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ABSTRACT

Measures of node ranking, such as personalized PageRank, are
utilized in many web and social-network based prediction and
recommendation applications. Despite their effectiveness when
the underlying graph is certain, however, these measures become
difficult to apply in the presence of uncertainties, as they are not de-
signed for graphs that include uncertain information, such as edges
that mutually exclude each other. While there are several ways to
naively extend existing techniques (such as trying to encode uncer-
tainties as edge weights or computing all possible scenarios), as we
discuss in this paper, these either lead to large degrees of errors or
are very expensive to compute, as the number of possible worlds
can grow exponentially with the amount of uncertainty. To tackle
with this challenge, in this paper, we propose an efficient Uncertain
Personalized PageRank (UPPR) algorithm to approximately compute
personalized PageRank values on an uncertain graph with edge
uncertainties. UPPR avoids enumeration of all possible worlds, yet
it is able to achieve comparable accuracy by carefully encoding edge
uncertainties in a data structure that leads to fast approximations.
Experimental results show that UPPR is very efficient in terms of
execution time and its accuracy is comparable or better than more
costly alternatives.

1 INTRODUCTION

Measures of node ranking are used in many web and social me-
dia based prediction and recommendation applications [6, 24, 27].
There are several ways to rank nodes in a graph ranking, includ-
ing the well known personalized PageRank (PPR) measure [9, 18],
which weights the nodes in a given graph based on their positions
relative to a given seed set of nodes (Section 2).
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James Adams

From Wikipedia, the free encyclopedia
James Adams may refer to:

= James Adams (Jesuit) (1737-1802), En
= James Adams (MP) (1752-1816), Briti
= James Adams (lawyer) (1783-1843), A

(a) Ambiguity in data (b) Uncertain edge
Figure 1: Ambiguity in Wikipedia and its potential impact
on the proximity/cluster analysis

Despite their effectiveness when the underlying graph is certain,
these measures become difficult to apply in the presence of graph
uncertainties, as they are not designed for graphs that include
uncertain information. Unfortunately, in many real world web and
social-network based applications, it may not be possible to obtain a
perfect and complete structure of the underlying knowledge graph
for various reasons: This may be due to lack of information, noise
in data collection, or privacy concerns [17].

Most existing works on graph uncertainty consider existence
uncertainty, where a given edge exists probabilistically and the
existence probabilities of the individual edges are assumed to be
independent from each other [2, 10, 16, 20, 26, 29]. In practice,
however, this assumption does not always hold: we may be aware
of the existence of an edge, but we may not know between which
pairs of nodes the edge exists. For example, we may be able to
deduce that one of the several friends of an individual in a social
network may be his/her father, but we may not know which friend.
As another example, we may know that a name referred to in a web
document is one of the many named entities in a knowledge base,
but we may not know which one is the correct entity (Figure 1(a)).

In this paper, we propose an uncertain edge model with mutual
exclusion that can handle such general forms of uncertainty! and
consider the node ranking problem in the presence of such edges.
Obtaining node rankings in such a graph is difficult because ad-
dition or removal of one single edge can have a drastic effect on
proximity [11]: e.g., addition of just one edge may be sufficient to

!For relational data, this type of uncertainty is also known as “partial maybe null”,
where one is not sure if the attribute has a value or not, but if the value exists, then it
must be within a specified set[1, 7]



link two otherwise distant node clusters, thereby significantly alter-
ing the proximities of a large number of pairs of nodes in the graph
(Figure 1(b)). A naive way to deal with this would be to measure
expected node proximities by taking into account the likelihoods
of different interpretations and the node proximity measurements
corresponding to each interpretation: one can

(1) first enumerate all possible interpretations (or possible
worlds) of the uncertain graph, where each interpretation
is a possible certain graph;

(2) compute node proximity under each possible world; and

(3) finally, combine all these node proximity measurements
into a single expected proximity value.

It is, however, easy to see that an exhaustive enumeration based
approach will quickly become intractable since (as we see in Sec-
tion 3) the number of possible worlds can grow exponentially with
the amount of uncertainty in the graph. To tackle this challenge, in
this paper, we propose an efficient Uncertain Personalized PageRank
(UPPR) algorithm to approximately compute personalized PageR-
ank values on an uncertain graph with edge uncertainties. UPPR
avoids enumeration of all possible worlds, yet it is able to achieve
comparable accuracy by carefully encoding edge uncertainties in a
data structure that leads to fast approximations. Experiment results
show that UPPRis very efficient in terms of execution time (multiple
orders faster than other algorithms with similar accuracy) and its
accuracy is close to perfect.

In the next section, we discuss the related literature. In Section 3,
we introduce the uncertain graph model. In Section 4, we discuss
alternative “naive” techniques and discuss their individual short-
comings. Then, in Section 5, we present the proposed efficient and
effective uncertain personalized PageRank (UPPR) technique. We
evaluate the various techniques discussed in the paper in Section 6
using several data sets and conclude in Section 8.

2 RELATED WORKS
2.1 Graphs with Uncertainty

Uncertain graphs are common in many applications. For example,
in biological protein interaction networks, uncertainty may be
introduced when the existence of certain interactions are often
only statistically probable [16, 20]. In communication networks,
possibility of link failure needs to be accounted for in finding stable
and reliable paths for packet delivery with minimum cost: this
involves taking into account several forms of uncertainty, including
existence uncertainty, ambiguity, and confusion on edges [10].

