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Abstract. In this paper we study the relationships between general quantization rules which yield Cohen operators and the signal
time-frequency representations in the Cohen class. After defining a suitable functional setting, we focus on the particular case of
the concentration operators which, as the multipliers and Fourier multipliers in the Donoho-Stark uncertainty principle, furnish
estimates of the energy concentration on subsets of the time-frequency space. Finally we study the case of positive representations
in the Cohen class.

INTRODUCTION

Time-frequency analysis of signals is an important area of research where techniques of harmonic analysis are widely
used. Classically the time representation of a signal is a complex function (or distribution) f (x) with x ∈ R (or for
more of generality x ∈ Rd), whereas its frequency representation is the Fourier transform

f̂ (ω) =

∫
Rd

f (x)e−2πiωx dx.

The quantities | f (x)|2 and | f̂ (ω)|2 are the corresponding distributions of energy in the case f ∈ L2(Rd). However since
the mid 1900s a vast literature has been developed in order to find convenient representations of signals simultaneously
with respect to time and frequency. The Wigner trasform

f (x) −→ Wig( f )(x, ω) =

∫
Rd

e−2πiωt f (x + t/2) f (x − t/2) dt, (1)

defined by E. Wigner in the context of quantum physics, is of fundamental importance also as example of time-
frequency representation (see [5], [8], [15]). Based on this transform the Cohen class of time-frequency representations
is defined as the set of quadratic forms of the type

f (x) −→ Qσ( f )(x, ω) = (σ ∗Wig( f ))(x, ω), (2)

where σ(x, ω) is the so-colled Cohen kernel (note that Wig( f ) is obtained for σ = δ, the Dirac delta). Clearly f (x) and
σ(x, ω) must be chosen in functional (or distributional) spaces such that the convolution in the time-frequency space
Rd

x × Rd
ω appearing in (2) makes sense. To each quadratic form there corresponds a sesquilinear form Qσ( f , g)(x, ω)

defined in obvious way. The remarkable unifying approach of the Cohen class resides in the fact that essentially all of
the most used quadratic forms can be obtained by suitable choices of the Cohen kernel.

Any time-frequency representation Qσ defines an operator T a
σ, depending on a symbol a(x, ω), by the formula

(see [5], [6]):
(T a

σ f , g) = (a,Qσ(g, f )), (3)



where the brackets are intended in L2, or more generally in distributional sense (we consider distributions as conjugate
linear forms). The operators T a

σ obtained in this way are called Cohen operators. Actually, under some technical
hypotheses, (3) establishes a bijection between sesquiliear forms Qσ and quantizations rules a → T a

σ, connecting
therefore the study of time-frequency representations with that of Cohen operators (see section “Cohen operators”).
As for representations, essentially all types of commonly used pseudo-differential operators (Weyl, Kohn-Nirenberg,
Localization operators, etc.) can be obtained with particular choices of the Cohen kernel σ(x, ω) (see e.g. [5], [19],
[20], [21], [22]).

In this paper we study the behavior of Cohen operators with respect to boundedness, adjoints and composition
(see section “Cohen operators”). We consider then (in the section “Concentration operators”) the case of concentration
operators which consists of Cohen operators with characteristic functions as symbols and show how these generalize
the multipliers and Fourier multipliers operators which are used in the Donoho-Stark uncertainty principle [12]. This
enlarges the useful tools for expressing concentration of a signal on sets in the time-frequency space and we give some
applications of this fact in terms of uncertainty principles involving concentration operators (see section “Positive
forms and uncertainty principle”). Among the wide literature about uncertainty principles in time-frequency analysis
see e.g. [1], [2], [3], [4], [7], [9], [13], [16], [18]. The last section is motivated by the remark that the lack of positivity of
the representations Qσ constitutes one of the main differences between the concept of “energy distributions” in signal
theory (or quantum mechanincs) and that of “probability, or mass, distributions” in statistics and classical physics
([8], [10], [11]). It is therefore of interest to investigate cases when Qσ is positive, as these cases can be considered, in
some sense, the closest to the classical ones. We present some results along these lines in the section “Positive forms
and uncertainty principle” and conclude presenting the above-mentioned form of uncertainty principle.

COHEN OPERATORS

In a general sense we call quantization (or quantization rule) any linear map associating a symbol a(x, ω) belonging
to a Banach (or Fréchet) space of functions or distributions with a linear operator acting between Banach (or Fréchet)
spaces.

