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Abstract

Background: The ecological factors contributing to the evolution of tropical vertebrate communities are still poorly
understood. Primate communities of the tropical Americas have fewer folivorous but more frugivorous genera than tropical
regions of the Old World and especially many more frugivorous genera than Madagascar. Reasons for this phenomenon are
largely unexplored. We developed the hypothesis that Neotropical fruits have higher protein concentrations than fruits from
Madagascar and that the higher representation of frugivorous genera in the Neotropics is linked to high protein
concentrations in fruits. Low fruit protein concentrations in Madagascar would restrict the evolution of frugivores in
Malagasy communities.

Methodology/Principal Findings: We reviewed the literature for nitrogen concentrations in fruits from the Neotropics and
from Madagascar, and analyzed fruits from an additional six sites in the Neotropics and six sites in Madagascar. Fruits from
the Neotropical sites contain significantly more nitrogen than fruits from the Madagascar sites. Nitrogen concentrations in
New World fruits are above the concentrations to satisfy nitrogen requirements of primates, while they are at the lower end
or below the concentrations to cover primate protein needs in Madagascar.

Conclusions/Significance: Fruits at most sites in the Neotropics contain enough protein to satisfy the protein needs of
primates. Thus, selection pressure to develop new adaptations for foods that are difficult to digest (such as leaves) may have
been lower in the Neotropics than in Madagascar. The low nitrogen concentrations in fruits from Madagascar may
contribute to the almost complete absence of frugivorous primate species on this island.
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Introduction

Primate communities of Madagascar are known for the

paucity of frugivorous species. In contrast, the high represen-

tation of frugivores but under-representation of truly folivorous

vertebrates in the Neotropics has been a long-standing enigma

in ecology [1–3]. Neotropical primate communities (often used

as proxy for mammal communities in general [1,3,4]), contain

more frugivorous genera and species when compared to the Old

World primate radiations of Africa/Asia, and these in turn have

more frugivores than primate communities of Madagascar

[5,6]. Explanations for the different numbers of frugivores and

folivores include phenological patterns of food resources and

plant species diversity. First, it has been postulated for the

Neotropics, that young leaves are rare at the time of year when

fruit abundance is low. This makes it unlikely that species in the

Americas can fall back on young leaves during times of fruit

shortage [2] and does not favor the evolution of folivores.

Second, food plant diversity, and in particular the regional

species richness of figs as keystone fruit trees during times of

food shortage, has been linked to the diversity of frugivores

[7,8]. Madagascar has very few species of figs and fruit

production is erratic due to high climatic stochasticity [9–12].

Thus, both factors may contribute to the paucity of frugivores in

Madagascar though the generalization of both hypotheses has

been questioned and modified by analyses of extended datasets

[13–15].

Here, we propose a supplementary hypothesis to explain the

higher representation of frugivorous taxa in New World tropical

communities compared to Madagascar. Protein, measured as

nitrogen concentration, is assumed to be a limiting factor in many

communities [16]. For primates, the biomass but not the diversity

of folivores has been linked to the ratio of nitrogen to fiber in

leaves of a given forest [17–19], indicating a strong effect of

protein availability on folivorous primates, though the biologically

most appropriate measures for protein availability in leaves are still

being developed further [20,21].

Our hypothesis is based on a somewhat different argument. The

key assumption for the evolution of primate diversity postulates

that primates evolved under the constraints of protein availability

[22,23]. According to this hypothesis, fruits, - although central

food resources because they are easy to digest and protein

digestion is not hindered by secondary plant components to the

extent seen in leaves - , are not supposed to contain enough

protein to satisfy the requirements of primates. Therefore, species

were forced to add leaves (if large-bodied) or insects (if small-

bodied) to satisfy their nitrogen needs [22–24], and supplement

their diets with alternative food resources during times of fruit

shortage [25].

There is no doubt that unusual environmental conditions and

food shortage can cause famine and death in primates, and thus,

lean seasons require special adaptations for survival [26–28].

But, large-bodied species store nutrients when they are available.