In web-based applications, such as social networks, uncertainties
may exist due to inherent lack of prior knowledge regarding the
existence of friendship or influence flow among the users in the
underlying network [17] and it may be critical to take into account
such forms of uncertainty in predicting which nodes are likely to
be connected to which other nodes [24]. Other graph analysis op-
erations that are affected from graph uncertainty include shortest
paths, reachability analysis, and subgraph searching. A common
challenge is that, in the presence of uncertainty, (already expen-
sive) graph operations becomes more expensive. [8] presented an
interval labeled edge model and discussed efficient computation
of minimum paths and trees on such uncertain graphs without
having to enumerate all possible worlds. [26] and [29] also focused

on shortest paths, but on graphs where edges have probabilistic
interpretations for existence in uncertain graphs. Given edges that
are accompanied with the probability of existence, [16, 20] propose
ways to compute reliability and reachability efficiently through
Monte-Carlo sampling. [30] proposed pruning techniques to re-
duce the complexity of subgraph searching and subgraph pattern
mining in uncertain graphs by avoiding enumeration of all possible
worlds of the uncertain graph.

2.2 Node Ranking in Uncertain Graphs

PageRank is a widely-used measure to compute node importance /
significance in a graph [5]. It takes into account the connectivity
of nodes in the graph by defining the score of the node v; € V as
the amount of time spent on v; in a sufficiently long random walk
on the graph. The personalized PageRank (PPR) [9, 18] technique
extends this in a way that takes into account the context defined
by a given set of important nodes: given a set of seed nodes S € V,
the PPR scores can be represented as a vector 7, where 7 =
aT7 +(1-a)s, where 5[i] = m ifv; € Sand 5[i] = 0,
otherwise. Intuitively, given a set of nodes S ¢ V, instead of jumping
to a random node in V with probability (1 — ), the random walk
jumps to one of the nodes in the seed set, S. Since we constrain the
teleportation jumps from any node in the graph to only the given
set of important seed nodes, then the random-walk spends more
time on nodes that are close to the seeds and, thus, those nodes are
declared more significant based on the context defined by the seed
nodes. Due to the cost of obtaining exact PPR scores, non-exact
solutions (based on low rank decomposition [28] or Monte Carlo
methods [22]) have been proposed.

Several works considered the problem of ranking on graphs with
different forms of uncertainties. [13] considered PageRank when
web graphs contain erroneous link information and proposed an ap-
proximate solution using interval matrices — the proposed approach
captures the PageRank scores of the nodes affected by fragile links
in terms of lower and upper bounds of PageRank values. A different
node-centric uncertain graph model and node ranking approach are
presented in [23]: in particular, [23] collapses the uncertain parts of
a graph into a cloud graph, where the end of every undetected link
is connected to this cloud graph and computes PageRank scores on
this transformed graph. [12] considered uncertain graphs, where
edges are annotated with existence probabilities and extended the
SimRank measure [14] under probabilistic interpretations of edge
existence and transition matrices.

In this paper, we propose a more general uncertainty model
(of which the existence uncertainty considered by the works listed
above is special case) and discuss efficient ways to compute PPR
under this more powerful model.

3 PROBLEM FORMULATION

Let G = (V,E) be a directed graph with a set, V, of nodes and a
set, E, of edges. Conventionally, each edge e € E is defined using
two nodes in the graph: a source node source(e) € V and a target
node target(e) € V. In this paper, on the other hand, we divide the
graph edges into certain and uncertain edges.

Definition 3.1 (Certain edges). A certain edge e+ € E has well
defined source and target nodes, vsource and vg.s;. We denote



Figure 2: A graph with certain and uncertain edges

this with source(e+) = {vsource} and target(e+) = {vgess - We
denote the subset of E consisting of E’s certain edges as E+. o

In Figure 2, e+ ;) = {(vi,va)} is a certain edge from v; to va. Note
that, since |source(es+)| = |target(e+)| = 1, this edge type does
not include any uncertain information. In this paper, we refer to
this certainty as having a unique possible world. Each uncertain
edge, on the other hand, can represent multiple possible worlds:

Definition 3.2 (Uncertain Edges). An uncertain edge e— € E has a
well defined source node but does not have a well defined target
node.? More specifically, we have

e source(e-) cV,

o target(e-) € V U {e} and target(e-) # {€}, and

o |source(e-)| = 1and |target(e-)| > 1.
Above € denotes a non-existing node. We denote the subset of E
consisting of all of E’s uncertain edges as E—. o

Figure 2 includes two uncertain edges, €2 and €~ with different
degrees. The uncertain edge e, captures a form of uncertainty
with mutual exclusion among the edges from v; to vy, ve, or vy This
uncertainty, however, is independent from the existence uncertainty
of e ,). Therefore, the proposed model allows as a special case the
independent existence uncertainty model considered by many of the
existing works [2, 10, 16, 20, 26, 29].

3.1 Possible Worlds of an Uncertain Edge

Each uncertain edge implicitly defines multiple possible worlds in
which different interpretations are valid:

Definition 3.3 (Possible Worlds of an Edge under Mutual Exclusion
Semantics). Let e € E be an edge. Let source(e) denote a source
node of the edge and let target(e) € V U {e} denote the potential
targets of the edge. Given this edge, we define all possible worlds
covered by this edge under mutual exclusion semantics as

Pwunique(e) = {(0n.0))] (v; = source(e)) A (v; € target(e)) }

The possible worlds covered by an uncertain edge consist of all com-
binations of target nodes; if a target node is potentially non-existent,
then it is also a possible world. [pwunique(e)| = |target(e)| is
the number of possible worlds on the edge, e ©

*Due to space constraints, in this paper we only deal with the case of uncertainty in
the target nodes, while we consider the edges’ source nodes as given.

