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Gravitational effects on the neutrino oscillation
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The propagation of neutrinos in a gravitational field is studied. A method of calculating a covariant
guantum-mechanical phase in a curved space-time is presented. The result is used to calculate gravitational
effects on the neutrino oscillation in the presence of a gravitational field. We restrict our discussion to the case
of the Schwarzschild metric. Specifically, the cases of the radial propagation and the nonradial propagation are
considered. A possible application to gravitational lensing of neutrinos is also suggested.
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[. INTRODUCTION masses in the presence of the gravitational field, a proper
way to treat the neutrinos is to resort to the wave packet
Neutrino oscillations in a flat space-time have been extenformalism. (However, a complete, covariant description of
sively studied in the past by using both plane wajdsand  neutrino propagation in a gravitational field in terms of wave
wave packet$2] to represent the emitted neutrinos. In par-packets is beyond the scope of this paper. This issue will be
ticular, it has been showi?] that the standard treatment of addressed elsewhef8].) In order to discuss the problem in
neutrino oscillations in the plane wave approximation isa transparent way, and in order to compare with the previous
valid only for extremely relativistic neutrinos, whereas for aanalyses, we restrict ourselves to the discussion of relativistic
general case, the wave packet treatment is essential. In thiutrinos, where a plane wave analysis can be employed.
paper, we discuss how the results in a flat space-time are The plan of the paper is as follows. In Sec. II, we briefly
modified in a curved space-time. That is, we calculate théeview the standard treatment of neutrino oscillations in a flat
quantum-mechanical phase of neutrinos that are producegpace-time using the plane wave formalism. In Sec. Il we
and propagate in a gravitational field. Our derivation of theextend the plane wave analysis to the case in the presence of
neutrino oscillation formula in a gravitational field will be a gravitational field. For definiteness, we discuss the neutrino
based on the covariant form of the quantum phase that aris@scillations in a field described by the Schwarzschild metric.
due to the assumed mixing of massive neutrif&jsFirst we  Specifically the cases of radial and nonradial propagation of
consider the case of neutrinos that are emitted and propagaf€utrinos are discussed. In the last part of Sec. lll, we sug-
in a radial trajectory in the Schwarzschild metric. Such agest the possibility of gravitational lensing of neutrinos and
gravitational effect can, in principle, modify the standardévaluate the resulting flavor-changing oscillation probability.
vacuum oscillation formula for the solar and supernova neu-
trinos. Although the size of the effect is far beyond the cur-
rent experimental detectability, in particular for the solar
neutrinos, it may certainly be of interest for the neutrinos et us consider a neutrino produced at a space-time point

from very massive sourced! is well known that the gravi- (¢, ). Since it is produced by a weak interaction process,
tational influence on the MSW effect for the solar neutrinos;; emerges as a flavor eigenstate,), which is a superposi-
is significant if the equivalence principle is violatpd].) In ’

e _ . tion of the mass eigenstates,), i.e.,
our derivation we have not assumed a weak field approxima- g eei)

tion. We then compare our results with the previous results

in the case of the radial trajectory obtained [By-7] with v >:2 U* ) )
clarifying remarks on the differences in the results and inter- al = 4 Lakl Vi/ s

pretations. As a further application, we also consider the case
of nonradial propagation in a gravitational field. Finally, we . . L . L
discuss possible gravitational lensing effects on the neutrin r;]ereu IS tne unitary mixing me;;mx of the neutrino fleldsr.]
oscillations, for which it is necessary to resort to the weak at actually propagates are tae mass e_|genstates, whose
field approximation. It is to be noted that in the last two €nergy and momentum akg andpy, respectively, and they
cases, due to the angular spread of neutrinos with differerfite related by the mass-shell condition as

IIl. NEUTRINO PROPAGATION IN A FLAT SPACE-TIME

_ _ _ Eg=pg+mg. )
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are different for different mass eigenstates. In a flat spaceected at a given space-time positi@{tg,xg). In actual
time, the propagation of the stdte) is described by a plane experiments, however, the time differencgt,) is not

wave measured, whereas the relative positiop—xa| of the
|9 (15)) = exp(— i D)) (3 source and the detector is known. In the plane wave formal-
wi(6,X)) = expl kWIVk/s ism, this can be taken care of consistently only for relativistic
where neutrinos by replacingtg—t,) with [11]
D =Eyt—pi- X. (4) (tg—ta)=|Xg—Xal, C)

