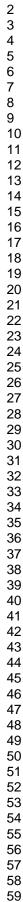
Veterinary Record


Expression of tyrosine kinase receptors PDGFRα, PDGFRβ, VEGFR-2 and CD117 in canine mammary tumours

Journal:	Veterinary Record
Manuscript ID	Draft
Article Type:	Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Gattino, Francesca; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Maniscalco, Lorella; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Iussich, Selina; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Biasato, Ilaria; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Martano, Marina; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Morello, Emanuela; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Gola, Cecilia; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Gola, Cecilia; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie Gola, Cecilia; Universita degli Studi di Torino Scuola di Agraria e Mattonia Patologica Comparadas Sasaki, Nobuo; Tokyo, Graduate School of Agricultural and Life Sciences Millán, Yolanda; University of Córdoba, Universidad de Cordoba, Anatomia y Anatomia Patologica Comparadas Campus de Rabanales Edificio de Sanidad Animal Cordoba, Colorado, ES 14071 34957218681 Buracco, Paolo; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie De Maria, Raffaella; Universita degli Studi di Torino Scuola di Agraria e Medicina Veterinaria, Scienze Veterinarie
Abstract:	Canine mammary tumours (CMTs) are one of the most common malignancies in bitches. Platelet-derived growth factor receptors (PDGFR)- Alpha and Beta, vascular endothelial growth factor receptor-2 (VEGFR-2) and CD117 are tyrosine kinase receptors (TKRs) involved in several tumours and represent suitable targets for specific therapy with toceranib phosphate. The purpose of this study was to evaluate the expression of these receptors in the pathogenesis and progression of CMTs. PDGFRa, PDGFR β , VEGFR-2 and CD117 were expressed in 46/83 (55.4%), 33/83 (39.8%), 46/83 (55.4%) and 32/83 (38.5%) of CMTs, respectively. Immunohistochemical results showed a statistically significant loss of PDGFRa and PDGFR β expression in simple carcinomas compared to complex/mixed carcinomas. Protein expression by western blot revealed specific bands corresponding to PDGFRa and VEGFR-2 in 3/7 and in 1/7 cell

lines. Moreover in vitro treatment showed that toceranib phosphate weakly

60

reduced cell proliferation in one canine mammary cell line. Shidentist. to Review Only These data should be considered for possible therapeutical approaches with specific tyrosine kinase inhibithors (TKI) in this tumor.

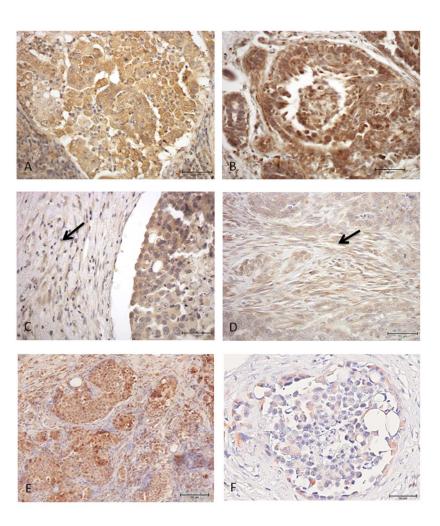
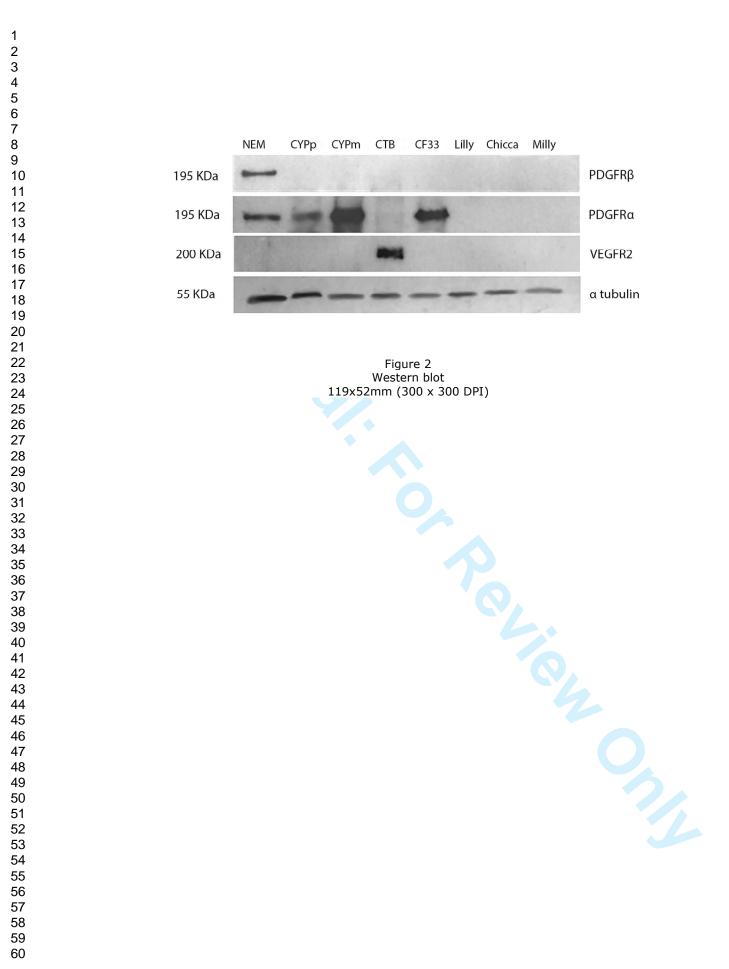