In the example visualized in Figure 2, there are three possible worlds
defined by e—,) (= {{vi,vp ), (vi, vc), (vi, €)} - the last one imply-
ing that this edge does not exist) and four possible worlds defined
by e,y (= {{vi,va), (vi, ve), (vi,vf). (vi, €)} - again the last one
implying that this edge does not exist).

Note that under a more general interpretation, more than one of
the potential combinations, implied by the uncertainty encoded in
the edge, may be possible in the real world.

Definition 3.4 (Possible Worlds of an Edge under Multiple Edge Se-
mantics). Let e € E be a certain or uncertain edge and pwynigue(€)
be the corresponding possible worlds covered by this edge under
mutual exclusion semantics. Given this edge, we define all possi-
ble worlds covered by this edge under multiple edge semantics as all
possible non-empty subsets of its target set>. Note that, since a
possible world containing € is equivalent to the world where € has
been removed, we have

Z(HPWuniquE(e)”_l)’ € € target(e)

2\|(pwunique(€)”)_1, otherwise o

|pWmutripie(e)] = {

Under these semantics, in the example in Figure 2, there would be
20-1D gy possible worlds defined by the uncertain edge e,y and

20U _ g possible worlds defined by e-,). For the certain edge
€(1) this gives 2071 _ possible world.

3.2 Possible Worlds of a Graph

Given the above definitions, we can now define the possible worlds
of a graph with uncertainty:

Definition 3.5 (Possible Worlds of a Graph). Let G = (V,E) be
a directed graph which has a set of nodes V and a set of edges E.
For all e € E, let pw(e) denote the possible worlds (under mutual
exclusion or multiple edge semantics) of the edge e. We define all
possible worlds covered by this graph as the Cartesian product of the
possible worlds of edges: pw(G) = Xecg pw(e). S

If we reconsider Figure 2, under mutual exclusion semantics, this
graph would have 1 x 3 x 4 = 12 possible worlds. In contrast, under
the multiple edge semantics, the graph would have 1 x 4 x 8 = 32
possible worlds. Since uncertain edges have > 2 possible worlds, it
is easy to see that the size of the pw(G) grows exponentially in the

pw(G) | is 0(2!F-1h.

number of uncertain edges; i.e.,

3.3 PPR under Uncertainty

We now define personalized PageRank under uncertainty.

Definition 3.6 ( Personalized PageRank under Uncertainty). Let
G(V,E) be an uncertain graph. Given a seed set, S, of nodes we
can define the personalized PageRank vector, 7, for G as follows:

T = AVG PPR(G;,S),
Giepw(G)
where G; denotes a possible world implied by the uncertain graph
G and PPR(G;,S) returns a personalized PageRank vector, 7 ;,
corresponding to G; and seed set S. o

3This can be extended to the case where there is a constraint in the number of real
edges an edge can potentially represent.
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Figure 3: Alternative (naive) approaches for computing PPR values on an uncertain graph

Intuitively, under the assumption that all possible worlds are
equally likely, the above definition of personalized PageRank corre-
sponds to the expected4 values of the node scores.

4 “NAIVE” APPROACHES

In this section, we present several (naive) approaches for computing
PPR values on an uncertain graph (Figure 3):

4.1 Exhaustive Approaches

The most straightforward way to obtain the PPR values on an
uncertain graph is to exhaustively enumerate all possible worlds,
compute the PPRs for each possible world, and combine (i.e., av-
erage) the results. Obviously this exhaustive approach (exhPPR),
visualized in Figure 3(a), is likely to be very expensive as it involves
potentially exponential number of PPR computations.

One way to alleviate this cost is to rely on a fast approximate PPR
technique (such as B_LIN [28], which partitions the given graph into
subgraphs and pre-processes intra-partition edges, Wi, and inter-
partition edges, Wy, on these subgraphs in a post-processing phase)
to obtain PPR scores for each possible world (Figure 3(b)). Note that,
while this exhaustive approximate approach, which we refer to as
exhApxPPR, is likely to be faster than the basic approach, since it
involves exponential number of (approximate) PPR computations,
it is still likely to be prohibitively expensive.

4.2 Collapsing-based Approaches

Since the major cost of the exhaustive approach is the number of
exhaustive PPR computations, one way to reduce the cost would

“This can be extended to cases where each possible world has a different likelihood.

be to enumerate all possible transition matrices corresponding to
all possible worlds of the uncertain graph and then collapse these
transition matrices into a single transition matrix by taking their
average. After this, we can obtain the final PPR scores either by
solving an exact PPR (collPPR, Figure 3(c)) or approximate PPR
(collApxPPR, Figure 3(d)) problem.

Another alternative is to first partition each individual transi-
tion matrix of each possible world, G;, and then collapse the intra-
partition, Wy;, and inter-partition, Wh;, transition matrices for all
possible worlds into an inter-partition and an intra-partition matrix
to be processed using B_LIN[28] and combined in a post-processing
phase. In Figure 3(e), we refer to this pre-partitioning based alter-
native approach as collApx2PPR.