We start this section by considering a bijective correspondence between vector valued sesquilinear forms and
quatizations (see [6]).

Proposition 1 Let E, E1, E2 be Banach spaces, and E2 be reflexive. Then

(i) If ϕ : E2 × E1 → E is a bounded sesquilinear form then there exists a unique bounded linear map a ∈ E∗ →
Ta ∈ B(E1, E∗2) such that

(T au, v) = (a, ϕ(v, u)) (for u ∈ E1, v ∈ E2). (4)

(ii) If a ∈ E∗ → Ta ∈ B(E1, E∗2) is a bounded linear map, then (4) defines a unique bounded sesquilinear map
ϕ : E2 × E1 → E.

As particular case of this general result we have a bijective correspondence between Cohen class time-frequency
representations and Cohen operators. This can be made precise in various functional and distributional settings, we
present some of them in the following properties. We start by tempered distributions and Schwarz functions.

Corollary 1 Let σ ∈ S(R2d) be a fixed Cohen kernel. Then the definition of a quantization rule a −→ T a
σ is

equivalent to the definition of a time-frequency representation Qσ( f ) = σ ∗ Wig( f ), the two being related by the
formula

(T a
σ f , g) = (a,Qσ(g, f )), with a ∈ S(R2d), f , g ∈ S(Rd). (5)

As the L2 norm is physically interpreted as the energy of a signal, one of the most natural setting for identity (5)
is clearly the case f , g ∈ L2(Rd). We state therefore the following boundedness result in this setting.

Proposition 2 Let f , g ∈ L2(Rd), a ∈ Lp(R2d) and σ ∈ Lq(R2d) with 1
p + 1

q = 3
2 ; then the operator T a

σ defined by
(5) is bounded on L2(Rd) with norm estimate

‖T a
σ‖B(L2(Rd)) ≤ ‖a‖Lp(R2d)‖σ‖Lq(R2d).

Furthermore in this case we also have a bounded sesquilinear form Qσ : L2(Rd)×L2(Rd) −→ Lp′ (R2d), with 1
p + 1

p′ = 1
with same norm estimate.



Proof. Setting σ̃(x, ω) = σ(−x,−ω) and recalling that ‖Wig(g, f )‖L2(R2d) = ‖g‖L2(Rd)‖ f ‖L2(Rd) we have

|(T a
σ f , g)| = |(a, σ ∗Wig(g, f ))|

= |(a ∗ σ̃,Wig(g, f ))|

≤ ‖a ∗ σ̃‖2‖Wig(g, f )‖2
≤ ‖a‖p‖σ‖q‖ f ‖2‖g‖2.

This proves the boundedness of the operator T a
σ. The remaining statement about the boundedness of Qσ is a straight-

forward consequence of (4). �
As mentioned in the introduction, all most used quadratic time-frequency representations belong to the Cohen

class. Unfortunately in several important cases the Cohen kernel does not belong to any Lp(R2d) space with p < ∞
and therefore, as can easily be checked, the previous result can not be applied. The following proposition shows that if
however the Fourier transform of the Cohen kernel belongs to L∞ we still have interesting cases of boundedness. This
is for example the case of the well-known generalizations of the Wigner transform called τ−Wigner, for τ ∈ [0, 1],
which, for τ , 1

2 , can be defined by the Cohen kernels στ = 2d

|2τ−1|d e2πi 2
2τ−1 xω, (see [6]).

Proposition 3 Let f , g ∈ L2(Rd), a ∈ L2(R2d) and σ̂ ∈ L∞(R2d); then (5) defines a bounded operator T a
σ on

L2(Rd) and
‖T a

σ‖B(L2(Rd)) ≤ ‖a‖L2(R2d)‖σ̂‖L∞(R2d).

Proof. By the Plancherel theorem and again the equality ‖Wig(g, f )‖L2(R2d) = ‖g‖L2(Rd)‖ f ‖L2(Rd), we have

|(T a
σ f , g)| = |(a, σ ∗Wig(g, f ))|

= |(̂a, σ̂ Ŵig(g, f ))|
≤ ‖a‖L2(R2d)‖σ̂‖L∞(R2d) ‖g‖2‖ f ‖2.

�
The following is a boundedness result under a slightly different point of view. It states that if a representation is

well-defined on all signals then the corresponding Cohen operator is automatically bounded.

Proposition 4 Suppose that a ∈ Lp(R2d), 1
p + 1

p′ = 1, and Qσ : L2(Rd) × L2(Rd) −→ Lp′ (R2d) is well-defined.
Then the operator T a

σ defined by (5) is L2-bounded (and consequently also the form Qσ : L2 × L2 −→ Lp′ ).