Figure 1 immunohistochemistry 190x275mm (96 x 96 DPI)

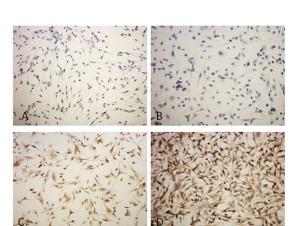
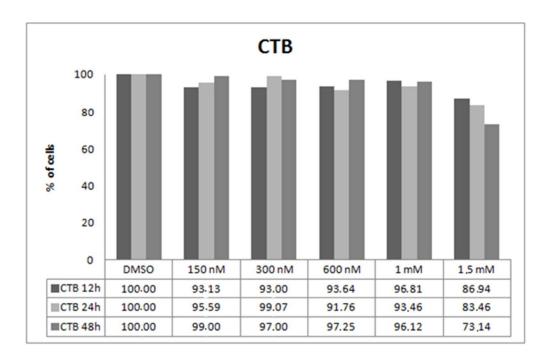



Figure 3 immunocitochemistry 254x190mm (96 x 96 DPI) 254x190mm (96 x 96 DPI)

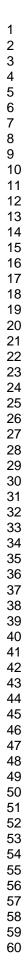


Figure 4B prolifearting assay 50x30mm (300 x 300 DPI)

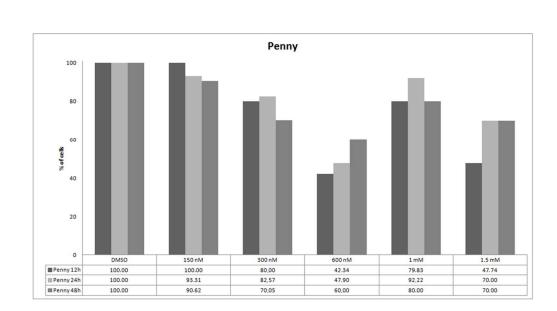


Figure 4C proliferating assay 99x53mm (300 x 300 DPI)

1 2 3	Expression of tyrosine kinase receptors PDGFRα, PDGFRβ, VEGFR-2 and CD117 in canine mammary tumours
4	Gattino F ^{a*} , Maniscalco L ^a , Iussich S ^a , Biasato I ^a , Martano M ^a , Morello E ^a , Gola C ^a , Millan Y ^b ,
5	Saeki K ^c , Buracco P ^a , De Las Mulas J ^b and De Maria R ^a
6	
7	^a Department of Veterinary Sciences, University of Turin, Largo Braccini 2 Grugliasco
8	^b Department of Comparative Pathology, Veterinary Medicine Faculty, University of Córdoba,
9	Córdoba, Spain
10	^c Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The
11	University of Tokyo, Japan
12	
13	
14	
15	* Corresponding author. Tel +39 011 6709037
16	E-mail address: francesca.gattino@unito.it
17	
18	