Accuracy Problem with Collapsing: The collapsing based
approach can lead to relatively large errors when uncertainty is
concentrated around nodes with large PPR scores: Let G be an
uncertain graph with two possible worlds with transition matrices,
T; and Ty, respectively. Given these, we can compute the expected
PPR scores as defined in the previous section as

7) = (71 + 7)2)/2 = (a (T171 + Tz—r')z))/Z + (1 — 0{)?,

where 5~ is the teleportation vector for the seeds. In contrast, when
using the collapsing based approach we instead compute

7' =a(+T)/2) 7 +(1-a)F.

. - = =/ .
Given these, the error term, € = ¥ — 7 can be obtained as

_e) = (0( (T171 +T272))/2 — (X((T] + Tz)/Z) 7/.



Figure 4: Flattening of the uncertain graph in Figure 2 into
an (approximate) certain graph

Assuming that this error term is relatively small; i.e., 7 ~7 we

can replace 7/ with 7 = (77 + 7°2)/2, to obtain

T o~ (@(mTiRT))2-a(Ti+T2)/2) (F1+72)/2)
~ ((T1-T2)/4) 71+ ((T2-T1)/4) 7.

In other words, the error term is especially large when the un-
certainties (i.e., differences between the transition matrices of the
possible worlds) are concentrated around nodes with large PPR
scores.

Execution Time Problem with Collapsing: Since they re-
duce the number of PPR computations to just one, the collapsing
based approaches are likely to be much faster than the exhaustive
approach. Nevertheless, since it involves the enumeration of all
possible worlds before obtaining the collapsed transition matrix,
the cost is still exponential in the number of uncertain edges.

4.3 Flattening-based Approaches

An alternative approach to avoid the enumeration cost of collapsing
is to approximate the collapsed transition matrix by constructing it
directly from the uncertain graph G by flattening each uncertain
edge into certain edges. Let v; be a node with ¢ outgoing certain
edges and u outgoing uncertain edges. To flatten the outgoing edges
of a node v;, we do the following:

(1) Each outgoing certain edge is associated with 1/(c + u)
transition probability.
(2) Let e— be an outgoing uncertain edge, with ¢ targets

(a) eachnon-e target of e is given a transition probability
of (1/t) x (1/(c +u))

(b) if € is a target for e—, then the corresponding (1/¢) x
1/(c + u) transition probability is distributed among
the c certain edges of v;; if the vertex does not have
any outgoing certain edges, then the probability is
re-distributed among all the nodes in the graph.

See [19] for details. For instance, in the example visualized in
Figure 2, since there are three outgoing edges, the probabilities of
outgoing edges for v; would be set as % on the edge going to vgq,
% x % = % on the edge going to v}, and vc, and % X % = % on the edge
going to v, ve, and v¢. Note that, when € is selected for any of the
outgoing edges, the only available traversal direction is towards vg.
Therefore, this would lead to an additional transition probability of
é + % (= %) towards vg. This is visualized in Figure 4.

Once the flattened transition matrix is obtained, we can solve

the final PPR scores either using an exact PPR (flatPPR, Figure 3(f))

or an approximate PPR (flatApxPPR, Figure 3(g)) technique. Note
that, while they are likely to be faster than both exhaustive and
collapsing-based approaches, flattening-based solutions further
compound the accuracy problems.

5 UPPR: PROPOSED APPROACH

We propose an efficient and effective Uncertain Personalized PageR-
ank (UPPR) algorithm to approximately compute personalized
PageRank values on an uncertain graph with edge uncertainties.
In particular, UPPR avoids enumeration of all possible worlds, yet
is able to achieve high accuracy by carefully encoding edge uncer-
tainties in a data structure that leads to good approximations.

5.1 Special Case: Two Possible Worlds

Let G(V,E) be an edge uncertain graph, Let us split G(V, E) into
two subgraphs: a subgraph, G¢(V, Ec), consisting of certain edges,
and a subgraph, G, (V, Ey), consisting of uncertain edges. Let us
first consider the special case where Gy, (V, Ey, ) defines only two
possible worlds. In Section 5.2, we will generalize this to the case
where there may be more than two possible worlds.

Let T and T; be transition matrices corresponding to two possi-
ble worlds of G. The personalized PageRank values 77 and 7, for
T; and T, for seed set, S, are defined in Section 2.2 as

m=aliri+(1-a)s, and 1 =alers +(1-a)5s,

where « is a residual probability parameter and s is a re-seeding
vector such that if a node v; € S, then s7[i] = m and s°[i] = 0,
otherwise. It is easy to see that these two equations can be re-
written as follows to solve for 77 and 73 :

=(-a)I-aTy) 'S and 7 =(1-a)(I-al) '5.
Given these, as defined in Section 3.3, we can compute the expected
PPR values for the edge uncertain graph as

7 - %(r—f 7)) = I’T"‘((I o)+ (I-aT) T
Let us split both T; and T3 into three parts:
Ty =Tgr +Tx + Py and Ty = T + Tx + Py,

where Ty +Tx corresponds to the certain parts of the graph and P;
and P, correspond to the uncertain edges in the two possible worlds.
Let Tgy be the block-diagonal matrix, obtained by partitioning the
graph into blocks (for example using METIS [15]), and Tx represent
(certain) transitions across these partitions.

