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1.Additional Results

The magnetization of the two samples is reported in Fig. S1 as a function of magnetic field at
different temperatures between 2 and 300 K. The quantity is defined as the measured magnetic
moment per unit mass of the sample, whose weight is dominated by the diamagnetic silica NPs.
In both cases, a linear, paramagnetic behavior is observed at high temperatures (above 50 K);

magnetic hysteresis appears below 8 K (sample 1) and 12 K (sample 2).
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Figure S1. Isothermal magnetic hysteresis loops for samples 1 and 2.



The imaginary part of the AC susceptibility y’’(T) is shown in Figure S2 (top panel) for sample
2 (a closely similar behavior is found in sample 1). The temperature of the maximum of %’ (Tmax)
increases with increasing frequency. When the logarithm of measurement frequency is plotted as

a function of 1/Tmax the data are well aligned on a straight line (Figure S2, bottom panel).
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Figure S2. Top panel: Imaginary part of the AC susceptibility (y’’) as a function of temperature
at different frequencies in sample 2; bottom panel: symbols: logarithm of measurement
frequency as a function of the reciprocal of the temperature of the maximum of y’’; line: best fit

to the Arrhenius law.






2. Magnetic viscosity of an assembly of independent quantum nanoparticles with random

anisotropy axes

A model is introduced to describe the magnetic viscosity displayed by a three-dimensional
system of quantum nanoparticles evolving towards equilibrium through crossing of an anisotropy
energy barrier via coherent quantum tunneling (both resonant and phonon-assisted). The

anisotropy axes are assumed to point along random directions in space.

When the magnetic field Ha points along a direction defined by the angle ¢ with respect to the
easy axis of a NP (the z-axis in a local reference frame) the magnetic field H4 can be considered
as split in one contribution parallel to the easy axis (Hay = Ha cos¢) and one perpendicular to it
(Ha. = Ha sing); in the first case, the energy is given by E = Usin?8 — uH,,,cos6, where U is
the anisotropy barrier, 0 is the angle between M and the z-axis; in the second case, E =
Usin?@ — uH,, sinf; this implies that Hx, does not make the double well asymmetric; it just
decreases the height of the barrier and displaces both minima towards the perpendicular direction
(6 = m/2); as a result, no imbalance of N; and N, is produced by Ha,. The behavior of Sy with
field H at fixed temperature for a system of independent particles with randomly distributed
easy-axis directions is obtained considering for each angle ¢ the evolution of the fractions Ny,
N, of particles in the double wells starting from the off-equilibrium state induced by the applied

field Ha .

We consider nanoparticles of total spin S and magnetic moment p = 2ugS described as double-

well systems with anisotropy barrier U.

a) Magnetic field aligned with the easy axis direction (¢=0)



The double well is symmetric when H = 0. When a magnetic field Ha is applied at the

temperature T, the well becomes asymmetric with E; < E, (see Figure 6(a) of main text) The

energy difference is E, — E; = 2uH,. Defining f = 214 o 1 , the equilibrium population in
kg T q pop
each well is
No1=N ! N
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Ny being the total number of double-well systems with easy axis aligned with the field direction.

At the temperature T << T,, immediately after setting the field to H < H,, the magnetization

takes the off-equilibrium value:

1-eP
Mogi=(No1-Noz)i u= 75 K
the final (equilibrium) value being instead:
1-e7oH

Mo=(Ng1-No2)¢ u= Treai M

where a = kz—“T . Note that when H = 0 the final value of M, is expected to be zero,
B

corresponding to No; = Nga = No/2 . If the logarithmic relaxation of M(t) is related to the

presence of a flat distribution of energy barriers p(U) in the interval U; < U< U, with the



associated distribution of relaxation times p(t) in the interval t; < t <1, at the temperature T,

the magnetic viscosity Sy(T,H) is:
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b) Magnetic field taking an arbitrary direction ¢, with respect to the easy axis (-n/2 < ¢, <

n/2)

The field’s components parallel and perpendicular to the nanoparticle’s easy axis are: H, = H
cos ¢n, H; = H sin ¢,. The distribution of population in the two wells is determined by H/, the

component H, not contributing to the asymmetry of the double well; therefore:
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Nin being the total number of double-well systems with easy axis taking an angle ¢, with respect
to the field direction. Usually 3 cos ¢ >> 1 and Ngni >> Nyno; however Nygni = Ngno = Ngn /2

when ¢, —>/2.

When the temperature is lowered to T << T and H is decreased to H < Hja, the starting

magnetization in the direction of the field is:

M(pni=(N(pn1-N(pn2>i 1 cos@,+ g, sin@,

Ng n2H . o S L .
“’;‘5 «1 is the contribution to the magnetization in the field direction, U being the

where €,=

anisotropy barrier of the double well. The final (equilibrium) magnetization is:

M(pnf=(N<pn1-N(pn2)f K cos@,+ €, sin@,

¢) System of nanoparticles with randomly oriented anisotropy axes

Let us consider a system of nanoparticles with randomly oriented anisotropy axes; it is assumed
that the number of nanoparticles is evenly distributed (Ngy, = const.). Dividing the interval (-nt/2,

+m/2) into N-1 intervals (A>>1), the initial value of the overall magnetization along H is:
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In fact, the second sum gives zero by symmetry reasons, € being a constant quantity if Ny, =

const. By analogy, the final value of the overall magnetization is:



Mf=J—V i

n=1
and the magnetic viscosity takes the form:
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In particular, when H = 0 one has S, (T,0) =

0S¢

1
2
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because M~0.



3. A pictorial representation of the different magnetic states in magnetic sub-nanoparticles

The magnetic states of the investigated systems are summarized in Fig. S3. Classical blocking

(case ¢) is actually overcome by QTM (case d).
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Figure S4. Overall picture of arrangement and behavior of Ni*" spins in samples 1 and 2 at

different temperatures.

10