This type of ‘‘capital breeding’’ seems to be favored when

maternal investment is relatively low due to large body size

(compared to the smaller species) and spread over longer periods

of time [29]. Conversely, in most small primate species,

reproductive success is linked primarily to food quality during

the lush wet season when females give birth and lactate and

infants are weaned (‘‘income breeders’’: Madagascar: [30–32];

New World: [33]). Nutrient availability during times of lactation

and weaning would then represent a crucial factor for

reproductive success [10,30,33], with adaptations to periods of

food shortage potentially resulting in diversification [34]. Thus,

once constraints imposed by seasonal fruit shortage had been

solved through different adaptations [15,35], primate commu-

nities could maintain more frugivorous taxa at sites where fruit

protein concentrations were high enough to satisfy the protein

needs of the lactating female and the infant during weaning.

This would be relevant particularly in primate communities with

a higher representation of small-bodied ‘‘income breeders’’.

Today, as well as in evolutionary times, primates of the

Neotropics tend to be smaller than primates from Madagascar

[6,36]. Thus, the higher proportion of small frugivorous primate

species in the Neotropics could have evolved if fruit protein

content in the Neotropics would be above the primates’ protein

needs in the Neotropics, but below these requirements in

Madagascar [24]. Based on this argument, we test the hypothesis

that fruits in the Neotropics contain higher protein concentra-

tions than fruits in Madagascar.

Figure 1. Average nitrogen concentration in fruits and primate
vegetable foods in the Neotropics and in Madagascar. (A)
Average nitrogen concentrations in fruits. Number of sites listed along
the x-axis (Table 1). (B) Average nitrogen concentrations of all vegetable
food items consumed by primates in the Neotropics and in Madagascar.
Number of studies listed on the x-axis (Table 3).
doi:10.1371/journal.pone.0008253.g001
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Results

The nitrogen concentrations in ripe fruits were significantly

lower at sites in Madagascar than in the Neotropics (Madagascar:

1.0960.28%, n = 9 sites; Neotropics: 1.3760.29%, n = 14 sites;

MWU-test: z = 2.49, p = 0.011; Fig. 1; Table 1).

Sites are represented with different sample size. If the analyses

were based on the individual plant species analyzed at each site,

fruits from Madagascar contained 1.0460.60% nitrogen (n = 334)

while New World fruits contained on average 1.3760.73%

nitrogen (n = 168; MWU test: z = 5.08, p,0.001). Since the raw

data are not available for most of the published studies, this

analysis was restricted to the unpublished data marked with

numbers in Table 1 and Figure 2 (six sites in the Neotropics and

six sites in Madagascar).

Given differences in fig availability between Madagascar and

the Neotropics, it appeared possible that figs might play different

roles in Madagascar and in the Neotropics. However, when figs

were removed from the analyses, the two regions still differed

significantly with average nitrogen contents of 1.0460.61% in

Madagascar (n = 322 samples) and of 1.4060.76% in the

Neotropics (n = 157 samples; MWU test: z = 5.19, p,0.001).

In contrast to the nitrogen concentrations of fruits, the nitrogen

concentrations in the overall vegetable diet of primates (including

leaves, exudates, flowers, fruits) did not differ between species of

the Neotropis and of Madagascar (MWU-test: z = 1.28, p.0.05;

Neotropics: mean nitrogen content of vegetable primate food:

2.0560.57, n = 13 studies at 13 different sites and 9 different

primate species; Madagascar: 1.7460.73, n = 25 studies at 11

different sites and 23 different primate species; Fig. 1; Table 2).

Discussion

On average, protein concentrations in the vegetable food of

primates do not differ between regions. This indicates, that the

protein requirements of species from different radiations are

independent of their phylogenetic history, even though some of

the strepsirhine primates of Madagascar can have reduced

metabolic rates [37,38]. In contrast to the overall vegetable food

composition, fruits in the Neotropics and in Madagascar vary in

their nitrogen concentrations. This pattern is not due to different

sample size, since, despite the fact that fruits have been sampled

most comprehensively in Madagascar, the larger number of samples

per site does not lower the average protein concentration when

Table 1. Nitrogen concentrations of fruits at different sites in Madagascar and the Neotropics.