Note that, in general, we have |Tgr| > |Tx| As we will see
shortly, in this section, we further assume® that |[Tx| > |P;| and
|Tx| > |P2|. As proposed in [28], assuming that the blocks are
sufficiently small, we can efficiently compute Qg}d =(I-aTg)™}
by first computing the inverse matrices of each block and then
combining these inverse matrices to obtain Qgi, which itself is in
block-diagonal form. Moreover, since Tx, P1, and P, are all sparse,
we can also efficiently decompose the Tx + P; and Tx + P; into

Tx + Py ~U1S1Vq and Tx + Py ~ Uy Sa Vs, (1)

®> While this is a common assumption in related work [2], in Section 5.5, we discuss
how to relax this assumption in cases where the number of uncertain edges involved
in each possible world is large.



using a sparse approximate decomposition algorithm, such as [3].
. . — —  —
Given these, we can rewrite 7 = 7 = %(rl +72) as

1-«a -1 -1
:2((1—0{(TBL+U181V1)) +(I—0((TBL+U252V2)) )?

Then, by applying the well-known Sherman-Morrison lemma [25]
on the term (I-a (T +U;S;V;)) ™", we can reformulate the above
equation to obtain®

1-a/ 1 -1 -1 —1,, \-17, ~—1
T 5 (QBL +aQprUi(S1 - aViQprUi) " ViQpr+
-1 -1 -1 —1,, \=1y, ~—1
QpL +aQpLl2(S2" - aV2QpLUz) VZQBL)—S)-
When we further apply the Sherman-Morrison lemma on the term
(87 . Qgi U;)7! in the above equation, we obtain
-1—
(1-a)QpL’s
a(l-a) — —
+ %QBi(Ul(Sl +aS1Vi(QpL - aUiSiVi) U181 )V
+Uz(S2 + aS2V2(QBL - aUZSsz)_1U252)V2)Q1§i_S)-

This equation can be simplified by introducing the terms M; =
U151V and My = U SV, (where My ~ Tx + Py and My ~ Tx + Py):

Te(1- (x)(I + %Q]_:;L((M1 + M) + a(Mi(Qpr - aMi) ™' M;
@
+ Mz (OB - aMz)_le)))leL?.

Relying on the assumption that |Tgr| > |Tx| + |P1| and |Tgr| >
|Tx | +|P2|, we can ignore the terms aM; and aMj in (Qpr —aM; )~}
and (Qpy. — M) ™! in the above equation and rewrite the rest as

Te(1- a)(I + %Qgi((sz +Py +Py) + a(2TxQpL Tx
+ (Py+ P)Qp1Tx + TxQpL(P1 + P2) 3)

+P1Qpr Py + PzQﬁipz)))Qz_ai?~

Furthermore, again relying on the assumption that |Tgy | > [Tx| >
|P1,|P2|, the term P1Q5} Py + P,Q51 P, will be negligible next to
(Py + P2)Qp1 Tx + TxQpr (Py + P;) and thus can be ignored and
7 can be approximately computed as

(1- a)([ + %Qgi((zTX + (P +Py)) +a(2Tx QpL T +
4
(P1+ P2)QpLTx + Tx QpL (P +Pz))))Qgi?.

Summary and Key Advantages: First of all, assuming that the
blocks are sufficiently small and Ql_slld can be efficiently computed,
once Qg,{ is at hand, solving for 7 using the above equation in-
volves very sparse matrix multiplications (involving Tx and P; + Py)
and thus can be processed very efficiently (see Section 6). A second
advantage of the above formulation is that it can be easily extended
to any number of possible worlds.

®For space considerations, we do not provide the complete sequence of algebraic
operations in each step.

5.2 General Case: > 2 Possible Worlds

When we have n possible worlds (e, 7 = %(r_f +...+ 7)), the
UPPR equation (Equation 4) can be generalized as

~(1- a)(I + %Qgi((nTX +(Pr+ .. + Pn)) + a(nTxQpL Tx

+ (P + ...+ Pn)QpiTx + TxQph(Py + ... + P,,))))Qgi?.

®)
As we see in Section 6, this formulation leads to efficient execution
plans, especially because the term %(Pl + ...+ Py) in Equation 5
can be obtained (without having to enumerate all possible worlds)
directly by computing the ratio of the number of possible worlds
in which a given edge exists.

Under mutual exclusion semantics: As we have seen in Sec-
tion 3.1, the possible worlds covered by an uncertain edge consist
of all combinations of its target nodes. Under mutual exclusion
semantics, only one of the edges implied by the uncertain edge can
be valid in the real world. Let v; be a node which has c outgoing
certain edges and u outgoing uncertain edges. If, in a given possible
world, some of the u outgoing uncertain edges map to €, then in that
possible world, the transition probabilities for the remaining certain
and uncertain edges will be higher. We can use this observation to
compute Paog = %(Pl + ...+ Py) as follows:

Let v; be a target node of an uncertain edge, e-, with
|target(e-)| = k. The value of Paog(j,i) can be computed as’

L= 1
— ><( Z (7) (ratio of worlds s.t. h of other unc.edges are e))
k “po\c+u-h

Here, p() denotes the probability of a given event.

Note that, if e has € as a target, then the corresponding transi-
tion probability has to be redistributed among the outgoing certain
edges of the node and, if none exists, then it needs to be redistributed
among all nodes in the graph. Let e+ be an outgoing certain edge
from v; and let us denote its target as v;. The transition probability,
for ey, taking into account € transition for the uncertain edges, can
be computed as

u 1
> (7) (ratio of worlds s.t. h of unc.edges are €).
pso\ctu—h
However, since e+ is a certain edge, it belongs to either intra-
partition or cross-partition certain edges. Therefore, when we
compute the Paog(j, i), we need to compensate for the portion
of the transition probability already accounted in Ty, or Tx. Let
C(j,i) denote Ty (j, i) + Tx (j, i); then, the cell [j,i] in Payg has
the compensated value

u 1
( Z (ﬁ) (ratio of worlds s.t. h of unc.edges are 6)) -C(j,i).
oo \CtHu-—

If v; does not have any certain edges, the transition probability is
distributed among all nodes in the graph. See [19] for details.

