
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Thermal SchrÃ¶dinger Equation: Efficient Tool for Simulation of Many-Body Quantum Dynamics at
Finite Temperature

Published version:

DOI:10.1002/andp.201700200

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1653711 since 2017-11-30T17:43:59Z



This is an author version of the contribution published on:

Maxim F. Gelin and Raffaele Borrelli. Thermal Schrödinger Equation:
Efficient Tool for Simulation of Many-Body Quantum Dynamics at Finite

Temperature. Annalen der Physik, doi 10.1002/andp.201700200.

The definitive version is available at:

http://onlinelibrary.wiley.com/doi/10.1002/andp.201700200/abstract



Thermal Schrödinger Equation: Efficient Tool for Simulation of

Many-Body Quantum Dynamics at Finite Temperature

Maxim F. Gelin

Department of Chemistry, Technische Universität München, D-85747 Garching, Germany

Raffaele Borrelli

DISAFA, University of Torino, Grugliasco I-10095, Italy

Abstract

We develop a wave-function-based method for the simulation of quantum dynamics of systems

with many degrees of freedom at finite temperature. The method is inspired by the ideas of Thermo

Field Dynamics (TFD). As TFD, our method is based on the doubling of the system’s degrees of

freedom and thermal Bogoliubov transformation. As distinct from TFD, our method implements

the doubling of thermalized degrees of freedom only, and relies upon the explicitly constructed

generalized thermal Bogoliubov transformation, which is not restricted to fermionic and bosonic

degrees of freedom. This renders the present approach computationally efficient and applicable to

a large variety of systems.

Keywords: Thermo Field Dynamics; quantum dynamics.
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I. INTRODUCTION

The ”open system” paradigm is the heart of dissipative quantum dynamics [1, 2]. How-

ever, operational meaning of “open system” has been changing over the years. Traditionally,

”open system” was assumed to comprise a few relevant degrees of freedom which are im-

portant for the process under study, while the rest of the world was treated as a dissipative

environment, responsible for relaxation and dephasing processes in the system. This ap-

proach results in the description in terms of various master equations, which can only be

derived under certain approximations, such as weak coupling of the system to the environ-

ment and/or fast environment [1–3].

Enormous progress in computer facilities and rapid development of numerical methods

caused two paradigm shifts.

(i) It became possible to include into ”system” dozens of relevant quantum degrees of free-

dom and to evaluate the dynamics of such an extended system numerically exactly, assuming

that the influence of the remaining quantum modes (the environment) can be neglected on

the timescale of interest. This approach is represented by the multiconfiguration time-

dependent Hartree (MCTDH) method and its multilayer extension (ML-MCTDH) [4–7] as

well as other variational basis set methods [8–17] which solve multidimensional Schrödinger

equation.

(ii) One can continue working with “system” comprising a few relevant degrees of freedom,

but consider a realistic structured environment which not only possesses a finite memory but

resonantly interacts with the system at certain characteristic frequencies. The dynamics of

the system coupled to this environment is then evaluated numerically exactly. The hierar-

chical equations of motion (HEOM) [18–20] and the quasi-adiabatic path integral (QUAPI)

[21] combined with realistic bath spectral density functions [22, 23] are nowadays the most

powerful practical tools for the simulation of quantum dynamics within this approach, which

is formulated in terms of the reduced (system) density matrix and the corresponding master

equations.

Microscopic understanding of quantum effects in the functioning of various biological and

artificial ”open systems” under realistic conditions at ambient temperature [24] is indispens-

able without accurate simulations. The methods of the group (i) perform excellently at

zero temperature. At ambient temperature, they require a statistical sampling of the initial
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conditions [11–14, 25–27] followed, in some procedures, by a double propagation in real and

imaginary time [7, 28–31]. Recently, we have suggested an alternative and computation-

ally efficient wave-function-based method for the simulation of time-dependent properties of

quantum systems with many degrees of freedom at finite temperature [32]. The method is

based on the ideas of Thermo Field Dynamics (TFD) [33–37], which was introduced in the

1970’s to provide a finite temperature representation of quantum mechanics. The consider-

ation of Ref. [32] was restricted to a system consisting of several discrete (electronic) states

linearly coupled to multiple bosonic (vibrational) degrees of freedom, and the Hamiltonian

of the system was considered to be time-independent. The present work lays theoretical

foundation for the extension of the method towards arbitrary quantum systems described

by time-dependent (driven) Hamiltonians.

