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Abstract Power consumption management has become a major concern in
software development. Continuous streaming computations are usually com-
posed by di↵erent modules, exchanging data through shared message queues.
The selection of the algorithm used to access such queues (i.e., the concurrency
control) is a critical aspect for both performance and power consumption. In
this paper, we describe the design of an adaptive concurrency control algo-
rithm for implementing power-e�cient communications on shared memory
multicores. The algorithm provides the throughput o↵ered by a nonblocking
implementation and the power e�ciency of a blocking protocol. We demon-
strate that our algorithm reduces the power consumption of data streaming
computations without decreasing their throughput.

1 Introduction

In the realm of parallel and distributed computing, throughput and latency
have been traditionally considered the primary metrics to evaluate computing
systems. However, in recent years, power consumption has gained more and
more significance up to the point it reached the same importance of traditional
metrics [10]. As a consequence, system optimisation is played against multiple
concerns: performance and power consumption, at least.

The optimisation of the performance-power trade-o↵ has been mainly pur-
sued by means of dynamic reconfigurations of the system at di↵erent abstrac-
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2 Marco Aldinucci et al.

tion levels, from hardware level up to synchronisation mechanisms to algo-
rithms. Their principal goal is reducing power consumption with limited im-
pact on performance. Examples are Dynamic Voltage and Frequency Scaling
(DVFS), approximate computing [13], energy-e�cient data structures [16] and
adaptive locking [24].

A recent work has demonstrated that a simple and e↵ective energy sav-
ing technique consists in optimising the synchronisation mechanisms [11]. In a
shared-memory system, a standard approach to synchronise producer/consumer
interactions between pairs of threads uses a concurrent FIFO queue that sup-
ports push and pop operations in an atomic and e�cient way. This approach is
particularly relevant in Data Streaming computations where the application is
modelled as a graph of modules communicating through channels implemented
as concurrent queues [4].

In the lock-based concurrent queues, if the thread that currently holds the
lock is delayed then all other threads attempting to access the data structure
are delayed too. This phenomenon is called blocking. In blocking algorithms
the waiting of a thread, is often implemented by suspending it, i.e., by putting
the thread to sleep. In this case, the suspended thread is moved in a waiting
queue and the hardware context is released to the OS. Suspended threads
do not directly consume power. However, suspension and restart mechanisms
impair application performance due to many factors such as waiting time in
the ready queue, context switch, compulsory cache miss or core migration [11].

Concurrent queues can also be implemented in a e�cient and scalable
way by using nonblocking algorithms. The term nonblocking refers to all
progress conditions requiring that the failure or indefinite delay of a thread
cannot prevent other threads from making progress [19]. By definition, these
algorithms cannot use locks, therefore nonblocking algorithms use spinning
for implementing the waiting of a thread.

While nonblocking algorithms are mainly chosen for their progress guar-
antees (e.g., wait- and lock-freedom), they are also employed for their higher
throughput and lower latency [19] [16]. Unfortunately, the nonblocking ap-
proach is not power-e�cient due to the busy-waiting loop executed when
a given operation cannot be immediately concluded (e.g., CAS retry loop),
which keeps the CPU core active doing nothing useful. A common approach
for reducing this shortcoming is to delay retries with micro-sleep according
to a fixed or variable duration. The very same technique is used to reduce
contention in spinlock algorithms by way of exponential backo↵ [1]. Method-
ologically, the key issue is that these techniques always require some tuning
which is application-dependent, platform-dependent and time-consuming. Us-
ing wrong tuning parameters would impair the reactivity of the technique, due
to a wrong micro-sleep duration.

In continuous streaming computations, the optimal concurrency control
mechanisms may change during time, due to variable arrival rates and fluc-
tuations in the workload. In such scenario, selecting the proper concurrency
control strategy is a critical aspect. Let us consider a network streaming com-
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Fig. 1 Motivating example: throughput of a streaming application over time under variable
input rate with blocking and nonblocking concurrency control mode.

putation where each received data packet needs to be analysed. The typical
performance scenario over time is sketched in Fig. 1.