In both cases, to compute, Pavg, We need to compute the prob-
ability that for h out of a given number of uncertain edges, ¢ will

"Note that, if vj is a target for multiple outgoing edges from v, all transition proba-
bilities to v; need to be aggregated (see [19]).



be selected as the target. Let us be given m = (mg + m1) uncertain
edges, such that my many do not contain € in the target set and m;
many do. Let the maximum target size for this latter set of nodes
be max_target. Then, we can group the m; uncertain edges to
max_target many groups where, each group, g;, consists of uncer-
tain edges with target size I; i.e., |g1 | + 92| +. . . + ||gmax_target|| =
mj. Note that, by definition, any uncertain edge which contains €
as a target must also have at least one other node in its target set,
lg1l = o.

Given this, we can compute the probability that h out of m
uncertain edges will be € as

p(hg +hy+... +hmax,target =h s.t.
vZSISmax,target hy in ”gl ” edges select 6)'

The probability p(h; in |g;| edges select €) is binomially dis-
tributed with B(|g;[,1/l) - i.e., there are |g;| uncertain edges,
each serving as an independent trial with 1/l success rate for
the selection of € among the available targets. Consequently, the
probability that h out of m uncertain edges select € as their tar-
gets is distributed as a summation of the binomial distributions
B(|g2],1/2) + ...+ B(|gmax_target |, 1/max_target). Algorithms
to efficiently compute summation of binomial distributions are
presented in [4]. See [19] for details.

Under multiple edge semantics: In this case, several of the edges
implied by a given uncertain edge can be simultaneously valid. Let
v; be anode with ¢ outgoing certain edges and u outgoing uncertain
edges. Let v; be a target node of an outgoing edge, e, from v;. The
value of Pgog(J, i) can be computed as®

total_out
( ) xp( > num_selected_target_nodes(e) = h) ,
h=0 c+h ecU
where  total_out = Yecv |target(e)/{e}|  and

num_selected_target_nodes(e) is the number of nodes se-
lected as outgoing targets for e in a given possible world (if € is the
only target selected, then num_selected_target_nodes(e) = 0).

Note that, similarly with the case of mutual exclusion semantics,
for certain edges, we need to compensate for transition probabilities
already accounted in Ty, or Tx. Also, if v; does not have any certain
edges, the transition probability for the case where all uncertain
edges select € as target needs to be distributed among all nodes.
See [19] for details.

To compute Pgyg using the above equation, we need to compute
the probability p (¥ ey num-selected_target_nodes(e) = h). Once
again, this can be achieved by representing the distribution as a sum
of binomial-like distributions: intuitively, if e is an uncertain edge
with €, then the probability that t many non-e targets are selected
can be represented in the form of a binomial with ||target(e)| — 1
many trials and 1/2 success rate. If, on the other hand, e is an
uncertain edge without ¢, the probability that t many targets are
selected can be represented in the form of a binomial with target(e)
many trials and 1/2 success rate. In the latter case, however, we
need to correct for the situation where t = 0. This is because,
under multiple edge semantics, for an uncertain edge without e, the
selected target nodes must include at least one node in the graph;
thus, t cannot take the value of 0. See [19] for details.

8Again, all v; to v; transitions need to be aggregated.

5.3 Accuracy of UPPR

The UPPR equation (Equation 5) captures the underlying uncer-
tainty in a way that leads to minimal approximation errors under
the assumption |Tgy | > |Tx| > |P+|. In particular, the UPPR pro-
cess has three specific sources for potential errors, each of which is
minimized under these, generally valid, assumptions:

The first source of error is the decomposition of Tx + P into
U+S+Vs using an approximate algorithm, such as [3], that re-
lies on the sparsity of the edges that cross partitions and of the
uncertain edges (see Equation 1). The second source of error is
the assumption that the terms aM; and aM; are negligible rel-
ative to the rest of the terms in Equation 2; this relies on the as-
sumption that Tx and P« that contribute to Mx are both sparse
matrices. The third source of error is the assumption that the
term PQf] Py + P2Qp] P2 in Equation 3 is negligible relative to
(Py+P2)Qp1 Tx + Tx QgL (P1 + P2).

Note that all three potential sources of error are minimized when
[Tpr| > |Tx| > |P+|. While the fact that whether [Tpp| > |Tx]|
holds or not depends on the type of graph and the partitioning
algorithm used, whether |Tx| > |P«| or not depends on the amount
of uncertain edges in the graph. In Section 5.5, we discuss how
to relax the assumption, |Tx| > |P«|, in cases where there are
significant number of uncertain edges in the graph rendering |P«|
relatively dense, using a hybrid strategy.

5.4 Efficient Computation of UPPR Scores

Let us partition Equation 5 into 6 subcomponents:

1
7 =;(7{ o) (1-a)Qp T +a(1-a)Qpr Tx Q51 S

(¢Y] @)

a(l-a)

+TQ§1L(P1+...+P,1)Q,§1L?