Neutrino oscillations take place due to the fact that differ-and thus the time difference does not appear in the formula
ent stater,) propagate differently because they have dif-for the oscillation probability. In this approximation, the
ferent energies, momenta, and masses. When they arrive apBase of Eq(6) becomes

detector located at a space-time de(ttB,iB) which de-
tects flavor eigenstates via a weak interaction process, they

have developed a relative shift in their phases. In order fo'ro\ ving the relativistic expansiom.<E.  we can approxi-
the oscillation to occur and to be observed, some require- pplying . P k==ko Pp
ate, to the first order,

ments must be met. First, in addition to the standard assumg]

= (Ex—|pul) X —Xal- (10)

tion of mixing of massive neutrinos, the mass eigenstates m2
must be produced coherently. This implies that interference E,=Ey+O _) (12)
is possible only among mass eigenstates produced in the 2B,

same process, because neutrinos produced by different pro- . :

cesses have, in general, random relative phases in their Wa%1ere Eo is the energy for a massless neutrino. Therefore,

functions, which destroy the coherence. Second, the statdé® have

have to be detected at the same tirgand at the same place 2

- - mj,

Xg. Ek_|pk|:Ek_\/Ek_mk2f7 (12)
Under these circumstances, the interference can take place 0

and the oscillation phenomenon arises. The probability th

the neutrino produced 4s,) is detected apv,,) is, therefore

(in the case of two generations, whetdas parametrized as a 2

Ahich leads to the standard result for the phase:

me - -
function of the mixing angle in the usual way[9] D, = f|xB—XA|. (13
0
- P
Plve— VM):|<V#|Ve(tB,XB)>|2:Sin2(2(9)Sin2(712), The phase difference responsible for the oscillation can be
given by Eq.(13) as
©)
—d. _ AmZo L L
where®,=®;— P, andd, (k=1,2) are the phases, Dy~ ZEEJ IXa—Xal, (14)
.~ . tg - Xg
O =E(tg—ta) —Pi- (Xg—Xa) = Ekjt dt—py- J; "dx, whereAmz, =m?Z—m?,
A A (6) For more general situations, where some or all of the
. . statesy, are nonrelativistic, the above discussion cannot be
acquired by the mass eigenstates. applied, and a wave packet analysis is requi2d In this

~ The expression for the phadg in Eq. (6) can be written  case, the relation in Eq9) is no longer valid, and moreover
in a covariant form, which is suitable for the subsequenthe problem of the coherence of the different states at the

application in a curved space-time, [d€)] detection position has to be taken into account. However, for
& relativistic neutrinos, the wave packet formalism shows that
q)k:f pﬁf)dx", (7) the_approximation_ pf Eq(9) is indeed appropriate, and the
A oscillation probabilityP(ve—v,) has the form of Eq(5),
where the phase shif,; is given by Eq.(14).
where
dx” ll. NEUTRINO PROPAGATION
p=mg v gs (8) IN THE SCHWARZSCHILD METRIC

Let us now turn to the discussion of the propagation of
is the canonical conjugate momentum to the coordingtes neutrinos in a gravitational field. For the sake of definiteness,
andg,, andds are the metric tensor and the line element,and also because it may represent a situation of possible
respectively. This covariant phase in E@) was first dis-  physical interest, we will discuss the propagation in a gravi-
cussed by Stodolskj10], and has been used [5-7] to  tational field of a nonrotating spherically symmetric object,
calculate the neutrino oscillation phase difference. which is described by the Schwarzschild metric. The situa-

Equation (5) represents the oscillation probability for a tion under consideration can be described by the line element
neutrino produced at the space-time poit,,x,) and de- in the coordinate framét,r,d, 4} as
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ds?=B(r)dt?—B(r) *dr?—r?d9?—r?sirf9d ¢?, whereL‘;M are the coefficients of the transformation between
(15  the two bases:
where N e Y e S S e SN e
Lt: |gtt|1 I-r: |grr|1 L L |g1?1‘}|v L o |g<p<p|1
2GM
Br)={1-——. (16) others=0. (22)