Veterinary Record

Summary Canine mammary tumours (CMTs) are one of the most common malignancies in bitches. Plateletderived growth factor receptors (PDGFR)-Alpha and Beta, vascular endothelial growth factor receptor-2 (VEGFR-2) and CD117 are tyrosine kinase receptors (TKRs) involved in several tumours and represent suitable targets for specific therapy with toceranib phosphate. The purpose of this study was to evaluate the expression of these receptors in the pathogenesis and progression of CMTs. PDGFRα, PDGFRβ, VEGFR-2 and CD117 were expressed in 46/83 (55.4%), 33/83

(39.8%), 46/83 (55.4%) and 32/83 (38.5%) of CMTs, respectively. Immunohistochemical results

showed a statistically significant loss of PDGFR α and PDGFR β expression in simple carcinomas

compared to complex/mixed carcinomas. Protein expression by western blot revealed specific bands

corresponding to PDGFR α and VEGFR-2 in 3/7 and in 1/7 cell lines. Moreover in vitro treatment

showed that toceranib phosphate weakly reduced cell proliferation in one canine mammary cell line.

These data should be considered for possible therapeutical approaches with specific tyrosine kinase

inhibithors (TKI) in this tumor.

33 Introduction

Canine mammary tumours (CMTs) are one of the most common tumours that occur in bitches (Vail and others 2000, Camacho and others 2014). According to the literature, the percentage of the malignant form varies from 40% to 70%, and simple carcinoma represents the most common histotype, followed by mixed and complex tumours (Dobson and others 2002, Salas and others 2015, Vascellari and others 2016). The epithelial component of CMTs has been recognised as a potential model for human breast cancer due to their similar histological and clinical features (Ranieri and others 2013, Liu and others 2014).

Platelet-derived growth factor receptors (PDGFR)-Alpha and Beta, vascular endothelial growth
factor receptor-2 (VEGFR-2) and CD117 are tyrosine kinase receptors (TKRs) that are able to
activate many of the major cellular signal transduction pathways (Lemmon MA and others 2010)
and are involved in both physiological processes and tumoural diseases (Alvarez and others 2006,
Demoulin and others 2014).

Numerous studies have demonstrated the over-expression or activation of PDGFRs, VEGFR-2 and CD117 in several canine tumours (Maniscalco and others 2013, Abou Asa and others 2015, Iussich and others 2016). To the author's knowledge, there are still no data regarding the expression of PDGFRs in CMTs, although VEGFR-2 is expressed in 58% of CMTs and is statistically associated with VEGF immunoreactivity in cancer cells (Millanta and others 2006, Santos and others 2014). Further, CD117 is reported to be expressed in 70% of malignant CMTs, which suggests that it plays a role in inflammatory and high-grade canine mammary carcinomas (Brunetti and others 2014). In human breast cancer, PDGFRs and CD117 are involved in cellular differentiation and invasion and in the tumoural microenvironment (Pinto and others 2014); thus, the potential use of targeted therapy has been suggested for this tumour (Zhu and others 2014). The use of TKR inhibitors (TKIs) in human and veterinary medicine depends on the receptor expression, activation and/or mutation, which are usually evaluated in tissues before treatment (Downing and others 2002, Amagai and others 2013). The TKRs evaluated in this study represent an attractive target for