II. FORMULATION OF THE PROBLEM

Let us consider a system consisting of two interacting subsystems 1 and 2. The total

Hamiltonian of such a composite system (which may be time-dependent due to an external

driving) is partitioned as

H(t) = H1(t) +H2(t) + V (t), (1)

where H1(t) and H2(t) describe the subsystems 1 and 2 alone, and V (t) is responsible for

the coupling between the two. The dynamics of the whole system is specified by its density

matrix ρ(t) ans is governed by the Liouville - von Neumann equation

∂tρ(t) = −i[H(t), ρ(t)] (2)

(~ = 1). We assume that the entire system is prepared at thermal equilibrium at t = 0:

ρ(0) = ρB = Z−1e−βH(0), (3)

where Z is the partition function, β = (kBT )−1, kB is the Boltzmann constant, T is the

temperature.

If characteristic energies E1 of system 1 are (much) higher than characteristic energies E2

of system 2, we can assume that the composite system at ambient temperature (βE1 � 1,

βE2 ∼ 1, β−1 = 0.026 eV at T = 300 K) resides in the ground state of subsystem 1 and
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possesses thermal distribution over the degrees of freedom of subsystem 2,

ρ(0) = |01〉〈01|ρ(2)
B , (4)

ρ
(2)
B = Z−1

2 e−βH2(0), (5)

Z2 being the corresponding partition function. The assumption (4) is rooted into Born-

Oppenheimer approximation. It has a huge number of applications in molecular physics

and spectroscopy [38] and is the key to the description of molecular aggregates [39–41],

electron-vibrational [42] and vibration-rotational [43] systems.

The problem is to evaluate ρ(t) and hence the observable

〈A(t)〉 = Tr{Aρ(t)}, (6)

for any operator A acting in the vector space of the composite 1 + 2 system with many

degrees of freedom. As has been mentioned in the introduction, the usual methods rely upon

the computation of

ρ(t) =
∑
α

|ψα(t)〉〈ψα(t)|,

where the wave-functions obey the Schrödinger equation

∂t|ψα(t)〉 = −iH(t)|ψα(t)〉

and |ψα(0)〉 are sampled from the initial distribution (3) or (4). Hence, the evaluation of the

thermal averaging necessitates the solution of multiple Schrödinger equations with different

initial conditions.

In the next section, we develop an alternative approach to this problem, in which the

evaluation of 〈A(t)〉 requires a propagation of a single Schrödinger equation for a fictitious

system in which the number of thermalized degrees of freedom is doubled. Sections III and

IV deal with the initial preparation (4). This preparation is also considered in the Appendix

A within the traditional TFD framework. The more general case of the correlated initial

preparation (3) is considered in Section V.

III. FORMAL DERIVATION

Let us formally introduce the basis set of vectors {|k〉} in the Hilbert space of system 2.

Following the basic idea of TFD, we also define a set of fictitious vectors {|k̃〉} which is a
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copy of the original set {|k〉}, but is defined on a different Hilbert space, the so-called tilde

space. The properties of this space and its operators can be easily derived from the tilde

conjugation rules of TFD theory [34]. Hereafter, we adopt the notation

|kk̃〉 = |k〉|k̃〉.

We further introduce the unity

|I2〉 =
∑
k

|kk̃〉 (7)

and the so-called thermal vacuum state [44]

|02(β)〉 =

√
ρ

(2)
B |I2〉 = Z

−1/2
2

∑
k

e−βH2(0)/2|kk̃〉. (8)

Clearly,

ρ
(2)
B = Trk̃{|02(β)〉〈02(β)|}. (9)

The equivalence of Eqs. (5) and (9) can be proven by a straightforward calculation.

Now consider Eq. (2) with the initial condition

ρ(0) = |01〉〈01||02(β)〉〈02(β)|. (10)

The expectation value 〈A(t)〉 is then given via

〈A(t)〉 = Tr3{Aρ(t)} (11)

where the trace Tr3 is now taken over the extended vector space {|n〉 ⊗ |k〉 ⊗ |k̃〉} where

{|n〉} specifies the states of subsystem 1.