G is the Newtonian constant ald denotes the mass of the Therefore, the local energy is

source of the gravitational field. Since the gravitational field

is isotropic, the classical orbit may be confined to a plane. EL°9(r) =gyl Y2E=B(r) Y%E,. (23
Hence, we can choose it to be on the equatorial plane

9¥=m/2, and we havel$=0. _ In order to obtain the neutrino oscillation probability in a
kThe relevant components of the canonical momentunyavitational field, we will calculate the interference of the
ptY of Eq. (8) are wave functions of different mass eigenstates created at a

space-time poinA and detected at a space-time pdhtin

the plane wave approximation, the phase of each mass eigen-
statev, is defined by the covariant expression in Ef).and

the interference of thith andjth mass eigenstates is given
by the phase difference

pH—mB(r) o (17
t K ds?

dr
pi=—mB(r)"

1
% 0 _ ()
dd) (I)kj: A(p,u _p,u )dXM:(I)k—(I)j. (24)
(k) — _ 2
p¢ =—myr ds’ (19)

Here the integration must be made on a definite space-time
and they are related to each other and to the massy the  trajectory fromA to B. Following the standard treatment of

mass-shell relation the oscillations of theelativistic neutrinos in a flat space-
time, as discussed in Sec. Il, we will calculate the interfer-
PRI ST 2 pE;))Z ence phase in Eq24) along the Iight'-ray ltrajgctory from
m=9*"p,"p, —%(Dt )" =BN(p ) 7 to B. This corresponds to the approximation in E®).for the

flat space-time case. We emphasize that the phases in Eqg.

(20) p p p q

(24) arenotthe phases on the classical trajectory of the mass
The fact that the metric tensor components do not depen@igenstate410] but the phases calculated on the light-ray
on the coordinates and ¢ ensures that their canonical mo- trajectory. We will see that for relativistic neutrinos the result

mentap( and p{ are constant along the trajectory. We for zthe phase difference in Eq24) is proportional to
define the constant of motion to bd& Ep(k) and Ami;/2E,, as in the standard treatment of neutrino oscilla-
ko tions in a flat space-time.

=_pnk -
\r]rl;en tuﬁ1¢ WJEE ya:]e%ﬁ;:&:hﬁoiggg):a:ld t::e:nf%lsl?r:emo We will now define the phase acquired by the mass eigen-
y ' state v, when it travels from pointA(ta,ra,®a) to point

mass eigenstate,. They differ from the energy and the

—. B(tg,rg,¢p) as
angular momentum measured by an observer at a position
rg or those at production poimt, . The correct way to define 5
t_he energies which are aqtually involved in a realistic situa- q)k:f [E, dt—p(r)dr—J,dé], (25)
tion is not, in general, unique. For example, for a neutrino A
produced in the almost stationary shock wave of a super-

nova, a local static reference frame for the production poin{ynere we have definenl(r)=—p™ . The integration in Eq
0 .

ra seems appropriate. On the contrary, for neutrinos progos) js performed along the light-ray trajectory which links
duced in the accretion disk around a black hole, a free-fallingp,q space-time pointd and B. At this stage, we note that

orbiting system seems proper. Similar arguments apply 0 the, anq 3, | which are constants of motion for the geodesic
detection of neutrinos. For example, in the case of solar NelYsaiectory of thekth eigenstate, are no longer constant along
trinos, the detectors are in the.free-falllng frame. The generg} o light-ray trajectory. Instead, the energy at infiriy and
situation can be rather complicated and every case must RBge 4nqular momenturd, at infinity for a massless particle
carefully dealt with. In our discussion we will choose the ;.o ~onstant along the light-ray path. Therefdg,and J,
local reference frame. The local energy, defined as the efe;not pe taken out of the integration in E85) and some
ergy measured by an observer at rest at a positids re- .4, yion s required for the calculation. We will show explic-
lated toE, from the transformation law which relates the itly in the following subsections, however, that in the rela-
local reference frame{x“}={t,r,¢,0} to the frame tjvistic limit, this problem can be circumvented.
{x#p={t,r,e,6} [12], We now discuss two different situations: radial propaga-
. . o tion and nonradial propagation. In the last subsection we will
X“=L%x*, g,,= L“MLBM&,&, (21 address the possibility of gravitational lensing.