Page 11 of 25

Veterinary Record

toceranib phosphate (Zoetis), which is a veterinary TKI that selectively inhibits VEGFR-2, PDGFRs and CD117 and is currently used for the treatment of mast cell tumours and various other neoplasms, including anal sac carcinomas, head and neck, thyroid carcinomas (London and others 2003 and 2012, Gardner and others 2015). The aims of the present study are to characterise the expression of PDGFR α , PDGFR β , VEGFR-2 and CD117 in spontaneous CMTs, to evaluate the in vitro effect of toceranib phosphate on canine carcinoma mammary cell lines and to provide information regarding TKRs as molecular targets in this tumour. Materials and Methods *Sample collection* Eighty-three spontaneous malignant CMTs, 16 benign CMTs, seven hyperplastic mammary glands, and four normal mammary glands were retrieved from a retrospective study at the Hospital of the Department of Veterinary Sciences of the University of Turin; the normal/hyperplastic glands were obtained from healthy dogs during necropsy. Retrospective collection and analysis on CMTs samples was approved by the Ethical Review Committee of the Department of Veterinary Science. *Histological diagnosis* Samples were fixed in 10.0% buffered neutral formalin solution for at least 24 h, embedded in paraffin wax blocks, cut into 4-µm-thickslices and stained with haematoxylin and eosin (HE). CMTs were histologically classified according to Goldschmidt and others (2011). Immunohistochemical analysis Immunohistochemical (IHC) analysis was carried out on two sections of 4-µm formalin-fixed paraffin blocks. Primary antibodies (Table 1) were detected using the avidin-biotin peroxidase complex technique with the Vectastain Elite ABC Kit (Vector Laboratories). Canine skin, prostatic carcinoma, normal spleen and mast cell tumour were used as external positive controls for

Veterinary Record

PDGFR α , PDGFR β , VEGFR-2 and CD117, respectively. For the negative controls, the previous external positive controls were incubated with normal rabbit IgG (sc-2027, St. Crutz Biotechnology). Immunolabelled slides were randomised and masked for blind examination, which was independently performed by three observers (L.M., S.I., Y.M). When there was a disagreement (\leq 5% of the slides), a consensus among the three observers was reached using a multihead microscope. Cytoplasmic immunolabelling of PDGFRs and VEGFR-2 was evaluated in neoplastic and stromal cells (fibroconnective tissue within and surrounding the tumour) separately using the scoring system adopted by Donnem and others 2008 and 2010. CD117 immunoreactivity was evaluated applying the method adopted by Brunetti and others (2014) as follows: score 0 (absence of positive cells), score 1 (1-19.0% of labelled cells), score 2 (20-49.0% of labelled cells), and score 3 (>50.0% of labelled cells); samples with scores of 1, 2 or 3 were considered positive. Canine mammary carcinoma (CMC) cell lines Two canine primary (CYPp, CTB) and one metastatic (CYPm) mammary carcinoma cell lines were provided by the University of Veterinary Medicine of Tokyo, and CF33 cell line was obtained by the American Type Culture Collection (ATCC). All cell lines were cultured as previously reported (Murai and others 2012). Establishment of Chicca, Lilly, Milly and NEM cell lines Tissue samples from three dogs with spontaneous grade III simple carcinomas that were surgically

treated (Chicca, Lilly, Milly) and from normal mammary tissue (NEM) were collected. After

107 manual disaggregation, tissue fragments from Chicca, Lilly and Milly were digested at 37 °C for

108 30-60 min in sterile phosphate buffered saline (PBS) containing 0.25 mg/mL collagenase type IA

109 (Sigma-Aldrich) and were then centrifuged and suspended in Dulbecco's modified Eagle medium.