Eqs. (11) and (6) yield the same 〈A(t)〉. It does not matter whether Trk̃{...} is taken with

respect to the initial condition (9) or with respect to the entire density matrix ρ(t), because

H(t) and A do not act in the tilde space. Furthermore, we can consider the Liouville - von

Neumann equation

∂tρ(t) = −i[H(t)− h̃2(t), ρ(t)] (12)

where h̃2(t) is any operator acting in the tilde space {|k̃〉}. Eqs. (2) and (12) with the

initial condition (10) yield identical 〈A(t)〉, since [h̃2(t), H(t′)] = 0, [h̃2(t), A] = 0 and the

time-evolution due to h̃2(t) disappears upon taking the trace. A convenient choice of h̃2(t)

will be proposed in Section IV.
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The initial condition (10) corresponds to a pure state in the extended vector space {|n〉⊗

|k〉 ⊗ |k̃〉}. Hence we can solve Eq. (12) by letting

ρ(t) = |ψ(t)〉〈ψ(t)| (13)

where the wave function |ψ(t)〉 obeys the Schrödinger equation

∂t|ψ(t)〉 = −iH̄(t)|ψ(t)〉 (14)

governed by the Hamiltonian

H̄(t) = H(t)− h̃2(t). (15)

Eq. (14) should be solved with the initial condition

|ψ(0)〉 = |01〉|02(β)〉 (16)

and the expectation value 〈A(t)〉 can be evaluated as

〈A(t)〉 =
〈
ψ(t)

∣∣A∣∣ψ(t)
〉
. (17)

Note that we do not specify the time dependence of the Hamiltonian H(t). If the coupling

V (t) between subsystems 1 and 2 is switched on infinitesimally slowly, one can prove the

adiabatic theorem for the Schrödinger equation (14) (cf. Ref. [37]).

IV. BOGOLIUBOV THERMAL TRANSFORMATION

In words, the result of the derivation of the previous section can be summarized as follows:

The solution of the original Liouville - von Neumann equation (2) with the initial condition

(4) in the vector space {|n〉 ⊗ |k〉} is reduced to the solution of the Schrödinger equation

(13) - (14) in the extended vector space {|n〉 ⊗ |k〉 ⊗ |k̃〉}. This procedure is certainly not

new [45–48], but here we have explicitly taken advantage of the separation of the energy

ranges of the two subsystems (Eq. (4)), avoiding the use of tilde variables for the entire

system and employing them only for the thermalized degrees of freedom of subsystem 2 (cf.

Refs. [46, 49]).

The thermal vacuum vector |02(β)〉 possesses multiple nonzero components in the {|k〉⊗

|k̃〉} subspace, and its use in practical simulations can be rather difficult, since Eq. (8)

would require the explicit evaluation of the operator e−βH2(0)/2. This can be certainly done,
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because efficient techniques based on imaginary time propagation have been developed and

successfully applied to complex systems [7, 28–30]. However, the key advantage of the present

method lies in the possibility to have a compact analytical representation of the thermal

vacuum
∣∣02(β)

〉
. Indeed, instead of the solution of the Schrödinger equation (14) with the

initial condition (16) it is much more practical to introduce a unitary transformation e−iG

in the {|k〉 ⊗ |k̃〉} subspace obeying the identity

e−iG|020̃2〉 = |02(β)〉 (18)

where |020̃2〉 is the ground state in the {|k〉 ⊗ |k̃〉} subspace.

Eq. (18) defines what can be called generalized thermal Bogoliubov transformation. Its

application to Eq. (14) yields the transformed Schrödinger equation

i∂t
∣∣ψθ(t)〉 = H̄θ(t)

∣∣ψθ(t)〉 (19)

where

H̄θ(t) = eiGH̄(t)e−iG, (20)∣∣ψθ(t)〉 = eiG
∣∣ψ(t)

〉
(21)

and ∣∣ψθ(0)
〉

= |01〉|020̃2〉 (22)

is the global vacuum state. The expectation value of the operator A (acting in the physical,

{|n〉 ⊗ |k〉}, vector space) can now be rewritten as

〈A(t)〉 =
〈
ψθ(t)

∣∣Aθ∣∣ψθ(t)〉 with Aθ = eiGAe−iG. (23)

The explicit form of thermal Bogoliubov transformation [33–37] and extensions thereof [50–

52] are well known for bosons and fermions. Below we show how the generalized thermal

Bogoliubov transformation of Eq. (18) can be explicitly constructed for a fairly general

H2(0).