®)

+a?(1-a) Q5 Tx Q5 Tx Q515

(4)
N @%im +ot Pr)Qp1 TxQp1
5)
0D o 1 Qpt (P P)OLT

(6)

Each of the six subcomponents above contains an extremely sparse
re-seeding vector 5. Moreover, Qgi is a block diagonal matrix and
Tx and Px are all sparse. Consequently, each of the terms can be
computed, right to left, through efficient vector-matrix multiplica-
tions. For example, the subcomponent (2) can be computed from
right to left with the following sequence of efficient operations:

-1 — -1 — -1 -1—
OBL S Tx QprLs — QprL TxOpL S

—— e ——
[VIx[VIVIXL VIxv] vix1 Vx|V |vxi

1 -1
- a(1-a)QpLTxQBLS -
[N —

[V]x1



# of # of # of
Data nodes edges partitions
ego-Facebook 4,039 88,234 3
Wiki-Vote 7,115 103,689 3
web-NotreDame || 325,729 | 1,497,134 50
web-BerkStan 685,230 | 7,600,595 500
Table 1: Data sets
#of degree edge #of
uncertain of edge semantics possible
edges uncertainty worlds
different 2 16-64
#of 4 4 mut.excl. 256-4,096
uncertain 6 (multiple) 4,096-262,144
edges 8(7) 65,536-2,097,152
different 2 16-16
degree of 4 mut.excl. 256-4,096
edge 4 6(5) (multiple) 1,296-65,536
uncertainty 8(6) 4,096-1,048,576
10 10,000

Table 2: Uncertainty scenarios

+Pn), QLS TxQp1s
and Q51 TxQpL s occur in multiple subcomponents, they can be
cached and reused — once these terms are cached, the rest of the
computations for the six subcomponents can be executed in par-
allel. Note further that several of the terms above can be cached
and reused for the same uncertain graph with different seed vec-
tors or even graphs with the same certain, but different uncertain
components (to carry out hypothetical, if-then analyses).

Moreover, since the terms (P; + ...

5.5 Hybrid Computation in the Presence of
Large Numbers of Uncertain Edges

As we have discussed in the previous section, the accuracy of the
proposed UPPR technique relies on the assumption that |Tgy| >
|Tx| > |P+|. In particular, whether |Tx| > |P«| or not depends on
the amount of uncertain edges in the graph: UPPR is likely to be
highly effective and efficient if the number of uncertain edges in
the graph is relatively small. In contrast, as we have seen in Sec-
tion 4.2, the collapsing (and similarly flattening) based techniques
may lead to large errors if the uncertain edges are concentrated
around nodes with large PPR scores. We can leverage these two
observations to deal with graphs with large numbers of uncertain
edges: The idea is to eliminate uncertain edges in the graph, relying
on the highly efficient flattening technique, away from the seed
nodes of the graph (which are likely to have large PPR scores) and
only maintain uncertain edges in the neighborhoods of the seed
nodes. Consequently, errors due to flattening are minimized as this
technique is utilized only in regions with less likelihood of produc-
ing high PPR scores; UPPR errors are also minimized, especially in
large graphs, as the numbers (|P+|) of uncertain edges in possible
worlds that UPPR has to deal with have been reduced relative to
the rest of the graph.

6 EXPERIMENTS

6.1 Datasets and Setup

We ran experiments on a 16-core CPU Nehalem Node with 64 GB
RAM. All codes were implemented in Matlab and run using Matlab
R2013b. Table 1 provides an overview of the four data sets [21],

with different numbers of nodes and edges, and graph partitions,
considered in the experiments (the partitions are obtained using
METIS [15]). Table 2 details the volumes of uncertainty we have
experimented with for the results reported in this section. Here,
the “degree of uncertainty” refers to the number of target nodes on
each uncertain edge it represents and the “edge semantics” describes
“mutual exclusion” and “multiple edge” semantics. These together
define the number of possible worlds corresponding to a given
uncertain edge. To obtain uncertain graphs with the specifications
in the table, we select random edges in the original graph and render
them uncertain by augmenting destinations with random nodes.
We further assume that the uncertain edges are located on the seeds
(as discussed in Sections 4.2 and 5.5, uncertain edges away from
the seeds can be flattened into certain edges).

6.2 Alternative Approaches

In this section, in addition to UPPR (presented in Section 5), we
considered all alternative approaches discussed in Section 4. As a
further baseline, we also consider a Monte Carlo-based solution
(which starts from the seed nodes, and samples random walks of a
given length) and BEAR [27], a recent PPR computation algorithm,
which originally does not take uncertainty into account. For un-
certainty, we use the flattened transition matrix for the transition
matrix and compute PPR values. In the experiments, without loss of
generality, we set the residual probability parameter, « to 0.85. To
compare different algorithms, we consider both efficiency (i.e., PPR
computation time) and accuracy (in terms of the correlations of PPR
rankings for the nodes that are ranked top-50 by the exhaustive
technique, exhPPR).

7 RESULTS AND DISCUSSIONS

We start the discussion of the results by considering efficiency and
accuracy of the various algorithms on the Facebook data set, for
different degrees of uncertainty in the graph.