110 For the "Lilly" cell line, 10 μg/mL insulin (Sigma-Aldrich) was added. The NEM cell line was

Veterinary Record

established according to the method presented in the literature (Sánchez-Céspedes and others 2013), and monodispersed cells were grown in Dulbecco's modified Eagle's Medium/Nutrient Mixture F12 Ham (DMEM/F12; Sigma–Aldrich) supplemented with 5% foetal calf serum (FCS), 5000 IU/mL penicillin, 5 mg/mL streptomycin, 10 µg/mL insulin, 0.5 µg/mL hydrocortisone and 10 ng/mL choler toxin. To confirm the epithelial cells of origin, monoclonal mouse anti-cytokeratin (CK) 5 antibody (clone PCK103; isotype IgG₁; Euro-Diagnostica; diluted 1:10) and polyclonal rabbit anti-CK14 antibody (Covance Research; diluted 1:500) were used (data available from the authors). *Western blot analysis* Western blot (WB) analysis was carried out on the protein lysate obtained from previous normal and CMCs (canine mammary carcinoma) cell lines as previously described (Maniscalco and others 2015). After transferring into Hybond-C Extra membranes (American Biosciences), they were incubated with primary antibodies (Table 1). The membranes were then incubated with a secondary horseradish peroxidase (HRP)-linked antibody and subsequently with enhanced chemiluminescence reagent (Super Signal West Pico Mouse IgG Detection Kit, Thermo Scientific). *Immunocytochemistry* CMCc cell lines were grown into wells of eight well chamber slides (Nalgene) at a confluence of 50%. After adhesion and medium removing, the cells were fixed in methanol for 10 minutes at room temperature and washed three times in PBS (phosphate buffer solution) for a total of 15 minutes. After washing, the cells were incubated with primary antibodies (Table 1) according to the previous procedure. Proliferation assay after in vitro inhibition with toceranib phosphate

Veterinary Record

The CYPm and CTB cell lines overexpressing the highest level of PDGFRA and VEGFR-2 were selected for an in vitro test. A canine osteosarcoma cell line (Penny), expressing high levels of PDGFRs, was used as positive control (Maniscalco and others 2013). First, 10000 cells from each cell line were seeded in 96-well plates, allowed to attach overnight and treated with different concentrations of toceranib (150 nM, 300 nM, 600 nM, 1 µM, 1.5 µM) diluted in Dimethyl sulfoxide for 12, 24 and 48 h. To measure cell proliferation and cytotoxicity, the Cell Counting Kit-8 (Enzo Life Sciences), a colorimetric semi-quantitative assay kit, was used. The experiment was performed in triplicate and repeated three times. Statistical analysis IHC results were grouped into contingency tables and analysed using Fisher's exact test or χ^2 test. Proliferating data were analysed using Student's t test. Data were analysed using MedCalc Statistical Software version 13.3 (MedCalc Software bvba). P < 0.05 was considered statistically significant. Results According to the histological classification of Goldschmidt and others (2011), 50.6% of the cases were classified as simple carcinoma, 30.1% as complex carcinoma and 19.3% as mixed carcinoma. Among them, 28.9% (24/83) were grade I, 41.0% (34/83) were grade II and 30.1% (25/83) were grade III. Immunohistochemical results revealed that none of the four normal mammary samples expressed PDGFRs and only one hyperplastic mammary tissue sample expressed PDGFRs in both stromal and epithelial cells; VEGFR-2 and CD117 positivity was present in 63.6% (7/11) and 18.18% (2/11) of normal and hyperplastic samples both in epithelial and stromal cells, respectively. Benign tumours expressed PDGFR α , PDGFR β and VEGFR-2 in 54.5%, 54.5% and 62.5% of the epithelial compartment, respectively, and in 18.0%, 18.0% and 37.5% of the stromal compartment,

161 respectively. CD117 immunolabelling was negative in all benign tumours. Immunohistochemical

Page 15 of 25

1

Veterinary Record

2	
3	
4 5 6 7	
5	
6	
7	
8	
9	
10	
11	
12	
12	
10	
8 9 10 11 12 13 14 15 16 17 18	
15	
16	
17	
17 18 19	
10	
20	
20	
20 21 22 23 24 25 26 27 28 20	
22	
23	
24	
25	
20	
26	
27	
28	
23	
30	
31	
20	
32	
33	
34	
35	
36	
37	
20	
30	
39	
30 31 32 33 34 35 36 37 38 39 40	
41	
42	
43	
44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

Discussion

184

results regarding malignant CMTs are summarised in Tables 2 and 3, and immunohistochemistry pictures are shown in Fig. 1. As shown in Table 2, we found that in malignant tumours, epithelial cells showed significantly lower immunolabelling for PDGFR α and PDGFR β (*P* <0.05) in simple carcinomas (16/83 and 12/83) compared to complex and mixed tumours (30/83 and 21/83) respectively.