The application has been run two times on the same input dataset and by
sending data at a rate equal to the one of a real network. The first time, by
statically setting a blocking concurrency mode and the second time with a
nonblocking concurrency mode. Interestingly, between 15 and 23, only the
nonblocking protocol is able to sustain the input arrival rate, on the other
hand, from 0 to 15 the blocking protocol is capable to sustain the input
bandwidth by consuming less power. In fact, the power consumption is pro-
portional to the sustained bandwidth for the blocking mode, while it is a
constant amount (about 100 Watts), regardless of the input arrival rate, for
the nonblocking mode. Indeed, for low input rate (e.g., from 0 to 14), each
thread is waiting to receive new data from its input nonblocking queue, spend-
ing a significant amount of time in a busy-waiting loop, increasing the overall
power consumption of the entire system. On the other hand, during high input
rate phases, the system needs to be very reactive to sustain the increased input
bandwidth and the maximum throughput can be achieved only if a low-latency
nonblocking algorithm for accessing the communication queues is used.

Blocking vs nonblocking approach has always been considered mutually
exclusive alternatives. The contribution of this work is to break this dichotomy,
by proposing a new implementation strategy for parallel pipelines used in con-
tinuous stream processing computations. We combine the power e�ciency of
blocking implementations with the higher throughput of nonblocking ap-
proaches. This strategy will then be adapted to manage applications structured
as arbitrary graphs. The main objective is to reduce the power consumption of
the overall streaming network, whose channels are implemented via lock-free
message queues, without compromising the maximum achievable throughput.

The outline of this paper is the following. Sect. 2 provides background
concepts. Sect. 3 describes the design of the algorithm. Sect. 4 shows an eval-
uation using two real-world applications. Sect. 5 describes some related works
and eventually, Sect. 6 provides the conclusions and outlines possible future
works.
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2 Background

In this section we provide the background needed to clearly identify the mo-
tivations that led to the implementation of a new communication protocol
between threads of a parallel streaming network on multicores.

Stream parallelism. It is a well-known programming model supporting the par-
allel execution of a stream of data elements by using a series of sequential or
parallel modules [22]. Modules (often called filters, agents or operators) com-
pute in parallel over subsequent or independent data tasks and communicate
data via channels. There are many applications in which the input streams are
primitive, because they are generated by external sources (e.g. HW sensors,
networks, etc.) or I/O devices. However, there are cases in which streams are
not primitive, but it is possible that they can be generated directly within the
program [2].

Streaming computations can be modelled as a graph where each module
is a node, and each edge is a communication channel. Data is introduced
in the application by one or more source nodes and the result are sent out
through one or more sink nodes. Despite being a common approach, writing a
correct, e�cient and portable program is particularly di�cult and error prone.
Fortunately, there are notable examples of parallel patterns targeting stream
parallelism, such as pipeline and task-farm, that allow to abstract the stream
parallel computation [18].

Of particular interest are stateful streaming computations for which main-
taining the entire stream history is unfeasible. In these cases, a common ap-
proach is to use a sliding-window bu↵er, to store only the most recent data [4].
When the window is full, an arbitrary complex function is executed over the
elements in the window. However, if the window is not full the user function
can not be triggered, and the data is simply stored into the window bu↵er
just paying a low amount of CPU cycles. Since for these elements the com-
putational part is almost negligible with respect to the cost of computing the
user function on the entire window bu↵er, the latency of the communication
protocol between two distinct nodes of the streaming application may have a
significant impact on the overall application throughput.

Programming model for streaming. Over the years, several programming mod-
els and tools have been proposed to simplify the development of streaming
applications and to obtain the desired QoS level [23] [17] [7].

In this study, we used the FastFlow parallel programming framework 1, a
C++11 template library that allows the programmer to build fast networks
of streaming nodes. Each node may have multiple inputs and multiple output
channels. Two distinct nodes are connected by a channel that is implemented
using either a bounded or unbounded lock-free FIFO queue [3]. FastFlow pro-
motes the use of customisable parallel patterns such as task-farm, pipeline,

1 FastFlow website: http://mc-fastflow.sourceforge.net
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map/reduce and feedback loop [18]. In the FastFlow model, parallel pat-
terns can be easily combined and nested, while the single network node can
be customized for low-level data routing and scheduling.