Proof. By the hypothesis and (5) we have that (T a
σ f , g) is well-defined and finite for all f , g ∈ L2(Rd), this implies that

T a
σ is a linear operator everywhere defined on L2(Rd) with values in L2(Rd). The (a priori unbounded) adjoint operator

therefore also acts from L2(Rd) into itself. We apply now the closed graph Theorem. Suppose fn → f and T a
σ fn → g

in L2(Rd); then for every h ∈ L2(Rd)

(g, h) = lim
n→∞

(T a
σ fn, h) = lim

n→∞
( fn, (T a

σ)∗h) = ( f , (T a
σ)∗h) = (T a

σ f , h)

which means T a
σ f = g. �

We study next some basic properties of the Cohen operators (adjoints, etc). For simplicity we state the results
in the case of Schwarz functions, they could however be reformulated in larger functional settings with minor mod-
ifications. We recall that the classical Weyl operators are Cohen operators associated with Cohen kernel σ = δ, i.e.
associated with the Wigner representation, in symbols:

(Wa f , g) = (a,Wig(g, f )),

where Wa denotes the Weyl operator with symbol a.

Proposition 5 Let f , g ∈ S(Rd), σ ∈ S(R2d), a ∈ S(R2d) as before. Then

1) T a
σ = Wb with b = a ∗ σ̃;

2) T a
σ = T σ̃

ã
;



3) T 1
σ = c Id where c =

∫
R2d σ(x, ω)dxdy;

4) (T a
σ)∗ = T a

σ
;

5) For σ j ∈ S(R2d), a j ∈ S(R2d), j = 1, 2, the operator Tσ2
a2 ◦ Tσ1

a1 has Schwartz kernel:

k(y, t) =

∫
F −1

2

[
a2 ∗ σ̃2

] (y + x
2

, y − x
)
F −1

2

[
a1 ∗ σ̃1

] ( x + t
2

, x − t
)

dx.

Proof. Points 1) to 3) are immediate consequences of the definitions and elementary properties of convolutions. Point
4) follows from equation (5) and the fact that

Qσ( f , g) = Qσ(g, f ).

Concerning point 5) we have

(Tσ2
a2
◦ Tσ1

a1
f , g) = (a2 ∗ σ̃2,Wig (g,T a1

σ1
f ))

=

∫
(a2 ∗ σ̃2)(x, ω)e2πiωtT a1

σ1
f
(
x −

t
2

)
g
(
x +

t
2

)
dt dx dω

=

∫
(a2 ∗ σ̃2)

( x + t
2

, ω
)

e2πiω(x−t)T a1
σ1

f (t)g(x) dt dx dω

=

∫
(a2 ∗ σ̃2)

( x + t
2

, ω
)

e2πiω(x−t)e2πiω′(t−t′)(a1 ∗ σ̃1)
(

t + t′

2
, ω′

)
f (t′)g(x) dt′ dω′ dt dx dω

=

∫
F −1
ω→(x−t)

[
(a2 ∗ σ̃2)

( x + t
2

, ω
)]
F −1
ω′→(t−t′)

[
(a1 ∗ σ̃1)

(
t + t′

2
, ω′

)]
f (t′)g(x) dt′ dt dx.

Hence the Schwarz kernel k(x, y) of the composition Tσ2
a2 ◦ Tσ1

a1 is

k(y, t) =

∫
F −1

2

[
a2 ∗ σ̃2

] (y + x
2

, y − x
)
F −1

2

[
a1 ∗ σ̃1

] ( x + t
2

, x − t
)

dx.

�

Remark 1 Part 4) of the previous proposition reveals a crucial fact about the relation between the general concept
of quantization above introduced as intended in signal theory, and the more strict meaning of this term used in quantum
mechanics where it is required that real symbols yield self-adjoint operators. This happens in our framework exactly
when the Cohen kernel of the form associated with the quantization is real. For example it becomes clear that among
all τ−Weyl quantizations associated with τ−Wigner forms (see above before Prop. 3), only the Weyl quantization is a
“true” quantization in terms of physical meaning.