1898 N. FORNENGO, C. GIUNTI, C. W. KIM, AND J. SONG 56

A. Radial propagation The result for the phase shift in EB4) is in agreement
with that in Ref.[7], but it has been obtained with a different
approach The authors of Rdf7] calculated the phase of
each massive neutrino along its classical trajectory. The clas-
sical trajectories of different massive neutrinos reaching the
dt detection point at the same time must start from the produc-
Ek<dr) Pk(f)}dri (260 tion point at different times. Hence, there is an initial phase
difference among the wave functions of different massive
neutrinos which must be added “by hand.” Instead, our ap-
proach has been to calculate the interference between mass
eigenstates produced at the same space-time position and de-
1 tected at the same space-time point, related by the light-ray
pu(r)== B E2 B(r)mE, (27) relation of Eq.(28). We think that our approach is natural for
the calculation of interference effects of particles with
slightly different masses and can be considered as a natural
extension of the usual approach for the calculation of neu-

For neutrinos propagating in a radial direction, we have
d¢=0 and no angular momentum. Equati@) is reduced

to
s
(Dk: f

where p,(r) is obtained, from the mass-shell relation, Eq.
(20), with J,=0, as

and the light-ray differentialdt/dr), is

dt 1 trino and kaon oscillations in flat space-time. On the other
(d_> = iB—. (280  hand, any comparison of our result with that in R] is
Mo (r) problematic since the enerdiyused in Ref[5] is not clearly

. . ) defined.
In Egs. (27) and (28), the sign () applies to neutrinos Some comments on the definition of “relativistic” neutri-

propagating outward-) or inward (—) of the gravitational 5 are in order here. Let us consider the following cases:
well, respectively. Therefore, the quantum-mechanical phase

d, is (1) mZ<EZ (relativistic at infinity),

. J (E— mB(r) 29 (2) mZ<[E{®(rn)]? (relativistic at the sourge

(3) ME<[E{(rg)]? (relativistic at the detector
At this point, we apply the relativistic expansion using the

energy at infinityE, as a reference value, i.e,<E,. Asin In case(1), the ratio ofmﬁ to any local enerng(k"’C)(r) is,
the flat space-time case, the following relation holds: from Eq.(23) andB(r)=<1,
Ex=Eo+0| == m 30 m m B mz<1 35
=E,+ - = =<
—FotOl2E, ) %0 EFOr 8T R %

where E is the energy at infinity for a massless particle. so that the neutrinos are even more relativistic <ite, and

Taking into account that€B(r)<1, we have the approximation in Eq31) is certainly justified.
5 Case(2) needs a caution when the observer happens to be
\/ﬁN _ k at infinity, because the ratio ah, to the energy at =«
Ei—B(r)m,=E, B(r)—ZEO. (3D becomes
Then, the phase in Eq29) is approximated by m2 m2 1
EZ [ER9()P2B(ra) (39
2 k A
i f Ty 32
== ra 2Eo f- (32) That is, even if neutrinos are produced highly relativistically,

they are not guaranteed to be relativisticrat~, unless
Since the integration is performed along the light-ray traject ,>2G M[l—(mk/E(k"’C)(rA))Z]*l. For the obvious reason
tory, Eq is constant and the integration is easily performed tathat nonrelativistic neutrinos cannot be detected, at least with
give known techniguegassuming that neutrino masses are much
smaller than 1 MeY, however, the lack of validity of the
relativistic condition at infinity not only means that the ap-

Py~ 2E, |rB ral- (33 proximate formula31) is not valid, but also that in practice

such neutrinos are not detectable at infinity.

The phase shift which determines the oscillation is, there- Case(3) deals with an observer under the influence of a

2

fore, sizable gravitational field. In this case, neutrinos stay always
relativistic along their pathr(y<<r<rg), which validates ap-
AmﬁJ proximation in Eq.(31), for we have
D= [rg—ral. (34)
2E, 2 2
B mi  B(r) mi mg
r —_— =

We note that the derivation of this result does not depend on ( )Eﬁ B(rg) [Ef<'°°)(rB)]2 [E“"C)(rB)]2

the weak field approximation. (37)
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In short, neutrinos are assumed to be “relativistic” when B. Nonradial propagation
they are relativistic at infinity, relativistic at the detector, or

relativistic at the production point with
ra>2GM{1-[m/E{®)(r,)1?} ! and then Eq(33) pro-

In this subsection, we discuss the case of the propagation

along a general trajectory. In contrast to the radial case, the

: motion has an additional angular dependence. The phase
vides the correct quantum phase.