Adaptivity in data stream processing. In continuous streaming applications,
where data is ingested by physical sensors or by software platforms, providing
a given QoS in presence of variable arrival rates and sudden workload changes
is a critical aspect. The parallel components used to build the streaming appli-
cation, have to provide auto-tuning capabilities or at least suitable interfaces
and mechanisms to the programmer for managing dynamic changes over time,
for example to change the number of threads used by the application [8] [9] or
the Concurrency Control mode used in the synchronisations [24].

Adaptivity is a fundamental feature of parallel components at any abstrac-
tion level, though it is often not considered in the design of parallel frameworks.
In order to enable adaptivity, the parallel framework has to provide a proper
set of dynamic reconfiguration mechanisms and features that can be used by
an autonomous manager/controller of the parallel component to fulfil spe-
cific application requirements. Examples of such mechanisms are: a) changing
the number of threads (Dynamic Concurrency Throttling); b) changing the
concurrency mechanisms used in the synchronization primitives (Concurrency
Control); c) changing the mapping of the threads on the cores (Threads Pack-
ing); d) dynamically scale the clock frequency of the cores (DVFS ).

Concurrency control, power implications. Current CPUs can use di↵erent hard-
ware mechanisms in order to reduce their power consumption. If the core util-
isation lower than 100%, the operating system could decide to lower its clock
frequency (by changing the so called P-State). However, while doing busy
waiting on a nonblocking message queue, the core is 100% utilised, and the
clock frequency will not be decreased. In addition to that, if the core is idle
for a long enough interval, the power control of the CPU can start shutting
down some components of the core (entering in the so called C-States), thus
further reducing its power consumption. For these reasons, blocking queues
are more power e�cient than nonblocking queues.

However, suspending a thread is costly in terms of performance [11] and
should be done only when the loss in performance is compliant with the re-
quired QoS.

3 Design and Implementation

In this section we describe the design of a shared-memory message queue that
can be used both in blocking and nonblocking concurrency control modes
for a generic data streaming computation. Then, we describe how to use it
to optimise the power consumption and performance of a generic streaming
graph.
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3.1 Base Mechanisms

An e↵ective way for implementing pipeline parallelism between two threads
on multicores is to use a lock-free Single-Producer Single-Consumer (SPSC)
FIFO queue [12,3]. As discussed in Sec. 2 this approach is not power-e�cient if
a thread is performing busy-waiting because the underlying hardware context
remains active so that the OS cannot set the core in a low-power state.

In case of variable arrival rates, the producer (P) or the consumer (C)
threads might spent some time in a busy-waiting loop because the message
queue is full or empty. Rather than spinning, to reduce power consumption we
want to put the threads to sleep waking them up as soon as they can make
useful work. The only portable way for doing this is to uses POSIX mutexes
and condition variables (or equivalent C++1x features).

We consider FastFlow [7] as the reference parallel framework for imple-
menting pipelines. In FastFlow pipelines are implemented by composing mul-
tiple logical nodes, where each of them has one input and one output message
queue (nodes can in general have multiple input or multiple output indepen-
dent message queues). Nodes are de-facto implemented by a POSIX thread
whose default concurrency control mode is nonblocking for accessing both
input and output queues.

We extended the FastFlow concurrency mode by associating to each queue
a POSIX mutex and a condition variable and by changing the push and pop
operations as described in the following pseudo-code.

Algorithm 1: CCPush
1:ok=Q.push(data);
if ok then
if (CCM==blocking and

C waiting) then
signal C cond in;

else
if (CCM==blocking and

Q.isFull) then
wait on P cond out;

goto 1;
return success;

Algorithm 2: CCPop
1:ok=Q.pop(data)
if ok then
if (CCM==blocking and

P waiting) then
signal P cond out;

else
if (CCM==blocking and

Q.isEmpty) then
wait on C cond in;

goto 1;
return success;

To push a message into the output queue the runtime first pushes the data
pointer into the lock-free SPSC queue (Q); if it succeeds, depending on the
current concurrency mode of the node (let us call it CCM), two di↵erent actions
are taken. In case of nonblocking mode the operation has been successfully
completed without any further step. If CCM=blocking, the runtime checks if
the consumer node (C) has to be woken up because it has been previously
put to sleep waiting for a new message. In that case, C will be awakened by
an explicit signal on its input condition variable (C cond in). If the push on
the lock-free queue fails and CCM=nonblocking, the push operation is executed
again until it will complete with success. If CCM=blocking, then the runtime
checks if the queue is full and, in that case, the thread is put to sleep on
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its output condition variable (P cond out). If it is not full, the operation is
restarted from the beginning (this is a spurious condition that may happen
with lock-free data structure).