CONCENTRATION OPERATORS

In applications it is often of interest to know how much energy of a signal is concentrated on a fixed region of the time
domain, of the frequency domain, or of the time-frequency plane. For a region Ω ⊂ Rd

x located in the time domain
the concentration of a signal f is taken into account in a natural way by the cutoff operator PΩ f = χΩ(x) f (x) (where
χΩ(x) = 1 for x ∈ Ω and zero otherwise). Analogously for a region T ⊂ Rd

ω of the frequency domain it is natural to
consider the Fourier multiplier operator QT f = F −1[χT (ω) f̂ (ω)]. In order to estimate the energy concentration on a
subset Ω×T of the time-frequency plane the composition PΩQT can be considered and this operator plays in fact a key
role for example in the Donoho-Stark uncertainty principle (see [12]). In this section we show that PΩQT is a Cohen
operator associated with the Rihaczek form (see below) and symbol a(x, ω) = χΩ×T (x, ω). It will therefore be natural
to substitute the Rihaczek representations with general representations Qσ in the Cohen class and χΩ×T (x, ω) with the
characteristic function χM(x, ω) of a general subset M of the time-frequency plane, considering then as concentration
operators the corresponding Cohen operators T χM

σ .



Proposition 6 Let f , g ∈ L2(Rd). We have

(PΩQT f , g) = (χΩ×T ,R(g, f )),

where R(g, f ) = e−2πixωg(x) f̂ (ω) is the Rihaczeck representation.

Proof. By the definition of PΩ and QT we have

(PΩQT f , g) =

(
χΩ(x)

∫
Rd

e2πixωχT (ω) f̂ (ω) dω, g(x)
)

=

∫
R2d

e2πixωχΩ(x)χT (ω) f̂ (ω)g(x) dω dx

= (χΩ×T ,R(g, f )).

�

Remark 2 Since the Rihaczeck representation is a particular representation in the Cohen class, namely,

R( f , g)(x, ω) = Qσ( f , g)(x, ω)

for σ(x, ω) = 2de−4πixω (see for example [6]), we have that the composition PΩQT is the Cohen operator T a
σ (in the

sense of (3)), with a = χΩ×T and σ(x, ω) = 2de−4πixω.

Since the operator PΩQT can be considered as a way to measure the energy concentration of a signal in the region
Ω × T of the time-frequency plane, and this operator is connected with a specific representation in the Cohen class,
we are led to the following definition of concentration operator associated to a time-frequency representation.

Definition 1 Let M ⊂ Rd
x × Rd

ω be a measurable set, f , g ∈ S(Rd) and σ ∈ S(R2d). Then the concentration
operator associated with the set M and the representation Qσ is the Cohen operator T χM

σ . We denote such operator by
CM
σ , i.e. we have

(CM
σ f , g) = (χM ,Qσ(g, f )).

Remark 3 As usual we can consider more general functional settings in the definition of concentration operators,
cf. for example Propositions 2, 3, 4, or the general correspondence given in Proposition 1.

We observe moreover that the concentration operator is a known object, see for example [17], where it is denoted by
LM and is defined by the relation

(LM f , f ) =

∫
M

Qσ( f )(x, ω) dx dω,

for f ∈ S(Rd) and a Cohen representation Qσ. Observe that in our case

(CM
σ f , f ) = (χM ,Qσ( f )) =

∫
M

Qσ( f )(x, ω) dx dω,

so CM
σ coincides with the operator LM associated to Qσ( f ).

Remark 4 From Proposition 5 we have that the adjoint of the concentration operator is given by(
CM
σ

)∗
= CM

σ ;

then, since Qσ(g, f ) = Qσ( f , g), we have that((
CM
σ

)∗
f , g

)
=

∫
M

Qσ( f , g) dx dω.

In the particular case of the Rihaczeck representation, we have that R( f , g) = R∗(g, f ), where R∗(g, f ) is the so-called
“conjugate Rihaczeck” representation, defined as R∗(g, f ) = e2πixω f (x)ĝ(ω). In the particular case when the set M is
of the form Ω × T we have from Remark 2 that the corresponding concentration operator is (PΩQT )∗, and since PΩ

and QT are self-adjoint, we finally obtain that QT PΩ is the concentration operator associated with the set Ω × T and
the conjugate Rihaczeck representation.



We want now to find the kernel of the operator CM
σ ; we have the following result.