A. Harmonic oscillators

In many cases the physical observable of interest is averaged over a thermal ensemble of

harmonic oscillator states with the equilibrium density matrix (5) where

H2(0) =
∑
j

ωja
†
jaj, (24)
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a†j (aj) are the creation (annihilation) Bose operators ([aj, a
†
j′ ] = δjj′) and ωj are vibrational

frequencies. It is worth recalling that, as pointed out by Caldeira and Legget in their seminal

work on quantum dissipative systems [53], this description of the ”environment” is valid with

the only restriction that ”any one environmental degree of freedom is only weakly perturbed

by its interaction with the system”. However, this does not imply that, from the point of

view of the system, the interaction is weak. The importance of this model of the environment

in various applications is hardly overestimated.

The operator of thermal Bogoliubov transformation corresponding to the Hamiltonian of

Eq. (24) reads [35]

G = −i
∑
j

θj(aj ãj − a†j ã
†
j) (25)

where

θj = arctanh(e−βωj/2). (26)

Hence thermal Bogoliubov transformation introduces thermal noise into the physical system

by coupling it to the fictitious tilde system through the temperature-dependent mixing

parameters θj. If the Hamiltonian V (t) and an operator h̃2(t) are polynomials in creation-

annihilation operators (this is so in many applications) then the explicit form of Ĥθ(t) can

be constructed by using the fundamental relations [35, 49, 54]

eiGaje
−iG = aj cosh(θj) + ã†j sinh(θj) (27)

eiGãje
−iG = ãj cosh(θj) + a†j sinh(θj) (28)

The transformed Hamiltonian Ĥθ(t) depends on temperature through the parameters θj.

An explicit expression for Ĥθ(t) in the linear vibronic-coupling representation of the original

Hamiltonian H(t) can be found in Ref. [32]

B. General case

Usually, the system 2 at t = 0 can be represented as a collection of non-interacting or

weakly interacting subsystems,

H2(0) =
∑
j

Hj. (29)

These subsystems labeled with the index j are not necessary one-dimensional, but comprise

a few strongly coupled modes (see, e.g., Ref. [55] for possible strategies of making the
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decomposition (29)). Hence the operator of thermal transformation can also be written as

G =
∑
j

Gj. (30)

We assume that each of Hj can be represented in a finite basis set and can therefore be

directly diagonalized,

Hj|kj〉 = E
(j)
k |kj〉, (31)

so that each subsystem j can be treated as a Nj-level system (kj = 0, 1, ..., Nj), |kj〉 and E
(j)
k

being the corresponding eigenvectors and eigenvalues. In this notation, the basis vector |k〉

in the Hilbert space of system 2 has components |k1, k2, k3, ...〉. In typical applications, Hj

can describe, e.g., the Morse oscillator [56] or a particle in a few-dimensional anharmonic

potential treated in the discrete variable representation [57].

To construct the explicit form of the operator Gj, we can rely upon the following con-

siderations. First of all, the thermal vacuum |02(β)〉 =
∏

j |02(β)〉j of Eq. (8) is uniquely

determined by the vectors |kk̃〉 =
∏

j |kj k̃j〉. Explicitly,

|02(β)〉 =
∑
k

σk|k, k̃〉, σk = Z
−1/2
2 e−βEk/2,

∑
k

σ2
k = 1 (32)

(hereafter, the indexes j will be dropped for brevity). Therefore, the operator of the thermal

transformation can be represented as

G =
∑
kk′

Gkk′|k, k̃〉〈k′, k̃′| (33)

The operator of thermal Bogoliubov transformation for bosons (Eq. (25)) and for fermions

(see below) in the eigenfunction representation can immediately be rewritten in the form of

Eq. (33) where

Gkk′ = −iθ {k′δk+1,k′ − kδk,k′+1} . (34)

It is thus reasonable to assume that the operator of the thermal transformation G in the

eigenvalue representation can be explicitly written as

G = −i
∑
k

θk

{
|k, k̃〉〈k + 1, k̃ + 1| − |k + 1, k̃ + 1〉〈k, k̃|

}
, (35)

where θk are unknown coefficients. The insertion of G into Eq. (18) yields then a system of

nonlinear equations for θk. Below we explicitly work out several examples and demonstrate

that the system has a solution for any σk.
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1. 2-level system

A direct application of Eq. (35) for a system with two energy levels gives

−iG = θ

 0 1

−1 0

 , (−iG)2 = −θ2

 1 0

0 1

 .

Hence

e−iG = cos(θ)

 1 0

0 1

+ sin(θ)

 0 1

−1 0

 , (36)

|02(β)〉 =

 σ2

σ1

 . (37)

Plugging Eqs. (36) and (37) into Eq. (18) yields

θ = arctan(σ2/σ1) = arctan(e−β(E2−E1)/2).

