) = R (E) ' 0.3077, whereas the average population
payoff xR (x) + (1− x)R (x), computed in the cycle of period three in the
situation of the figure on the left, is 0.1882. Instead, in the situation of the
figure in the center, we have an average population payoff of 0.1755 along the
3-cycle and 0.2995 along the closed invariant curve, and in the figure on the
right it is practically the same along the periodic cycle whereas it is 0.2830
along the invariant curve. It is quite evident that the average population
payoff decreases as the system asymptotic dynamics goes far away from the
Nash equilibrium.

In this situation of multistability, it is important to study how the coex-
isting attractors, each with its own basin of attraction, share the phase space
on which initial conditions are taken. For example, Figure 5 (left), obtained
with α = 11 and ω = 0.28 < ωh, shows the stable equilibrium with its basin
of attraction represented by the red region, surrounded by the periodic points
of the stable cycle of period 3 with its basin of attraction represented by the
darker region.
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Figure 5: Attractors and basins in the phase space. Left: for α = 11 and ω = 0.28 the
stable equilibrium E (white basin) coexist with a stable cycle of period three, the periodic
points which are represented by three black dots in the red regions that represent its basin
of attraction. Center: α = 11 and with ω = 0.3. Right: α = 11 and with ω = 0.31.

It is worth noting also that such a coexistence could not be predicted by
any analytical local analysis of the dynamical system, and, if our analysis
were limited to the proof of Proposition 2, together with its immediate nu-
merical confirmation given by the bifurcation diagram of Figure 3, then a
quite incomplete, and even misleading, description of the dynamic proper-
ties of the evolutionary model considered would be given, just stating that
the repeated minority game shows convergence to the unique equilibrium
for intermediate values of the memory parameter ω. Instead, after suitable
numerical explorations, we can state that, for a wide range of the parame-
ters of the model, the result about local stability of the equilibrium E given
in the Proposition 2 only guarantees that the system will converge to such
an equilibrium if the initial conditions are taken sufficiently close to it, and
larger perturbations will lead the system to exhibit self-sustained bounded
oscillations in the long run. (periodic oscillations in the case shown in Figure
4, but even chaotic for different parameters’ constellations).

When comparing our results to [1], where a two-period model is consid-
ered as well, some similarities are worth noting. In fact, in their model,
the usual complex phenomena that characterize the one-dimensional logistic
map disappear when memory weights are close enough to consider only the
previously observed state. In addition, in [1], chaos may only occur when
weights are on both periods are large enough. This is interesting as, although
their map differs from the one we are considering, in both cases the role of
having weights on both periods is important. By contrast, in our model we
consider adjustment speed as well. This important parameter is related to

13



agents’ impulsivity [4] and may cause overshooting, with consequences on
the multistability of the dynamics. Furthermore, the situation described by
the results proved in Proposition 2 has been extensively discussed in the
economic literature and has been called sometimes “corridor stability”; see,
e.g. [27] or [15]. This stream of literature stresses the fact that nonlinear
dynamic models may have the property that small perturbations are recov-
ered as far as they are confined inside the basin of attraction of a locally
stable equilibrium, whereas larger perturbations lead to time evolutions that
further depart from the equilibrium and go to the coexisting attractor in the
long run. The situation may be even more involved when the boundaries
that separate the two basins assume a complicated shape (sometimes quite
convoluted). Another dynamic scenario is represented in Figure 5 (center)
obtained with α = 11 and with ω = 0.3 > ωh. Finally, Figure 5 (right),
is obtained with α = 11 and with ω = 0.31. Also in this case, two kinds
of asymptotic dynamics can be obtained, given by a quasi-periodic motion
along a stable closed invariant curve coexisting with a stable cycle of period
3, each with its own basin of attraction represented by the white and the red
regions, respectively. So, both kinds of long run behaviors are oscillatory,
even if the observed oscillations observed are qualitatively different and with
different amplitude.

We stress again that such dynamic scenarios, together with their economic
consequences, clearly show the importance of a global analysis of nonlinear
dynamical systems, which can often be performed only through combining
analytical, geometrical and numerical methods. Using only one approach
could lead to wrong conclusions about the behavior of the system.

It is also worth remarking that we have not observed such path depen-
dence in the evolutionary model (2) without memory.