Site Country

% Nitrogen
concentration in
fruits (sample size) Sampling Source

Madagascar

Anjamena (A) Madagascar 0.88 (25) PF: Eulemur mongoz [57]

Kirindy/CFPF-CS7 (B) Madagascar 1.10 (8) PF: Propithecus verreauxi Carrai unpubl.

Ranomafana (C) Madagascar 0.96 (6) PF: Microcebus rufus [58]

Sahamalaza (1) Madagascar 1.2460.68 (67) GS Polowinsky & Schwitzer unpubl.

Kirindy/CFPF-N5 (2) Madagascar 1.0460.42 (40) GS [59], Bollen et al. unpubl.

Ranomafana (3) Madagascar 1.0160.40 (45) PF: Propithecus edwardsi Arrigo-Nelson unpubl.

Mandena (4) Madagascar 0.9960.81 (71) GS [60], Lahann unpubl.

Sainte Luce (5) Madagascar 0.886 0.39 (103) GS [61]

Berenty (6) Madagascar 1.7760.75 (11) PF: Microcebus griseorufus [62]

Neotropics

Los Tuxtlas (D) Mexico 1.34 (11) PF: Alouatta palliata [63]

Cockscomb Basin Wildlife Sanctuary (E) Belize 1.33 (16) PF: Alouatta pigra [64]

Barro Colorado Island (F) Panama 1.29 (8) Several PF [65]

Ilanos (G) Venezuela 1.12 (9) PF: Alouatta seniculus [24]

Lago Guri (H) Venezuela 1.47 (19) PF: Pithecia pithecia + 3 fruits
not eaten

[66]

Nouragues (I) French Guiana 0.79 (14) GS [67]

San Cayetano (J) Argentina 1.52 (2) PF: Alouatta caraya [68]

Mata Atlantica (K) Brasil 1.18 (22) PF: Callicebus moloch [69]

Lomas Barbudal (11) Costa Rica 1.3360.75 (64) PF: Cebus capuchinus Vogel unpubl.

Tinigua National Park (12) Columbia 1.2860.77 (53) PF: Lagothrix lagotricha Stevenson unpubl.

Yasunı́ National Park (13) Ecuador 1.5960.79 (33) PF + NPF: Alouatta seniculus Derby unpubl.

Raleighvallen (14) Suriname 1.1760.54 (13) PF: Cebus apella Boinski & Vogel unpubl.

Parque Estadual Carlos Botelho (15) Brasil 1.9461.12 (4) PF: Brachyteles arachnoides Talebi unpubl.

Isla Brasilera (16) Argentina 1.77 (1) PF: Alouatta caraya Kowalewski unpubl.

Letters and numbers listed in the first column refer to sites shown in Figure 2. Values of the published datasets (sites marked by letters in the left hand column and in
Figure 2) are means or medians as listed in the original reference; sample size listed in brackets. For samples analyzed in the context of the present paper (sites marked
by numbers) values are means and standard deviations. Nitrogen concentrations were recorded by general sampling (GS) of fruits from woody plant species available
during the study period, or of fruits consumed by a specific primate species (PF) plus fruits not consumed by primates at the sites (NPF).
doi:10.1371/journal.pone.0008253.t001
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compared to the fruits eaten most frequently (Table 3). Thus, the

differences between regions are unlikely due to sampling artifacts.

The protein requirements of primates are such that foods consumed

should contain about 7–11% protein (equivalent to 1.1–1.8%

nitrogen). These values include the consumption of leaves with

secondary components inhibiting digestion [24,39]. Even cattle and

sheep with improved nitrogen digestion due to rumination avoid food

with nitrogen contents below 1.1% [40]. Thus, fruits at sites in

Madagascar with an average nitrogen concentration of 1.0–1.1% are

on the lower end of nitrogen concentrations found in sampled fruits of

the Neotropics and are below the nitrogen requirements for primates.

In conjunction with environmental conditions which seem less

predictable in Madagascar than in other parts of the world [11,12],

this might have contributed to the evolution of very few frugivorous

and the high proportion of folivorous lemur species in Madagascar.

Similarly, this might also explain the low representation of frugivorous

bird species on Madagascar [1,41].