This is nothing else but thermal Bogoliubov transformation for fermions [33–37].

2. 3-level system

Eq. (35) yields

−iG =


0 θ1 0

−θ1 0 θ2

0 −θ2 0

 , (−iG)2 =


−θ2

1 0 θ1θ2

0 −θ12 0

θ1θ2 0 −θ2
2

 , (−iG)3 = −θ12(−iG),

θ12 = θ2
1 + θ2

2.

Hence

e−iG = 1 + (−iG)X(θ12) + (−iG)2Y (θ12). (38)

Here we have introduced the functions

X(z) =
∞∑
a=0

(−z)a

(2a+ 1)!
, Y (z) =

∞∑
a=0

(−z)a

(2a+ 2)!

which obey the identity

X2(z) + zY 2(z) = 2Y (z) (39)
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Figure 1: X(θ12), Y (θ12), and Y (θ12)/X2(θ12) vs θ12.

that can be proven by a direct calculation. Eq. (39) is responsible for the unitarity of the

operator (38) and ensures normalization of the σk (Eq. (32)).

Formula (22) yields a system of nonlinear algebraic equations for the thermal coefficients

θ1 and θ2. The introducing of polar coordinates

θ1 = θ12 cos(φ12), θ2 = θ12 sin(φ12),

produces two independent equations for the unknown parameters θ12 and φ12:

tan(φ12) =
1− σ1

σ3

, (40)

Y (θ12)

X2(θ12)
=

1− σ1

σ2
2

. (41)

The functions X(θ12), Y (θ12), and Y (θ12)/X2(θ12) are plotted in Fig. 1. The ratio

Y (θ12)/X2(θ12) increases with θ12, starting from the value 0.5 at θ12 = 0 and reaching

∞ at θ12 ≈ 10 (X(10) ≈ 0). As is easy to show, the r.h.s. of Eq. (41) can also take the

values from 0.5 to ∞. Hence solution of Eqs. (40) and (41) exists for any σk.

3. N-level system

A few-level systems can be considered very similarly. According to the Cayley-Hamilton

theorem [58], an arbitrary matrix obeys its own characteristic equation, meaning that for a

N -level system

e−iG =
N−1∑
m=0

νm(−iG)m (42)

where νm are real numbers which can be expressed in terms of θk. The insertion of the

expansion (42) into Eq. (18) yields the system of N − 1 nonlinear equations for N − 1

unknown coefficients θk specifying the generalized Bogoliubov transformation (18). The

transformed Hamiltonian (20) can be evaluated numerically. If N is relatively large, the θk

can be obtained by a numerical minimization of the expression

∥∥e−iG|020̃2〉 − |02(β)〉
∥∥ .
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Summarizing, we reduced the evaluation of 〈A(t)〉 to the solution of a single Schrödinger

equation (19) with the thermal Hamiltonian H̄θ specified by Eq. (20). At T → 0 the mixing

parameters θk in the thermal transformation defined by Eqs. (18) and (35) become zero,

G→ 0, the coupling to the tilde space disappears, and the standard Schrödinger equation is

recovered as expected. If βEk � 1, the contribution of the ground state in the equilibrium

distribution (32) dominates (σ1 → 1, σk → 0 for k > 1). Such modes need not be represented

in the tilde space. This leads to additional reduction of the active space and computational

savings. On the other hand, this trick does not work with the standard Liouville - von

Neumann equation for the density matrix. Note that the Schrödinger equation (19) permits

the description of non-equilibrium dynamics, where each subsystem j is ”prepared” at its

own temperature Tj. The present theory can therefore be applied to the simulation of heat

and/or charge transfer (cf. Refs. [59, 60]).

It essential that the consideration of the present section does not rely upon simplifying

approximations. If the Hamiltonian of the system 2 can be partitioned according to Eq. (29),

the subsequent thermal Bogoliubov transformations can be numerically evaluated with any

desired accuracy. Hence, the Schrödinger equation (19) and the entire methodology can be

made numerically exact. For practical applications, it is important that the Hamiltonian

H̄(t) of Eq. (15) and hence the thermally transformed Hamiltonian H̄θ(t) of Eq. (20) is not

unique. The choice of h̃2(t) is dictated by convenience and simplicity of the representation

of the thermal operator H̄θ(t) but does not affect 〈A(t)〉. In particularly, it is convenient to

set

h̃2(t) = H̃2(t). (43)