167 Moreover, in the stromal compartment, PDGFR β showed significantly lower immunolabelling in 168 simple carcinomas compared to complex and mixed carcinomas (P < 0.05) (Table 3). In malignant 169 tumours, VEGFR-2 was expressed in 46/83 (55.4%) samples at the epithelial level, whereas in 170 stromal cells it was expressed in 18/83 (21.7%) samples. No statistically significant correlation was 171 found between VEGFR-2 and histological grade. CD117 was negative in 61.4% of the cases. The 172 positive samples were distributed as follows: 28.9% (score 1), 6.1%, (score 2) and 3.6% (score 3); 173 no statistically significant correlation was found among CD117 and histological grade. Protein 174 expression analysis revealed that the CF33, CYPp and CYPm cell lines expressed PDGFRα and that 175 the CTB cell line expressed VEGFR-2, whereas none of the established cell lines expressed 176 PDGFR β or CD117 (Fig. 2). These data were confirmed by immunocytochemistry performed on 177 CMCc cell lines (Fig. 3). In the in vitro test toceranib phosphate was able to slightly inhibit cell proliferation in the CTB cell line at 600 nM (P = 0.04) after 24 h and at 1.5 mM after 24 and 48 h of 178 179 treatment (Fig. 4A). In the CYPm cell line, inhibition was found only at 1.5 mM after 48 h (Fig. 180 4B). As shown in Fig. 4C, the Penny cell line, which was used as a control, responded to toceranib 181 phosphate in a range of 150-600 nM corresponding to the IC50 at 12, 24 and 48 h (Liao et al., 182 2002). 183

185 CMTs are one of the most common neoplasias in dogs. Many recent efforts have been made to
186 increase the knowledge of the pathogenesis of CMTs and to identify new histological biomarkers
187 for prognosis and specific therapy. Toceranib phosphate is currently used to treat canine mast cell

Veterinary Record

tumours (London and others 2009, Amagai and others 2013, Patruno and others 2014, Gil da Costa and others 2015), but only one study evaluated the efficacy of this drug in CMTs (London and others 2003), where four of the five examined CMTs obtained a biological response to therapy (two partial response and two stable disease); however, no data about TKRs expression in these patients are available. The present study evaluated the expression of PDGFR α , PDGFR β , VEGFR-2 and CD117 in a large cohort of CMTs to compare their expression to histological features and to identify suitable biomarkers for specific therapy. Considering the importance of these TKRs in the microenvironment of human breast cancer (Nakopoulou and others 2002, Gujam and others 2014, Paulsson and others 2014, Pinto and others 2014, Dekker and others) their expression in epithelial and stromal cells was evaluated separately. The results of this study demonstrated the tendency of neoplastic cells to lose the expression of PDGFR α and PDGFR β in simple carcinomas compared to mixed/complex carcinomas. None of the normal mammary glands expressed PDGFRs, but 54.5% of benign tumours were positive. On the basis of these results, it could be assumed that these receptors play different roles in benign and malignant tumours; thus, their possible role in the progression from the benign to malignant phenotype in CMTs needs to be investigated. In particular, considering simple carcinomas, PDGFR α and β are not expressed at the epithelial level in 26/42 and 30/42 (61.9% and 71.4%) of the cases, respectively. These results partially correspond to human breast cancer, where PDGFR β is expressed exclusively in stromal cells in 35% of cases, it represents a negative prognostic factor and is usually correlated with the triple negative phenotype (Jechlinger and others 2006, Frings and others 2013, Plantamura and others 2014), whereas PDGFR α is expressed in 39.2% of breast cancer cases in both epithelial and stromal cells (Carvalho and others 2005). On the basis of the varying results obtained, it was hypothesized that different hormonal responses and regulation in the two species should influence the expression of PDGFRs in canine simple carcinoma but further investigations are needed (Peña and others 2014).