As a final comment, we wish to compare E§3) with Picis
that of the flat space-time case. As they stand, the expres- ' dt dé
sions of the phase in E33) and the phase shift in E¢34) <I>k=J Ek(—) - pk(r)—Jk<—)
appear identical to those of the flat space-time case. How- A dr 0 dr
ever, the gravitational effects are present implicitly in Eqgs. ) _ ) _
(33) and(34). In the absence of a gravitational fief, is the vyhere the mtegrgl is ta_ken along the Ilg.ht-ray.trajectory that
energy of the neutrino as seen by any observer along ité1ks the production poinA to the detection poinB. In Eq.
trajectory, and (g —r ») is the distance over which a neutrino (42, the quantities ¢t/dr), and [d¢/dr), along the light-

propagates. Therefore, E33) gives the standard result 'Y trajectory are

dr, (42

0

shown in Eq.(13). However, in the presence of gravity, the dt E
propagation of a neutrino is over its proper distance (_) = 0 ,
dr/, B2(r)po(r)
s
L= Vg dr (dd) J 1 w3
A e =5 I~ o~ /N
dr/, r®B(r)po(r)
B \/ 2GM \/ 2GM
=rs\y1- s —ray1- N It is convenient to express the angular momentljnas a
function of the energy¥,, the impact parametdy, and the
+2GM[In(\rg—2GM+rg) velocity at infinity v [13];
—IN(JraA—2GM+ra)]. (39 J=Ebuvi™. (44)
To simplify the following discussion, we consider the Since atr= the metric is Minkowskian(no gravity, we
case of a weak field, whellg, is approximated to can write
rB \ Ek_ mk mE
~r,— — ()Y K X _q1__X
Lo=rg rA+GMInrA. (39 vk E, 1 2E2 (45)

This shows that, in a gravitational field, the effective lengthwhere in the last equality we used the relativistic approxima-
in the phasdi.e., (rg—ra)] is shorter tharL,. Moreover, tion up to the ordeO(mi/Ef). The angular momentum of a
the energy measured by a detector @ats notE,, but rather massless particlel, is obviously

the local valueEy°9(rg). When expressed in terms of the

local energy and the proper distance, the phase giftof Jo=Egb. (46)

Eq. (34) in the weak field approximation is

2
B AmigLp
1 26" (rg)

With Eqgs.(43)—(46), the expression aP, in Eq.(42) can be
conveniently arranged as
(40)

1 rg 1
1-GM|—In———]|.
Lp Ta s s Eo { Ex  B(r)po(r)
&= dr - Pk(r)
: : . o _ ra B(r)po(r)| B(r) Eo
The first parenthesis on the right-hand side in E) is
analogous to the flat space-time oscillation phase. The sec- Eyb? mﬁ
ond square parenthesis represents the correction due to the -z i 2_E|f ‘

(47)

. . r
gravitational effects.
osc

The proper oscillation length,;", in the weak field ap-  The mass-shell condition E(RO), gives
proximation, is

b2
4 7 EJo%( AmEloc(r B(r)po(r)==*Eg\/1—-B(r) =, (48)
LE,S(‘(rB):W—OZ(B)_GM |n(1_77+(5)) r
j Amg; Am® rp
b2 ma b2
+47TE0|0C(rB) (41) B(r)pk(r)ziEk\/1—B(r)—2—B(r)E—'2((l——2>
Am? rg | ' k '
b2 B(r)(1—b%r2) m2
where the quantity in square brackets is negative. We con- =*Ey 1—B(r)r—2 1- 1-B(r)br? 262/
k

clude, therefore, that the proper oscillation length is in-
creased in the gravitational field, as expected. (49
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The last approximate equality in EG19) is due to the rela-
tivistic expansion. In Egs(48) and (49), the sign ) is +GM
determined by whethatr is positive (+) or negative ().
Substitution of Eqs(48) and(49) into Eq.(47) simplifies the
expression for the phask, to

s F'a
Vrg—p? rg-p?/ |

We notice again, as a consistency check, that the radial limit
b—0 gives the same expression as given in B8).