Such a choice insures that H̄2θ(t) = H̄2(t), because [G,H2(t)− H̃2(t)] = 0. In the particular

case of bosons and fermions, this is the result of the so-called invariance property [35]

eiG(a†jaj − ã
†
j ãj)e

−iG = a†jaj − ã
†
j ãj. (44)

The derivation of the Schrödinger equation (14) within the TFD formalism and compari-

son of the present approach with TFD is given in the Appendix. Importantly, in the present

approach we double the degrees of freedom of the low-energy thermalized subsystem 2, while

the number of the degrees of freedom of the high-energy subsystem 1 remains unchanged.

In a basis-set representation, the density matrix ρ(t) (Eq. (2)) and the TFD wave function∣∣ϕ(t)
〉

(Eq. (A2)) is an array of the dimension (N1 × N2)2, where N1 (N2) is the number
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of the basis functions specifying the subsystem 1 (2) and the square is due to the doubling

of the degrees of freedom. The wave function of the Schrödinger equation of the present

work,
∣∣ψθ(t)〉, is an array of the dimension N1×N2

2 . This yields a considerable reduction of

the dimension in comparison with the standard TFD wave function and/or density matrix,

notably for systems with multiple electronic states.
∣∣ψθ(t)〉 offers therefore a more compact

way of storage of information on the system dynamics than the density matrix ρ(t) or the

TFD wavefunction
∣∣ϕ(t)

〉
.

V. THERMAL TRANSFORMATIONS FOR CORRELATED STATES

If characteristic energies of systems 1 and 2 are comparable, the simplified initial condition

(4) does not hold and one has to evaluate 〈A(t)〉 with the correlated initial condition (3).

Following the general scheme of TFD [33–37], one has to introduce the basis vectors {|x〉}

and {|x̃〉} in the Hilbert space of the total Hamiltonian H(0). One can define then the unity

|I〉 =
∑
x

|xx̃〉 (45)

(|xx̃〉 = |x〉|x̃〉), the thermal vacuum state

|0(β)〉 =
√
ρB|I〉 (46)

and demonstrate that

ρB = Trx̃{|0(β)〉〈0(β)|}. (47)

Closely following the derivations of Section III, one can show that the solution of the

Schrödinger equation

∂t|Ψ(t)〉 = −iH̄(t)|Ψ(t)〉 (48)

governed by the Hamiltonian

H̄(t) = H(t)− h̃(t) (49)

(h̃(t) being an arbitrary operator in the tilde space) and obeying the initial condition

|Ψ(0)〉 = |0(β)〉 (50)

yields the expectation value

〈A(t)〉 = 〈Ψ(t)|A|Ψ(t)〉. (51)
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Up to now, we made standard TFD manipulations. However, the construction of thermal

Bogoliubov transformation in the total {|x〉 ⊗ |x̃〉} space has the same difficulties as the

direct evaluation of Eq. (8). Indeed, it would require an explicit imaginary time evolution

of the identity vector
∣∣I〉, which involves summation over all the basis states and requires

the introduction of sampling and convergence criteria. To alleviate this problem we suggest

the following procedure. Let us introduce the Hamiltonian

H◦ = H1(0) +H2(0) (52)

and rewrite Eq. (46) as

|0(β)〉 = Z−1/2e−β(H(0)−H̃◦)/2e−βH̃
◦/2|I〉 = (Z/Z◦)

−1/2e−β(H(0)−H̃◦)/2|0◦(β)〉. (53)

Here

|0◦(β)〉 =
√
ρ◦B|I〉 =

√
ρ̃◦B|I〉 (54)

is the thermal vacuum state corresponding to the distribution

ρ◦B = Z−1
◦ e−βH

◦
, (55)

Z◦ being the partition function.

Now we can introduce the thermal transformation

e−iG
◦ |00̃〉 = |0◦(β)〉 (56)

where |00̃〉 is the ground state in the {|x〉 ⊗ |x̃〉} space. Applying the transformation (56)

to the Schrödinger equation, one obtains:

〈A(t)〉 =
〈Ψθ(t)|Aθ|Ψθ(t)〉
〈Ψθ(0)|Ψθ(0)〉

(57)

where

∂t|Ψθ(t)〉 = −iH̄θ(t)|Ψθ(t)〉 (58)

and

|Ψθ(0)〉 = e−βH̄θ(0)/2|00̃〉. (59)

In deriving Eq. (58), we have chosen h̃(t) = H̃◦ and made use of the identity

Z/Z◦ = 〈Ψθ(0)|Ψθ(0)〉. (60)
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In the limit of high temperature (β → 0), Eq. (59) reduces to |Ψθ(0)〉 = |00̃〉.