Impact of the Degree of Uncertainty. Figures 5(a) and (b) show
the execution times of different algorithms, as the overall number
of uncertain edges and degree of uncertainty in the graph are in-
creased. As we see in the figure 5, exhaustive and collapsing-based
approaches (which need to enumerate the possible worlds) quickly
become infeasible as the number of possible worlds increases. While
flattening-based approaches are reasonably fast and scale better
than the exhaustive and collapsing-based approaches, they are 1
or 2 order slower than UPPR. BEAR takes less time than UPPR for
PPR computation but the difference between them is negligible.
Figures 5(c) and (d) confirm that execution time savings on UPPR
do not come with any drop in accuracy — UPPR provides similar (or
in some cases better) accuracy to the two collapsing- and flattening-
based approaches, collPPR and flatPPR, that rely on direct compu-
tation of PPR from the transition matrix, even though it uses an
approximate solution for PPR. As expected, the accuracy of BEAR
is very poor compared to UPPR and the accuracy is not stable and
affected by the amount of uncertainty. Other techniques such as
collApxPPR, collApx2PPR, and flatApxPPR that similarly solve PPR
approximately, relying on a sparse approximation method, all have
significantly degraded accuracies. This indicates that, by carefully
accounting for the sources of errors, UPPR is able to achieve high
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Figure 5: Results on the Facebook data set, for different amount of uncertainty with different edge semantics: UPPR provides
almost perfect accuracy and its execution time is not affected by the amount of uncertainty

accuracies (~1.0) efficiently (~0.01 seconds) and avoids accuracy
pitfalls that other schemes are not able to handle effectively.

UPPR vs. Monte Carlo Method. Additionally, we consider a
Monte Carlo (MC) based alternative to UPPR. [22] notes that (in
regular graphs) for estimating PPR values close to a desired thresh-
old § (where § is the expected PPR score; i.e., 1/|[V|, where |V is
the number of nodes), a Monte Carlo based algorithm would need
0(1/(8 x p?)) = O(|V|/p?), samples of length, geometric(ﬁ),
where p is the relative error and 1 — « is the teleportation rate. This
means that, when we seek high accuracy, Monte Carlo based solu-
tions may be prohibitive [22]. Indeed, for the Facebook data set, with
~ 4000 nodes, to have 95% accuracy, we would need 4000/0.052 =
1,600,000 random walk samples (of length > [ﬁ] =7, since we
set a to 0.85).

In Table 3, we report the accuracy comparison for a more modest
target error rate of 0.15, which leads to ~ 150K, random walks
- note that, even in this modest case, taking 150K random walk
samples is more expensive (65 seconds in Matlab) to compute than
UPPR (~0.01 seconds). In the table, we see that for top-100 to top-
500 results, Monte Carlo, is able to match the target accuracy in the
presence if mutual exclusion semantics; but fails to do so when all
nodes are considered. In the presence of multiple edge semantics,
MC is able to match the target error rate only when top-500 results
are considered and the results are very poor for top-100 nodes,
even with larger number of samples, with longer lengths. Note that
UPPR is able to achieve significantly higher accuracy (for top-100,
top-500, as well as for all nodes), very cheaply (~ 0.01 seconds for
this data set as shown in Figure 5).

Different Data Sets and the Impact of the Graph Size. In the
experiments reported in Figure 6, we compare the efficiency and

effectiveness of the various algorithms we presented in the paper for
graphs of different sizes. The figure reports results for two sample
uncertainty complexities: Figures 6(a) and (c) report execution time
and rank correlation for a scenario with mutual exclusion semantics,
whereas Figures 6(b) and (d) consider a scenario with multiple edge
semantics. As we see in this figure, the proposed UPPR method
is scalable, not only in terms of the possible worlds of the graph,
but also the graph size. While the closest algorithms to UPPR in
terms of efficiency and scalability, flatApxPPR and BEAR, suffer
significantly from accuracy degradations, UPPR provides very high
(mostly close to perfect) accuracy in all cases considered in this
section.

Here, we do not present the accuracy results for the largest Berk-
Stan data set as the cost of performing the exhaustive enumeration
needed to obtain the accuracy ground-truth is prohibitive on this
data set. However, the results show that UPPR provides very good
accuracy, while its execution time is minimally effected by graph
size. In fact, on the largest data set, UPPR is even faster than the
BEAR baseline, while providing significantly better accuracy.

8 CONCLUSIONS

In this paper, we presented an uncertain edge model with mutual
exclusion and shown that, while there are several ways to naively
extend existing personalized PageRank computation techniques to
graphs with uncertain edges, these either lead to large degrees of
errors or are very expensive to compute in practice. We therefore
proposed a novel Uncertain Personalized PageRank (UPPR) algorithm
to approximately compute personalized PageRank values on such
graphs. Experiments confirmed that the proposed technique has
very high accuracy and is multiple-orders faster than available
algorithms that can provide comparable accuracy.
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Figure 6: Results in graphs of different sizes: as the figures show, UPPR provides good accuracy and its execution time is

minimally effected by the graph size

Edge #of Length of Top Top All
type random | random 100 500 nodes
walks walks acc. acc. acc.
UPPR 0.952 | 0.981 | 0.997

8 0.782 0.881 0.525

Mutual 150K 10 0.816 0.919 0.583
exclusion Monte 20 0.841 0.920 0.519
semantics Carlo 30 0.834 | 0.908 0.533
(#ue=4, 8 0.814 0.911 0.584
#udeg=10) 300K 10 0.845 0.927 0.545
Monte 20 0.858 0.924 0.588

Carlo 30 0.813 0.913 0.571

UPPR 0.998 | 0.989 | 0.997

8 0.193 0.878 0.571

Multiple edge 150K 10 0.145 0.900 0.656
semantics Monte 20 0.258 0.969 0.658
(#ue=7, Carlo 30 0.269 0.937 0.696
#udeg=4) 8 0.193 | 0.945 | 0.649
300K 10 0.163 0.912 0.667

Monte 20 0.148 0.905 0.660

Carlo 30 0.155 0.901 0.670

Table 3: UPPR vs. MC method on the Facebook graph
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