Let us now consider the pop operation. The runtime pops a new data
pointer from the lock-free queue. If the operation succeeds and CCM=nonblocking,
the operation has been successfully completed. If CCM=blocking then the run-
time checks if the producer (P) has to be woken up because it is waiting for
a new free slot in the queue (this case can happen only if the input queue
has a bounded size). In that case, P receives a signal on its output condi-
tion variable and the operation completes with success. If the pop fails and
CCM=nonblocking the operation will be repeated until it completes with suc-
cess. If CCM=blocking then the runtime checks if the queue is empty and puts
the thread to sleep on its input condition variable, otherwise the operation is
restarted from the beginning.

By atomically switching the CMM variable between blocking and nonblocking
concurrency mode, it is possible to control the throughput and the power con-
sumption of the nodes using the queue.

3.2 Power-Aware Data Pipelining

To describe the algorithm, we first consider a streaming network structured as
a pipeline, a connected graph where each node has at most one input queue
and one output queue. Then, in Sec. 3.3 we extend the algorithm to generic
streaming networks.

To simplify the exposition, from now on we consider that all message queues
are unbounded in size. Consequently, each node would never need to do busy-
waiting or to suspend itself when doing a push operation. This may cause
an uncontrolled growth of memory usage and we will discuss this aspect in
Sect. 3.3.

As described in Sec. 3.1, by changing the CCM variable it is possible to
change the concurrency mode of the producer and consumer thread. But, who
decides if it is worth to switch from blocking to nonblocking and vice versa
for a given pair of nodes?

Our implementation, considers a manager thread that is in charge of mak-
ing decisions for the entire streaming application. At configurable time inter-
vals, by collecting monitoring information about the current performance and
power consumption of the entire application, the manager decides which mes-
sage queue should operate in blocking or nonblocking concurrency control
mode by directly notifying the producer and consumer threads.

Each concurrent activity will execute the following operations in a loop:

1. Reads an element from its input queue by executing a pop. The aver-
age latency of this operation is Lb

pop for blocking queues and Lnb
pop for

nonblocking queues. If no data is present in the queue (the pop fails), the
node waits for new data to arrive. Let us denote this average waiting time
with Lidle.

HLPP 2017 229



8 Marco Aldinucci et al.

2. Executes some processing (with a latency Lproc) on the data element.
3. Sends the computed result(s) on its output queue through a push. This

operation has an average latency of Lb
push in case of blocking queues and

Lnb
push in case of nonblocking queues. Since the output queue is unbounded

in size, this operation will always succeed.

The breakdown of a single loop iteration of a node is sketched in Fig. 2.
Timing values (e.g., Lidle, Lproc) are stored by the single node in its internal
variables that can be accessed (read only) by the manager withouth any extra
synchronisation.

Let us now consider the two possible cases for the dynamic switching of
the concurrency control mode: i) from blocking to nonblocking; ii) from
nonblocking to blocking.

From blocking to nonblocking. Suppose that when the application starts, it
uses all the message queues in blocking mode. To improve the throughput of
the application, we have to improve the throughput of its slowest node, i.e.,
the one with the highest latency. We call this node S. If it has Lidle > 0,
despite being the slowest node in the application, it is still fast enough to
process the incoming data, so there is no need to improve the throughput
of the application at all. Otherwise, we can improve the throughput of S by
reducing both the latencies of pop and push operations. Let us start with
the pop operation. Switching the input queue to nonblocking mode would
have no impact on the power consumption since Lidle = 0 and S will not
do busy wait. Now let us consider the push operation. We could switch the
output queue of S to nonblocking mode and reduce Lpush as well. Let us
call T the successor of S. Since S is slower than T, Lidle(T ) is greater than
zero. If the message queue is in blocking mode, while idling T is sleeping
on the condition variable. However, after switching to nonblocking mode, T
will start doing busy-waiting, thus increasing the power consumption of the
application. To determine if the increase in power consumption is worth the
increase in performance, we decided to let the application user (or the system
developer) to set some preferences for the application, by specifying maximum
allowed increase in power consumption for each 1% increase in performance.
Similarly, the user might just set a maximum power consumption of the system
letting the runtime system to optimise the performance with the given power
budget (this is also known as Power Capping).