4. Infinite discounted memory

Following [14], we introduce in the evolutionary model (2) a way to rep-
resent players’ memory by considering a fitness measure that represents a
discounted sum of the payoffs gained along the whole story of the repeated
minority game, obtained by taking, at each time step, a convex combination
of the current payoff and the fitness measure observed in the previous time
period:
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UR(t) = (1− ω)R(t) + ωUR(t− 1)
UL(t) = (1− ω)L(t) + ωUL(t− 1)

(13)

with ω ∈ [0, 1], UR (0) = UL (0) = 0. By backward induction reasoning, it is
easy to get

UR(t) = (1− ω)
∑t−1

k=0 ω
kR(t− k) + ωtUR(0)

UL(t) = (1− ω)
∑t−1

k=0 ω
kL(t− k) + ωtUL(0)

which gives the discounted measure of fitness as a weighted sum with expo-
nentially fading weights. Again, the parameter ω ∈ [0, 1] gives a measure of
the memory, as Ui(t) = R(t) for ω = 0, whereas the arithmetic mean of all
the payoffs observed in the past is obtained in the other limiting case, ω = 1.
If the recursive scheme (13) is plugged into the evolutionary model (2), then
we get

x(t+ 1) = x(t)
x(t)+(1−x(t)) exp(−α(UR(t)−UL(t)))

UR(t+ 1) = (1− ω)R(x(t+ 1)) + ωUR(t)
UL(t+ 1) = (1− ω)L(x(t+ 1)) + ωUL(t)

(14)

and, subtracting the third equation from the second, we get the equivalent
2-dimensional model

x(t+ 1) = x(t)
x(t)+(1−x(t)) exp(−α∆U(t))

∆U(t+ 1) = (1− ω) g(x(t+ 1)) + ω∆U(t)
(15)

where g(x) is given by (1) and ∆U (t) = UR (t) − UL (t). The fixed points
of this map are given by E0 = (0, g(0)), E1 = (1, g(1)), E = (x∗, 0) with
x∗ ∈ (0, 1) corresponding with the Nash equilibrium at which R(x∗) = L(x∗).

The following proposition, which should be compared with Propositions
1 and 2, gives the local stability properties of the Nash equilibrium under
the assumption of infinite weighted memory.

Proposition 3. If the Nash equilibrium x∗ is stable under the evolutionary
model without memory (2), i.e. α < αf , then it is also stable under the
model with memory (15). If the Nash equilibrium x∗ is unstable under the
evolutionary model without memory (2), i.e. α > αf , then it is stable under
the model with memory (15), provided that

ω > ωs =
αx∗ (1− x∗) g′(x∗) + 2

αx∗ (1− x∗) g′(x∗)− 2 .
(16)
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Proof. The Jacobian matrix of (15) computed at the equilibrium E becomes

J (E) =

[
1 αx∗ (1− x∗)

(1− ω) g′(x∗) α (1− ω)x∗ (1− x∗) g′(x∗) + ω

]
(17)

hence Tr (E) = 1 + α (1− ω)x∗ (1− x∗) g′(x∗) + ω and Det (E) = ω are,
respectively, the trace and the determinant of the matrix (17). The suf-
ficient conditions for the stability of E (12) in this case become P (1) =
−α (1− ω)x∗ (1− x∗) g′(x∗) > 0 and 1 − Det (E) = 1 − ω > 0 for each set
of parameters with ω ∈ [0, 1), whereas the condition P (−1) > 0 becomes
2 + ω(2− αx∗ (1− x∗) g′(x∗)) + αx∗ (1− x∗) g′(x∗) > 0, from which (16) fol-
lows. The value of ω at which P (−1) becomes negative represent a flip (or
period doubling) bifurcation value.

It is worth noting that, again, an increase of the memory parameter ω
has a stabilizing effect because, if the Nash equilibrium is stable under the
evolutionary dynamics without memory, then it remains stable with mem-
ory, whereas an unstable Nash equilibrium under the evolutionary dynamics
without memory becomes stable with a sufficiently strong memory. The
stability threshold ωs is an increasing function of α with ωs(αf ) = 0 and
limα→∞ ωs = 1.

In our model, parameter α controls the propensity to switch choices and
directly influences the stability of the dynamics. Nevertheless, having infinite
memory plays an important role in the stability and is consistent with pre-
vious findings in the economic literature. In particular, in [25] it was proved
that, in a non-linear cobweb model, when all past prices are remembered,
the dynamics becomes asymptotically stable and chaos cannot occur. Fur-
thermore, when assuming that being able to consider infinitely many periods
requires unlimited working memory, our results are consistent with [23] as
they showed experimental evidence that limits on the working memory are
predictive of more impulsive decisions.