Proposition 7 Given σ ∈ S(R2d) and a representation Qσ of the form (2), the corresponding concentration
operator CM

σ satisfies

CM
σ f (x) =

∫
Rd

kM(x, y) f (y)dy

for every f ∈ S(Rd), where the kernel kM is given by

kM(x, y) = Fu→ x+y
2

[
χ̌M(u, x − y)σ̂(u, x − y)

]
. (6)

Proof. Let T : S(R2d) → S(R2d) be such that T (F)(x, y) = F
(
x +

y
2 , x −

y
2

)
. Then we write the representation Qσ by

using the following decomposition

Qσ(g, f )(x, ω) = F(u,t)→(x,ω)

{
F −1

(x′,ω′)→(u,t)σ(x′, ω′)F −1
s→u[T (g ⊗ f )(s, t)]

}
.

Denoting by χ̌M the inverse Fourier transform of χM we have"
M

Qσ(g, f )(x, ω) dx dω =

"
R2d

χM(x, ω)F(u,t)→(x,ω)

{
F −1

(x′,ω′)→(u,t)σ(x′, ω′)F −1
s→u

[
T (g ⊗ f )(s, t)

]}
dx dω

=

"
R2d

χ̌M(u, t)
{
F −1

(x′,ω′)→(u,t)σ(x′, ω′)F −1
s→u

[
T (g ⊗ f )(s, t)

]}
du dt,

Applying Parseval formula with respect to the u-variable we then have"
M

Qσ f (x, ω)dxdω =

"
R2d

[
χ̌M(u, t)σ̂(u, t)

] [
F −1

s→u

[
T (g ⊗ f )(s, t)

]]
du dt

=

"
R2d
Fu→ξ

[
χ̌M(u, t)σ̂(u, t)

] [
T (g ⊗ f )(ξ, t)

]
dξ dt

=

"
R2d
Fu→ x+y

2

[
χ̌M(u, x − y)σ̂(u, x − y)

]
f (y)g(x) dx dy,

and so from the definition of concentration operator it follows immediately that the integral kernel of CM
σ is given by

(6). �

POSITIVE FORMS AND UNCERTAINTY PRINCIPLE

In this section we focus on positive representations in the Cohen class. In time-frequency analysis the representations
are not necessarily positive (for example, the Wigner itself is widely used, even though it is complex-valued); on the
other hand, since a representation describes the energy distribution of a signal with respect to time and frequency, it is
quite natural to study its positivity, or to look for positive representations. We focus in this section on a subclass of the
Cohen’s class, considering the representations of the form |Qσ f |. We start by studying under which conditions |Qσ( f )|
still belong to the Cohen’s class; then we compute the trace class norm of the corresponding concentration operator
CM
σ , and prove a related uncertainty principle.

For α, β ∈ Rd we denote by Tα and Mβ the translation and modulation operators, defined as

Tα f (x) = f (x − α), Mβ f (x) = e2πiβx f (x),

for a function (or distribution) f . We start by recalling the following property (cf. [14]).

Theorem 1 Suppose that a quadratic time-frequency representation Q f is covariant and weakly continuous, that
is, it satisfies

Q(TαMβ) = T(α,β)Q f

and
|Q( f , g)(0, 0)| 6 ‖ f ‖2‖g‖2



for all f , g ∈ L2(Rd). Then there exists a tempered distribution σ ∈ S′(R2d) such that

Q f = σ ∗Wig ( f ),

for all f ∈ S(Rd).

We have the following result.

Proposition 8 Suppose σ is real and belongs to Lp(R2d) with p ∈ [1, 2]. The following statements hold for the
Cohen class representation Qσ:

(i) |Qσ| belongs to the Cohen’s class.
(ii) The concentration operator associated with |Qσ| is self-adjoint and positive.

Proof. (ii) is an easy consequence of the fact that |Qσ|( f , g) = |Qσ|(g, f ) and |Qσ|( f ) > 0. In order to prove (i) it is
enough, according to Theorem 1, to shows that |Qσ| is covariant and weakly continuous. As Qσ is covariant, we have

|Qσ(TαMβ f )| = |T(α,β)Qσ( f )| = T(α,β)|Qσ( f )|.

which proves that also |Qσ| is covariant. We show next the weak continuity. Without loss of generality, we can assume
‖σ‖p 6 2−d(p′−2)/p′ . The Wigner transform is a bounded sesquilinear form on L2(Rd) × L2(Rd) with values both in
L2(R2d) and in L∞(R2d) and norm estimates

‖Wig( f , g)‖2 ≤ ‖ f ‖2‖g‖2
‖Wig( f , g)‖∞ ≤ 2d‖ f ‖2‖g‖2

(7)