For evaluating the outcome of the decision, we adopt a rollback-based ap-
proach. When a potential performance improvement for the output queue is
detected, the algorithm switches the queue from blocking to nonblocking.
Then, the performance and the power consumption are monitored for the next
time interval. If the results of the switching does not comply with the user re-
quirements, the decision is reverted back otherwise is kept. In both cases, since
we improved S by switching its input queue, the slowest node might now be a
di↵erent one. If this is the case, the algorithm is executed on the new slowest
node, otherwise it terminates.
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Fig. 2 Di↵erent latencies in node opera-
tions.

Fig. 3 A data stream processing graph
and all its possible paths.

From nonblocking to blocking. Due to workload fluctuations, the system could
start receiving less data per unit of time. In such a case, the message queues
will become empty and some nodes will start doing busy-wait on their input
queues. By switching a queue to blocking mode, the nodes using the queue
would suspend on the condition variable instead of doing busy-wait. However
we would also increase the latency of push and pop operations. To ensure that
this switch does not decrease the throughput of the nodes, it is su�cient to
ensure that the increase in the push and pop latencies is “absorbed” by the idle
latency, i.e., even if these operations will last longer, the nodes will still have
enough time before receiving the next data element, thus not reducing their
performance. To do so, it is su�cient to find the pairs of nodes P (producer),
C (consumer) such that the following condition is true:

Lidle(C) > Lb
pop(C)� Lnb

pop(C) and Lidle(P ) > Lb
push(P )� Lnb

push(P )

this way, we will have Lidle > 0 for both nodes after switching to blocking,
thus not reducing their throughput.

3.3 Generic Streaming Graph

Here we discuss how to apply to a generic connected graph, the algorithm
previously described for the pipeline graph.

We may observe that a data element, flowing from a source to a sink of the
streaming network, will cross di↵erent processing nodes and di↵erent message
queues. Since each node may have multiple output channels towards di↵erent
nodes, the path followed by an input element depends both on the scheduling
policies adopted by these multi-output nodes and by the data element itself.
However, all the possible paths are statically known (see Fig. 3).

Since each of these paths is actually a pipeline, we can apply the algorithm
described for the pipeline separately on each path. When computing all the
possible paths we remove the backward edges, i.e. those forming a loop in the
graph. Indeed, a loop simply replicates a subpaths multiple times (N Times
in Fig. 3) in the pipeline. However, it is su�cient to optimise each node of the
path just once, thus the algorithm will still optimise the throughput of the
application even if we do not consider these duplicate nodes. For example, two
bottom paths in Fig. 3 will actually be the same path for the purpose of the
algorithm.
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3.3.1 Message Queues’ Memory Utilisation.

In the algorithm, we considered all the message queues used by the application
to be unbounded in size. However, if the application receives data at a faster
rate than the one it has been designed for, data would accumulate in the
message queues, leading to an uncontrolled growth of memory utilisation and
to catastrophic e↵ects on the application.

The application, however, has been designed to sustain a given maximum
input data rate or not to exceed a certain memory utilisation. Accordingly, the
source nodes would throttle itself by not injecting data into the application at
a rate faster than the one the application was designed for. In this way, the
total amount of memory of the system is kept under a maximum value.

4 Experiments

In this Section we describe the results obtained validating the algorithm pro-
posed in Sec. 3.

All experiments were conducted on an Intel workstation with 2 Xeon E5-
2695 @2.40GHz CPUs, each with 12 2-way hyperthreaded cores, running with
Linux x86 64. We did not use hyperthreading and we ran all the experi-
ments by selecting the maximum CPU clock frequency available through the
performance scaling governor.