(595

m2 The second situation is when a neutrino moves around the
f dr——— k_kz (50) massive object, crossing the closest approach point at
ra B(N)po(r) " 2E( r=ro. Taking into account the sign of the momentum, the
phase is
Since the following relation holds, in the relativistic approxi-
mation of Eq.(30), mZ (ra dr
q’k(rA—”'o—’rB):E —
mk mk 0Jro V1—=B(r)(b/r9)

Exszz=Eo5z2: (51
k2EZ TO2E2’ mk

2Eo o \/1 B(r)(bzlrz

) The position of the closest approach can be solved from Eq.
my dr (53) in the weak field approximation, as

&, can be expressed as

O == (52
2Eo ), V1 B(r)(b%/r?) oM
. . . . ro=b{1-——|. (57)
Equation(52) is the phase acquired by the mass eigenstate b
|v) for a nonradial propagation from the sourdeto the o ,
detectorB. In the limit b—0, which reduces the motion to Substituting Eq(57) into Eqg. (56), we have
be radial, Eq.(33) is recovered. We also naotice that the in- T
tegrand in Eq(52) is divergent at the point of the closest b, ~ ~/r —12+r2=r2+GM A0
approactr 5, defined by the condition that the rate of change < 2E ATO 50 r +r0
of the coordinate with respect to the anglé vanishes: F
B 0
dr J5 b? rstro
=0=E3=—B(ro)=1— —B(ry)=0. (53
d¢ fo fo mﬁ 2_ 12 Z_ 12
:E \/I’A—b +\/TB—b
However, the integral which gives the phabgis finite. We 0
will show this explicitly in the weak field approximation. b b P—
The expression ob obtained in Eq(52) is valid for any +GM T +1/2
. . . . . 2 2 2 2
spherically symmetriqand time-independenfield. It has \/rA—b \/rB—b rath
been derived without any assumption on the strength of the
gravitational field. In order to gain more physical insight, n [re—b 58)
however, we perform a weak field approximation, which al- rg+b (

lows us to perform the integration analytically. The approxi-
mation is valid if the field is weak enough to satisfy the \we observe that, in this case, the radial litmit-0 is mean-
condition GM<r for all the r’s along the trajectory under ingless, because it would correspond to a radial motion
consideration. For example, the graVItatlonal field of the sunwhich crosses the gravitational source, where our description
at its surface is abouE Mg /Rp~2X 10°% and that of a pecomes inadequate.
galaxy is aboutG(10''M)/30 kpe~1.6X10"7, both of For b<r, g, Eq. (58) is reduced tdup to the order of
which justify the weak field approximation. Whenever the(bZ/rA 8]
weak field approximation is applied, we keep the expansion
up to the ordelO(GM/r). m? b?

First, let us consider the case where a neutrino is pro- ‘DkIZ—EO(rAHB) 1

2rArB+rA+rB ’ (59)

(54

duced in a gravitational field and then propagates outward
from the potential well nonradially. The weak field approxi- which will be used to discuss the gravitational lensing in the
mation allows us to expand following subsection. It is interesting to note that E§9)
has a gravitational effect which does not depend on the dis-
\/ b? \/ bl GM b? tance between the source and the dete@ssuming that this
1—B(r)r—2~—~ 1- 12 1+ v r2=p? distance is much larger than the impact parambjerThat
is, this gravitational effect integrated along a trajectory
The phaseb, is then easily integrated and becomes which passes close to a gravitational center induces a con-
stant phase shiftGM(mﬁ/ZEo). Furthermore, this constant
phase shift does not depend on how close the trajectory
\/ré— b2— \/rf\— b2 passes to the gravitational center. Therefore, if, for example,

2

(I)kz

_k
2E,
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a neutrino travels relatively close to several well-separated Amzx/ 2GM

gravitational centers, the net phase shift becomes the sum of P(ve— v,)|(ab2—0)=SiM(26)sir? = \1+ X
the phase shifts induced by each gravitational center. 0
b2
C. Gravitational lensing of neutrinos o ) ; (63
A'B

Let us consider a gravitational lens which is located be-
tween a source and an observer but off the line connecting
the two. A neutrino emitted from the source can travel alongvhich can be obtained directly from E9). This is ex-
two different paths, the proper distances of which are differpected, since the symmetric case is equivalent to the case of
ent and give the quantum interference at the detector. the nonradial propagation.