Two typical bifurcation diagrams for increasing values of the memory
parameter ω are shown in Figure 6. The one in the left panel, obtained
for α = 10 and the same payoff function used in all the previous numerical
simulations, so that ωs = 0.211, reveals that, for ω < ωs, a stable cycle of
period 2, with periodic points, respectively, lower and higher of the Nash
value x∗, characterizes the long run dynamics of the evolutionary minority
game. The amplitude of the oscillations decreases as the memory strength
increases until the Nash equilibrium becomes stable through a supercritical
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Figure 6: Two bifurcation diagrams showing x(t), the fraction of agents playing R, for
the model with infinite memory and memory parameter ω taken as bifurcation parameter,
while payoff functions are the same as in all the previous numerical simulations. Left:
α = 10. Right: α = 20.

flip bifurcation. The bifurcation diagram shown in the right panel of Figure
6, obtained with α = 20 (i.e. a higher speed of reaction of the players,
a more impulsive behavior when payoff gains are observed), reveals much
more complicated dynamic scenarios for low values of the memory parameter,
which include periodic and chaotic oscillations with several local and global
bifurcations that change the qualitative properties of the attractors, including
evident cases of multistability, i.e. coexistence of several attractors each
with its own basin of attraction; see e.g. the portion of the bifurcation
diagram with ω ∈ (0.3, 0.4). We do not investigate further such dynamic
scenarios, but merely stress that, nevertheless, any complexity disappears as
the memory parameter increases beyond the bifurcation value ωs, that with
this set of parameters is given by ωs = 0.506.

5. Conclusions

The effect of memory on minority games is controversial, as proved by
[9] and [8]. Furthermore, when, in discrete time periods, agents repeatedly
play a minority game, persistent oscillations between the two strategies can
be observed.

Dindo in [14], in order to obtain a tractable model, constructs a dynam-
ical system for the minority game and concludes that, in this case, infinite
discount memory stabilizes the dynamics.
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In this paper, following the approach suggested in [14], we have proposed
some tractable low-dimensional discrete dynamical system, based on expo-
nential replicator dynamics, in order to describe the time evolution of a social
system characterized by the interaction of a large number of agents who are
facing binary choices. In particular, we used such a framework to analyze the
effects of memory on the long run outcomes of a repeatedly played minority
game, with two kinds of memory.

The first one –which is more innovative– considers only two states and,
in some broad sense, is more similar to the finite states memory considered
in [8] and [9], while the second is similar to the one presented in [14].

The results of our analysis confirm the stabilizing effects showed by [14]
and may suggest that complex dynamics may be the result of bounds on the
human processing capabilities [33]. In fact, with infinite memory, stability is
local and there is no evidence of global instability. By contrast, when con-
sidering a two-period memory, stability is only local. In fact, by combining
analytical, geometrical and numerical methods we were able to find that sta-
bility is just local and holds as long as the memory parameter belongs to a
neighborhood of 1/2, i.e., as long as the two periods have approximately the
same importance.

This result has consequences that go beyond the specific model we were
considering. In fact, it shows once more that, when considering nonlinear
systems, both local and global analysis are necessary to have better under-
standing of the system. Indeed, our numerical simulations provide further
insight into nonlinear phenomena and the related effects of the presence of
memory.

In particular, the model studied in this paper gives us the opportunity
to learn an important lesson, because, in some ranges of the parameters
such that the equilibrium is locally stable, coexisting periodic and chaotic
attractors have been numerically observed, thus giving a strong path depen-
dence. In fact, when the locally stable equilibrium coexists with a different
kind of attractor, each with its own basin of attraction, a typical situation
of “corridor stability” occurs, as small perturbations (or shocks or historical
accident) around the equilibrium are endogenously recovered by the endoge-
nous dynamics of the system, whereas larger perturbations are amplified by
the endogenous dynamics, thus leading to a completely different (and non
stationary) disequilibrium dynamics, so that only an external control policy
can force the system back to the originary equilibrium. These dynamic sce-
narios clearly show the importance of a global analysis of nonlinear dynam-
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ical systems, which can often be performed only through heuristic methods
obtained by a combination of analytical, geometrical and numerical meth-
ods. In fact, a study limited to an analytical study of the local stability
and bifurcations, based on the linear approximation of the model around the
equilibrium points, sometimes may be quite incomplete and even misleading.

In this paper, we focused on minority games. However the mathematical
apparatus proposed can be easily extended to several different kinds of binary
games. A particularly interesting case that will be examined in the future
is given by non-monotonic payoffs functions, characterized by two interior
equilibria; see e.g. [31],[21], [5].

Schelling and other authors propose situations where a strategy, say R,
is convenient for intermediate values of people choosing it, whereas it is not
convenient for too low or too high values of x.

Of course, extensions are also possible by considering finite memory of
length greater than one. However this leads to high dimensional dynamical
systems, hence to models that are outside the scope of studies remaining at
a level of analytical tractability.
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