To measure the power consumption, we used the Mammut2 library, that
on this specific architecture relies on RAPL counters. In these experiments
we required the algorithm to optimise performance if each +1% increase in
the throughput will lead to a power consumption not greater than 1%. The
algorithm operates on a monitoring interval of 1 second and by inhibiting the
evaluation of a node for 10 seconds in case of a rollback.

Since the algorithm activates once every second, and since it takes just few
milliseconds to decide which queues must be switched, the overhead of the al-
gorithm is less than 1% both in terms of performance and power consumption.

To compute Lb
push, L

nb
push, L

b
pop and Lnb

pop needed to decide when to switch
from nonblocking to blocking mode, we run a micro-benchmark composed
by a producer-consumer pair of nodes (i.e., a simple 2-stage FastFlow pipeline),
considering the average latency over 200 thousands messages exchanged when
the queue between the producer and the consumer is empty. On the tar-
get architecture we obtained the following average values: Lb

push = 11usec,

Lnb
push = 0.9usec, Lb

pop = 0.1usec and Lnb
pop = 0.01usec.

These values include the cost of the push and pop operations and the cost
introduced by the FastFlow runtime for the message management.

2 http://danieledesensi.github.io/mammut/
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Fig. 4 Comparison of performance and power consumption of blocking, nonblocking and
Automatic queues on protocol identification application.

4.0.1 Protocol Identification Application.

The first application we use for validating our algorithm is a network moni-
toring application [6].

This application is implemented as a three stage pipeline. The source node
receives the network packets and assigns to each of them a key, such that
packets belonging to the same “application flow” have the same key. The
packets are then forwarded to the second stage through the message queue.
For each packet, the second stage stores packet information into a hash table
by using the key. This information is used to correlate packets belonging to
the same “application flow” in order to detect the application protocol (e.g.,
HTTP). If the node receives a packet belonging to a flow for which the protocol
has been already identified, no additional processing is performed.

This behavior creates a situation where for each logical “application flow”
we have a high latency on the first packets but then, after the protocol has been
identified, the latency drops down to almost zero. This is a typical scenario in
many data stream processing applications [4].

Eventually, the second node will forward each packet to the third node,
which injects the packets again on the network. To analyse the application
in a realistic environment, we sent the packets to the application at variable
rates, equal to those characterising a modern Internet Service Provider. For
this purpose, we used the dataset available at http://bit.ly/1RY7fEt.

We ran the application for 24 hours and with the results shown in Fig. 4.
The algorithm we are proposing (Automatic) is able to provide, at every time,
the best performance and the lowest power consumption among the three
concurrency modes. When there is no need to improve the throughput (because
there is not enough data to process), the algorithm switches the queues to
blocking concurrency mode, thus reducing the power consumption. However,
when the input arrival rate increases, it switches some queues to nonblocking,
thus improving the performance to be able to sustain the input bandwidth. For
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Fig. 5 Comparison of performance and power consumption of blocking, nonblocking and
Automatic message queues on threats detection application.

this application, the Automatic algorithm leads to a maximum performance
improvement of 33.28% with respect to the blocking case and to a maximum
power reduction of 11% with respect to the nonblocking case.

4.0.2 Malware Detection Application.

This application is the one briefly introduced in Sect. 1, and it is deeply de-
scribed in [6].

Logically, the Malware Detection Application is structured as a 3-stage
pipeline where the middle stage computes the most expensive part and can be
conveniently replicated a number of times. In FastFlow, this network can be
easily and e�ciently implemented by using a single task-farm pattern with a
custom scheduling policy.

The worker of the task-farm, after having identified the protocol, it searches
for a predefined set of “signatures” (representing malware binaries) inside each
HTTP packet. The packets are scheduled to a specific node according to the
value of the key computed by the first logical node of the pipeline that is
implemented by the task-farm emitter.

In this experiment, the application is composed by 24 nodes (one for each
core of the machine). As in the previous test, the arrival rate of the packets
to the application is variable. In our test, we used the rate that characterise
a modern Internet Exchange Point network3. For the malware detection part,
we used a subset of the database used by the ClamAV antivirus4, containing
2000 signatures.

3 https://stats.linx.net/, (IXManchester), 24 hours data between 02/01/2016 and
03/01/2016. We scaled it down by a 3x multiplicative factor to match the maximum perfor-
mance achievable on our target architecture.