An application of the Riesz-Thorin theorem for bilinear forms yields

‖Wig( f , g)‖p′ ≤ 2d(p′−2)/p′‖ f ‖2‖g‖2, (8)

and we have therefore

|Qσ( f , g)(0, 0)| =

∣∣∣∣∣∫
R2d

σ(−s,−t) Wig ( f )(s, t) ds dt
∣∣∣∣∣

6 ‖σ‖p‖Wig ( f )‖p′ ≤ ‖ f ‖2‖g‖2

completing the proof that |Qσ| belongs to the Cohen’s class. �
We finally want to turn our attention to concentration operators as tools for showing that, in suitable sense, the

subsets of the time-frequency space can not carry a “too large portion” of the energy of a signal. To this aim, we
first recall, for completeness, the classical concept of ε-concentration of a signal and the Donoho-Stark uncertainty
principle (see e.g. [14], Thm. 2.3.1) which is a well-known result in this direction.

We define then a concept of ε-concentration adapted to our context and dependent on a fixed concentration
operator. We compute the trace-class norm of Cohen operators associated with positive representations and use this to
obtain uncertainty principles which involve estimates of the measures of time-frequency space subsets in terms of our
general concentration operators.

Definition 2 Given ε ≥ 0, a function f ∈ L2(Rd) is ε-concentrated on a measurable set U ⊆ Rd if( ∫
Rd\U
| f (x)|2dx

)1/2
≤ ε‖ f ‖2,

or equivalently ( ∫
U
| f (x)|2dx

)1/2
≥
√

1 − ε2‖ f ‖2. (9)

Theorem 2 (Donoho-Stark) Suppose that f ∈ L2(Rd), f , 0, is εT -concentrated on T ⊆ Rd, and f̂ is εΩ-
concentrated on Ω ⊆ Rd, with T,Ω measurable sets in Rd and εT , εΩ ≥ 0, εT + εΩ ≤ 1. Then

|T ||Ω| ≥ (1 − εT − εΩ)2. (10)



Let now M be a subset of the time-frequency space and CM
σ the concentration operator corresponding to M and

the positive representation Qσ. Inspired by (9), we define ε-concentration with respect to CM
σ as follows:

Definition 3 Let ε ≥ 0 andσ be a Cohen kernel such that
∫
R2d σ(x, ω) dxdω = 1. We say that a function f ∈ L2(Rd)

is ε-concentrated on a measurable set M ⊆ R2d with respect to the concentration operator CM
σ if

‖CM
σ f ‖2 ≥

√
1 − ε2‖ f ‖2.

Theorem 3 Let σ ∈ S(Rd)\{0}, and suppose that the corresponding Cohen representation Qσ is positive. Then

1) CM
σ is a trace class operator on L2(Rd) and

‖CM
σ ‖Tr = |M|σ̂(0, 0). (11)

2) The following lower bound for the measure of the set M holds:

|M| ≥
1

σ̂(0, 0)
sup
‖ f ‖2=1

‖CM
σ f ‖2. (12)

3) If f ∈ L2(Rd) is ε-concentrated on a M ⊆ R2d with respect to CM
σ (according to Definition 3) then

|M| ≥
1

σ̂(0, 0)

√
1 − ε2 (13)

Proof. If Qσ( f ) > 0 for all f ∈ L2(Rd), then

(CM
σ f , f ) =

"
M

Qσ( f )(x, ω) dx dω > 0,

so the concentration operator CM
σ is self-adjoint and positive. Therefore, writing, as well-known, the trace-class norm

as integral on the diagonal of the kernel and using Proposition 7, we have

‖CM
σ ‖Tr =

∫
Rd

KM(x, x)dx

=

∫
Rd
Fu→x

[
χ̌M(u, 0)σ̂(u, 0)

]
dx

= χ̌M(0, 0)σ̂(0, 0)
= |M|σ̂(0, 0).

which proves (11).
The estimate (12) follows (11) and the fact that ‖CM

σ ‖Tr ≥ ‖C
M
σ ‖B(L2) = sup‖ f ‖2=1 ‖C

M
σ f ‖2. Remark that if σ̂(0, 0) =

0 then necessarily CM
σ = 0 which is excluded in our hypothesis.

Finally the ε-concentration of a signal f on a M with respect to CM
σ implies

√
1 − ε2 ≤ ‖CM

σ ‖B(L2), from which
estimate in (3) follows. �

Remark 5 Proposition 3 applies in particular to representations of the type |Qσ( f )|, with σ satisfying the hypoth-
esis of Proposition 8.
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