The contemporary low representation of frugivorous lemur

species is not an artifact of recent extinctions. Madagascar has lost

its large vertebrate species (elephant birds, giant tortoises, pygmy

hippopotamus, large lemurs) during the last millennium [42]. But

except for two species of Pachylemur, none of these species seem to

have relied on fruits as a staple diet [43].

In contrast to the situation in Madagascar, the average nitrogen

concentrations of fruits in the New World are well within the

nitrogen requirements of primates. Thus, the selection pressure to

extend their diet beyond fruits seems to be lower in the Americas

than it is in Madagascar.

The difference in nitrogen concentrations between regions may not

appear to be biologically substantial (i.e.: 1.0–1.1% nitrogen in

Madagascar and 1.4% in the Neotropics). Yet, assuming that animal-

dispersed fruits evolved under the evolutionary pressure to attract

dispersers without investing too much, the difference in nitrogen of

around 0.3% between Madagascar and the Neotropics is likely to be

quite relevant; from the plants’ perspective, this small increment

represents an increase in nitrogen investment (and nitrogen loss once

the fruits are eaten) of about 30% between Madagascar and the New

World fruits. Given that many trees are exhausted especially after mast

fruiting [44], a 30% difference in the protein investments in fruits - and

in a major food resource - must have profound consequences on the

plant as well as on the consumer communities.

The hypothesis presented here should be considered as one of

several constraining factors of evolutionary relevance. It is based

on food quality and does neither consider quantitative aspects, nor

does it take into account the need to match the animals’ energy

requirements (e.g., [45,46]), specific mineral needs [47], or

avoidance of plant secondary components [48]. However, these

possibly confounding variables can not be separated as long as we

do not have the means to measure the qualitative and quantitative

availability of food, its individual and seasonal variation as well as

seasonal or ontogenetic variation in ingestion and nutrient

assimilation by the animals (e.g., [49,50]).

Figure 2. Sites for measures of fruit protein content (source of map: www.smithLifeScience.com/Tools.htm; free). Site labels are listed
in Table 1. Letters refer to studies published previously. Numbers refer to new and yet unpublished studies.
doi:10.1371/journal.pone.0008253.g002
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Materials and Methods

Database
We compiled data on the nitrogen concentrations of ripe fruits

in forests of Madagascar and in the New World from the literature

and supplemented the data with additional analyses of fruits from

six sites in the Neotropics and six sites in Madagascar. Non-forest

habitats were not considered. We used nitrogen concentrations as

measured by the Kjeldahl procedure rather than crude protein in

this comparison, because different conversion factors from

nitrogen to crude protein have been suggested [51–53]. As other

measures of protein concentrations, such as ninhydrin, Biorad, or

amino acids can not be transformed to nitrogen concentrations

using a simple transformation factor, only studies reporting total

Table 2. Mean nitrogen concentration of all vegetable food items consumed by various primate species in Madagascar and the
Neotropics.

Species Site Country N % Nitrogen Source

Madagascar

Avahi laniger Ranomafana Madagascar 5 2.5 [70]

Avahi meridionalis Sainte Luce Madagascar 39 1.2 Norscia unpubl.

Cheirogaleus major Mandena Madagascar 77 0.9 [60]

Cheirogaleus medius Sainte Luce Madagascar 33 0.8 [59]

Cheirogaleus medius Mandena Madagascar 75 0.9 [60]

Eulemur collaris Sainte Luce Madagascar 100 1.0 Donati unpubl.

Eulemur macaco Ampasikely Madagascar 23 1.7 [71]

Eulemur flavifrons Sahamalaza Madagascar 88 1.6 Polowinsky & Schwitzer unpubl.

Eulemur mongoz Anjamena Madagascar 46 1.1 [57]

Eulemur rufus Kirindy Madagascar 20 1.0 [59]

Hapalemur alaotrensis Alaotra Madagascar 15 2.1 [72]

Hapalemur aureus Ranomafana Madagascar 63 3.2 Tan unpubl.

Hapalemur griseus Ranomafana Madagascar 40 3.4 Tan unpubl.