Oscillations arise due to the interference not only between Obviously, the proper way to discuss the gravitational
the mass eigenstateg andv; traveling along each path, but lensing effects on the neutrino oscillations would require a
also between the mass eigenstates propagating along diffevave packet formalism. Such a study is beyond the scope of
ent paths[for definiteness, we denote them as long paththe present paper and will be given elsewhere.

(L) and short path $)]. A neutrino produced as a flavor
eigenstate |ve)=cosf|vy)+sinfly,) at the  source
A(ta,ra,b4), evolves into(we consider only two genera- IV. CONCLUSION

tions) We have studied the propagation of neutrinos in a curved
space-time and the modification to the neutrino oscillation by
calculating a covariant quantum-mechanical phd@ge The
|ve,BY=N > [cosfexp — i dPaM|p,) gravitational field considered in this work is that of a nonro-
path=L,S tating spherically symmetric object, described by the
Schwarzschild metric. Furthermore, we have assumed that
+sindexp( —i ©BM)|1,)], (60) neu;c.rilzjos are relativistic so that a plane wave analysis can be
applied.
Radial and nonradial propagation have been discussed in
e light-ray approximation. Although our phase for the ra-
dial motion is in agreement with the result of the previous
work [7], the interpretations are different. Any comparison of

whereN is the normalization constant. The ﬂavor—changing,[h
oscillation probability at the detector is then given by

Plve—v,)=|(v,|ve,B)[? our result with that in[5] is problematic since the energy
e pirer used in[5] is not clearly defined.
— %coszasin20[1+cos{<b'i—d>f) The _calculated phgsg appears identical to t_hat of the fIat_
space-time case. This is because the phase is expressed in
+1+cos{<b§—®§)—{cos{d>§—<bk) terms of the asymptotic enerdy, and the coordinate dis-
s +s L .s tance. However, the gravitational effects do appear in the
+cogP; - Py)}—{cog Pz~ D7) leading order if we express the phase with the locally mea-
+COE{<D§—<I>&)}]- 61) sured energy and proper distance. As in the radial case, the

phase of relativistic neutrinos for the nonradial motion has
been obtained without resort to the weak field approxima-
The phasesbP™" in Eq. (61) can be evaluated along the tion. Assuming that the gravitational field is weak enough
light-ray trajectories as shown in the previous subsectionand the source and the detector are at a sufficiently large
Substituting Eq(59) into Eq. (61), we have distance from the massive object, the phase is reduced to a
simpler form as given in Eq59). Finally, we have consid-
5 5 ered the gravitational lensing of neutrinos, i.e., the quantum
sinZ{Am X/1+ 2GM _ b H interference when neutrinos propagate through different
4E, | X Ararg paths, and have derived the flavor-changing probability
P(ve—v,) as given in Eq(62).
XCO{ miX Ab? )005( m3X Ab? ) Even though the measurement of the gravitational effects
4Eq 2rarp 4Eq 2rprg on the propagation and oscillations of neutrinos is not fea-
sible at present, we think that the understanding of these
behaviors themselves is of interest.

Note addedAfter the completion of this paper, we be-
came aware of the paper by Cardall and FuJtef], which
discussed a similar subject and obtained the results for the
where we have definedX=rn+rg, Am?= m%—mf, radial motion similar to ours.

Sm’=ms+mj, Ab?=b?—b3, and Sb?=bZ+b3. In the
symmetric case where the lens is aligned with the source and
the detectorAb?=0 and3Xb?=2b? and the above flavor-
changing probability is reduced to that of the nonradially N.F. gratefully acknowledges financial support from the
propagating neutrinos, Istituto Nazionale di Fisica Nucleare, Italy.

P(ve—v,)= Sir?(26)

+sir? ,

3 m2X Abz) , (AmZX Ab?

4E, 4rarg) | TAE, 4rarg

(62
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