4 https://www.clamav.net/.
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The results of our test are sketched in Fig. 5, showing that the Automatic
policy is able to achieve the maximum performance while having the optimal
power consumption. Between 15 and 22 the blocking concurrency mode has
a lower power consumption but it cannot sustain the same arrival rate of the
nonblocking mode.

Fig. 6 Comparison of e�ciency of blocking, non-blocking and automatic message queues
on threats detection application.

In Fig. 6 we show another interpretation of the result, by plotting the
e�ciency of the di↵erent concurrency control techniques, expressed as the
ratio between the performance and the power consumption. As we can see
from the plot, the Automatic strategy is always characterised by the highest
e�ciency between those of the other two techniques.

5 Related Work

Concurrent programming requires primitives such as locks to synchronise threads
of execution. An alternative to locking is optimistic concurrency [14] where ac-
cesses to shared data can proceed concurrently. In case of conflicting accesses,
these are dynamically detected and recovered (typically by rolling back the
state).

A specialised form of optimistic concurrency is nonblocking concurrency
used to implement e�cient concurrent data structures. Nonblocking algorithm
implementations aim to overcome the various problems associated with the use
of locks. Various nonblocking progress conditions such as wait-freedom, lock-
freedom, and obstruction-freedom have been deeply studied and proposed in
the literature [19].

Transactional memory (TM) [15], provides a generic mechanism for op-
timistic concurrency. TM can be used to designate arbitrary regions of code
making them appear to execute atomically. Speculative Lock Elision [20] and
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Transactional Lock Removal [21] are two techniques proposed for optimisti-
cally executing program’s lock regions using transactional memory.

Quite a few authors have previously combined optimistic and pessimistic
(lock-based) concurrency control mechanisms in the context of Database Sys-
tems. Authors in [25] combine locking with Software TM (STM) in di↵erent
parts of the program, obtaining better performance than just using a lock-
based or an STM-based solution. They find that by using either choice exclu-
sively for the entire application is often suboptimal. Moreover, they formalize
a theory for correctly composing di↵erent concurrency control protocols into
a single program.

Adaptive runtime techniques developed for selecting between TM and lock-
ing for every transaction are described in [24].

In [16] the authors analysed some lock-free and lock-based concurrent data
structures (i.e., FIFO queues, double-ended queues and sorted linked lists) by
using hardware performance counters finding that lock-free algorithms tend to
be more performing.

The trade-o↵ of the spin-then-sleep technique has been studied in [5] where
it is shown that simply spinning or sleeping is suboptimal in many cases.
Current implementation of mutexes in the Linux OS uses this technique. The
mutex call spins for up to a few hundred cycles before employing a costly
futex call for suspending the caller. Therefore, it can happen that the threads
pay the cost of the futex call only to be immediately woken up, thus wasting
both time and energy because the core where the thread is running is not
immediately put in a low-power state.

A di↵erent approach for reducing power consumption of nonblocking al-
gorithms is to use the same techniques used to reduce contention in spinlock
algorithms, e.g., exponential backo↵ [1]. Instead of continuously retry in check-
ing the given condition, the thread is put to sleep between two retries for an
amount of time that increase exponentially until a maximum value. This ap-
proach has the disadvantage that the threads may be not reactive enough
since they might be backed o↵ too far while there is some data ready to be
processed. Moreover, finding good values for the minimum and the maximum
sleeping time is not straightforward and may depend on the target application.

Di↵erently from previous work, our approach does not try to optimise locks.
The proposed algorithm uses POSIX mutexes and condition variables only to
implement thread sleeping in a portable way. Threads are suspended only if,
for the given input rate, there is no throughput degradation with respect to
the nonblocking lock-free protocol.

6 Conclusions and Future Work

In this work, we described an algorithm for the automatic selection of optimal
concurrency control mode for message queues implementing data streaming
channels. We have validated our proposal over two real-world data stream-
ing applications, showing that our solution can adapt the concurrency mode
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according to the input data rate of the application, keeping up with the max-
imum throughput without wasting power. As a future work, we will consider
the optimisation of the latency as well as the introduction of performance and
power consumption prediction techniques to reduce the need of the rollback
phase in the algorithm.
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