It is important that Eqs. (57)-(60) are exact. The explicit evaluation of thermal Bo-

goliubov transformation (56) corresponding to uncoupled systems 1 and 2 should not be

a problem. It can be done either by standard TFD methods [33–37] (if applied, e.g., to

fermions, bosons, or excitons) or as described in Section IV of the present work (if applied

to general Hamiltonians H1(0) and H2(0)).

A practical implementation of Eqs. (57)-(60) can be done in at least three different ways

as described below.

(i) Numerically exact procedure. Since |Ψθ(0)〉 of Eq. (59) has to be evaluated only once,

this can be done, e.g., through the propagation in the imaginary time β/2 in the {|x〉⊗ |x̃〉}

vector space. The subsequent propagation in t via the Schrödinger equation (58) yields

|Ψθ(t)〉 and 〈A(t)〉. This should be contrasted with the methodology of Refs. [7, 28–31]

which, along with the propagation of wave functions in β and t in the {|x〉} space require

sampling of the initial states, so that 〈A(t)〉 is calculated upon averaging over all β − t

”trajectories”.

(ii) Approximate procedure based on Trotter-Suzuki splitting. One can adopt the parti-

tioning

H̄θ(0) = H̄
◦
θ(0) + V̄ θ(0) (61)

(V̄ θ(0) being the thermal transformation of the coupling operator V (0)) and employ the

Trotter-Suzuki decomposition of the exponential operator in Eq. (59). In the leading order,

|Ψθ(0)〉 ≈ e−βV̄ θ(0)/2|00̃〉+O(β2) (62)

due to the identity exp{−βH̄◦
θ(0)/2}|00̃〉 = |00̃〉. With this approach an approximate

initial state is derived that can be computed either numerically or analytically depending

on the special structure of the operator V . This can be the preferred way if the direct

evaluation of eq 59 is computationally demanding. If necessary, higher-order Trotter-Suzuki

decompositions can be used.

(iii) Approximate procedure based on Hamiltonian transformation. One can rewrite Eqs.

(57)-(59) as follows:

〈A(t)〉 = Z◦/Z〈Ψθβ(t)|Aθβ|Ψθβ(t)〉, (63)

∂t|Ψθβ(t)〉 = −iH̄θβ(t)|Ψθβ(t)〉, (64)
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|Ψθβ(0)〉 = |00̃〉. (65)

Here

H̄θβ(t) = eβH̄θ(0)/2H̄θ(t)e
−βH̄θ(0)/2, Aθβ = eβH̄θ(0)/2Aθe

−βH̄θ(0)/2. (66)

Note that H̄θβ(0) = H̄θ(0). If the system Hamiltonian is time-independent, it should not

therefore be transformed. While eqs. (63)-(65) are formally exact, the analytical expression

of the transformed operators cannot be in general determined. However, it is always possible

to approximate H̄θβ(t) and Aθβ by applying the Trotter-Suzuki decomposition obtaining,

to the leading order,

H̄θβ(t) ≈ eβV̄ θ(0)/2H̄θ(t)e
−βV̄ θ(0)/2, Aθβ ≈ eβV̄ θ(0)/2Aθe

−βV̄ θ(0)/2. (67)

The main advantage of the above formulation is that in many cases of interest it is possible

to find an analytical representation of the approximate transformed operators 67. Work

along this direction is in progress and will be described in a forthcoming paper. Finally,

we notice that the approaches iii) and ii) are equivalent but may differ significantly in their

numerical implementation.

VI. CONCLUSION

We develop a wave-function-based method for the simulation of the dynamics of a driven

quantum system with many degrees of freedom at finite temperature. The system is assumed

to consist of two coupled subsystems 1 and 2 and is governed by a general time-dependent

Hamiltonian of Eq. (1). No assumptions are made about the explicit form of the subsystem

Hamiltonians and the coupling Hamiltonian. The composite initial system is assumed to be

prepared at equilibrium at a certain initial time. The methodology is inspired by the ideas

of the Thermo Field Dynamics [33–37], but is not equivalent to the TFD methodology. As

TFD, our approach hinges upon two main ingredients, the doubling of the system’s degrees

of freedom, and thermal Bogoliubov transformation. As distinct from the traditional TFD

approach, we implement the doubling of only significantly thermalized degrees of freedom,

and propose to solve a Schrödinger equation using a thermally transformed Hamiltonian.