Hapalemur merdidionalis Mandena Madagascar 26 1.6 Ralison unpubl.

Hapalemur simus Ranomafana Madagascar 141 2.3 Tan unpubl.

Indri indri Mantadia Madagascar 10 1.7 [73]

Lemur catta Berenty Madagascar 28 2.4 [74]

Lepilemur ruficaudatus Kirindy N5 Madagascar 194 2.4 [26,75]

Microcebus griseorufus Berenty Madagascar 25 1.5 [62]

Microcebus murinus Mandena Madagascar 77 0.9 [60]

Microcebus rufus Ranomafana Madagascar 12 0.9 [76]

Propithecus diadema Mantadia Madagascar 10 2.0 [73]

Propithecus edwardsi Ranomafana Madagascar 392 2.0 Arrigo-Nelson unpubl.

Propithecus verreauxi Kirindy CS7 Madagascar 246 2.2 Carrai unpubl.

Propithecus verreauxi Kirindy N5 Madagascar 14 2.3 Ganzhorn unpubl.

Neotropics

Alouatta caraya San Cayetano Argentina 16 2.2 [68]

Alouatta caraya Isla Brasilera Argentina 30 2.8 Kowalewski unpubl.

Alouatta palliata Barro Colorado Island Panama 5 2.0 [65]

Alouatta palliata Los Tuxtlas Mexico 71 2.2 [63,77]

Alouatta pigra Community Baboon Sancuary and
Cockscomb Basin Wildlife Sanctuary

Belize 124 3.1 [64]

Alouatta seniculus Yasunı́ NP Ecuador 124 2.3 Derby unpubl.

Alouatta seniculus Ilanos Venezuela 37 2.4 [24]

Ateles geoffroyi Barro Colorado Island Panama 4 1.9 [65]

Brachyteles arachnoides Parque Estadual Carlos Botelho Brasil 10 2.2 Talebi unpubl.

Callicebus moloch Mata Atlantica Brasil 32 1.6 [69]

Cebus capuchinus Barro Colorado Island Panama 3 1.2 [65]

Cebus capuchinus Barbudal Costa Rica 65 1.4 Vogel unpubl.

Lagothrix lagothricha Tinigua National Park Columbia 53 1.3 [78]

doi:10.1371/journal.pone.0008253.t002
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nitrogen measured with the Kjeldahl method were used in the

present analysis. Few ripe fruits contain digestion inhibitors such as

frequently found in leaves. Thus, there was no need to control for

these digestion-inhibiting components [54,20]. Except for the

samples collected by Polowinsky and Schwitzer (unpubl.), all other

samples collected by the authors for the present paper (listed in

Table 1) were analyzed with the same equipment and procedure in

the labs of JUG [55].

Community-wide data on the chemical composition of fruits are

scant. However, of 10 published primatological studies addressing

protein selection in fruits in Madagascar and the Neotropics (and

several others from Africa, not considered here; plus several

unpublished studies from Madagascar and the Neotropics), none

found a positive significant difference in nitrogen concentrations

between those fruits eaten and not eaten by the primates under

study. One study that did report a significant difference, reported a

negative correlation between consumption and protein concentrations

(Table 3). Therefore, we consider the fruits consumed by primates as

a conservative representative sample of the nitrogen concentrations

for all fruits available at each site. Thus, we use three types of data to

characterize fruit nitrogen content of a given site: (1) comprehensive

sampling of all fruits obtained during a study, (2) fruits eaten by

primates, and (3) fruits eaten and not eaten by primates if non-eaten

fruits had been collected for comparisons (Table 1).

To control for possible physiological differences between

primate radiations (such as between the lemurs of Madagascar

and haplorhine primates in the Neotropics), we investigated

whether the nitrogen content of all dietary plant components

(fruits, leaves, flowers, seeds) differed between primate radiations.

According to our hypothesis, the diet of the species of the different

primate radiations should not differ in the nitrogen concentrations

of their overall diet, but fruits in the New World should have

higher nitrogen concentrations than in Madagascar.

Statistical Analysis
Since data deviated from normality, we applied non-parametric

tests for the comparisons. Tests were run with SPSS 9.0 [56].
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