This renders the present approach computationally efficient.

The methodology has been developed in our previous work [32] for a particular case of

a system comprising several discrete (electronic) states linearly coupled to multiple bosonic
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(vibrational) degrees of freedom. The present work significantly generalizes Ref. [32] in the

following three directions. (i) The system Hamiltonian is allowed to be time-dependent.

(ii) The description is extended beyond fermionic and bosonic degrees of freedom. (iii)

Correlated initial states are considered. The developed methodology can therefore be ap-

plied to a large variety of different quantum systems described by time-dependent (driven)

Hamiltonians.

The thermal Schrödinger equations derived in the present work should be efficiently

solved numerically. In Ref. [32], we considered spin-boson-type systems consisted of several

electronic states coupled to multiple harmonic vibrational modes. We showed that the cor-

responding Schrödinger equation can efficiently be simulated numerically via the techniques

based on the Tensor Train decomposition, also known as Matrix Product State representa-

tion [61, 62]. The work on the implementation of these techniques for the solution of the

driven thermal Schrödinger equations of the present work beyond spin-boson-type Hamilto-

nians is currently in progress.
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Appendix A: TFD and its relation to the present theory

The time evolution of a system with a given Hamiltonian operator H(t) at finite temper-

ature can be described by the TFD Hamiltonian Ĥ(t) given by

Ĥ(t) = H(t)− H̃(t). (A1)

H̃(t) is a fictitious Hamiltonian which is identical to the original Hamiltonian H(t) but acts

in the tilde space [33–37]. The number of degrees of freedom in the augmented system (real

17



and fictitious) is double that of the original physical system. The time evolution of the TFD

wavefunction
∣∣ϕ(t)

〉
is determined by the TFD Schrödinger equation

∂t
∣∣ϕ(t)

〉
= −iĤ(t)

∣∣ϕ(t)
〉
. (A2)

In the present case, the TFD Schrödinger equation must be solved with the initial condition

|ϕ(0)〉 = |010̃1〉|02(β)〉, (A3)

where the thermal state |02(β)〉 of the low-frequency subsystem 2 is defined per Eq. (8)

and the ground state of the high-frequency subsystem 1 is written as |010̃1〉 = |01〉|0̃1〉.

The expectation value of any operator A acting in the physical Hilbert space {|k〉} can be

obtained as

〈A(t)〉 =
〈
ϕ(t)

∣∣A∣∣ϕ(t)
〉
. (A4)

Eq. (A4) is explicitly written as

〈A(t)〉 = 〈0̃1|〈01|〈02(β)|Û(t)AÛ †(t)|02(β)〉|01〉|0̃1〉 (A5)

where

Û(t) = T̂ e−i
∫ t
0 Ĥ(t′)dt′ (A6)

and T̂ is the time-ordering operator.

Evidently,

[H(t), H̃(t′)] = 0, [H̃(t), A] = 0, (A7)

since the operators act on different variables and in different spaces. Hence

Û(t) = Ũ(t)U(t)

where Ũ(t) and U(t) are defined through Eq. (A6), in which Ĥ is replaced by H̃ and H,

respectively. Therefore,

〈A(t)〉 = 〈01|〈02(β)|U(t)AU †(t)|02(β)〉|01〉

= 〈01|〈02(β)|U(t)Ũ2(t)AU †(t)Ũ †2(t)|02(β)〉|01〉.

Here

Ũ2(t) = T̂ e−i
∫ t
0 h̃2(t′)dt′
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and h̃2(t) is any operator acting in the tilde space of the subsystem 2 (cf. Eq. (43)). The

commutation relations (A7) remain valid after any unitary transformation performed on

the operators. Hence, they remain valid after the thermal Bogoliubov transformation (18)

yielding

〈A(t)〉 = 〈01|〈020̃2|eiGU(t)Ũ2(t)AU †(t)Ũ †2(t)e−iG|020̃2〉|01〉 = 〈01|〈020̃2|Ūθ(t)AθŪ †θ (t)|020̃2〉|01〉,

(A8)

Ūθ(t) = T̂ e−i
∫ t
0 H̄θ(t′)dt′ .

Eq. (A8) is equivalent to Eq. (23).
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