Page 17 of 25

Veterinary Record

Similar to what is described in the veterinary literature, VEGFR-2 expression was slightly increased in malignant forms, but no statistical correlation was found with histological grade (P>0.05). Our data are in contrast to those of Restucci and others (2004) and Diessler and others (2016), who reported a correlation of VEGFR-2 with malignant forms and microvascular density. Nevertheless, our data are similar to those obtained in humans, where the immunoistochemical expression of VEGFR-2 ranged between 63.0% and 69.0% (Rydén and others 2005) and was generally related to an aggressive phenotype and a poor prognosis (Johansson and others 2012). Finally, CD117 expression did not reveal a statistical association with tumour histotype; these data are not in accordance with those of Brunetti and others (2014), who demonstrated a statistical association between CD117 expression in malignant tumours with respect to benign tumours. However, our data are in agreement with the human literature, where high-grade carcinomas do not express CD117 (Tomasino and others 2009, Kondi-Pafiti and others 2010). Western blot analysis confirmed the antibody specificity and showed that these receptors are poorly expressed in carcinoma cell lines analyzed. Finally, the in vitro assay suggested that the response to drugs is strictly dependent on the presence of specific TKRs on the cellular membrane surface. The results of the present study show that PDGFR α and PDGFR β tend to lose their expression in simple carcinomas and on the basis of preliminary results we can assume that the biological effect of toceranib phosphate on CMCs strictly depends on the cellular expression of specific TKRs. These data should be considered before a specific medical treatment is initiated, although further clinical studies in this direction are needed. Acknowledgements The authors would like to thank Dr. Edge and all of the personnel at Zoetis for supporting

the present study by providing toceranib phosphate (CPT number WI128659). We also greatly
appreciate the help of Dr. Sara Verganti and Neal Bryant for their assistance with the English
language and comments on this manuscript.

2		
3	239	References
4		
5	240	ABOU ASA, S., MORI, T., MARUO, K., KHATER, A., EL-SAWAK, A., ABD EL-AZIZ, E.,
6 7	241	YANAI, T., SAKAI, H. (2015) Analysis of genomic mutation and immunohistochemistry of
8	242	platelet-derived growth factor receptors in canine vascular tumours. <i>Veterinary and</i>
9	243	Comparative Oncology 13, 237-245.
10	244	
11	245	ALVAREZ, R.H., KANTARJIAN, H.M., CORTES, J.E. (2006) Biology of platelet-derived growth
12	246	factor and its involvement in disease. Mayo Clinic Proceeding 81, 1241-1257.
13	247	
14	248	AMAGAI, Y., TANAKA, A., MATSUDA, A., JUNG, K., OIDA, K., NISHIKAWA, S., JANG, H.,
15	249	MATSUDA, H. (2013) Heterogeneity of internal tandem duplications in the c-kit of dogs
16	250	with multiple mast cell tumours. Journal of Small Animal Practice 54, 377-380.
17	251	
18 19	252	BRUNETTI, B., BEHA, G., BENAZZI, C., BONDIN, V., DE TOLLA, L., SARLI, G. (2014)
20	253	CD117 expression influences proliferation but not survival in canine mammary tumours.
21	254	Journal of Comparative Pathology 151, 202-206.
22	255	
23	256	CAMACHO, L., PEÑA, L., GIL, A.G., MARTÍN-RUIZ, A., DUNNER, S., ILLERA, J.C. (2014)
24	257	Immunohistochemical vascular factor expression in canine inflammatory mammary
25	258	carcinoma. Veterinary Pathology 51, 737-748.
26	259	
27	260	CARVALHO, I., MILANEZI, F., MARTINS, A., REIS, R.M., SCHMITT, F. (2005)
28	261	Overexpression of platelet-derived growth factor receptor alpha in breast cancer is
29 30	262	associated with tumour progression. Cancer Research 7, 788-795.
30 31	263	
32	264	DEKKER, T.J., CHAREHBILI, A., SMIT, V.T., TEN DIJKE, P., KRANENBARG, E.M., VAN
33	265	DE VELDE, C.J., NORTIER, J.W., TOLLENAAR, R.A., MESKER, W.E., KROEP, J.R.
34	266	(2015) Disorganised stroma determined on pre-treatment breast cancer biopsies is associated
35	267	with poor response to neoadjuvant chemotherapy: Results from the NEOZOTAC trial.
36	268	Molecular Oncology 9, 1120-1128.
37	269	
38	270	DE LAS MULAS J., MILLAN Y., DIOS R. (2005) A prospective analysis of
39 40	271	immunohistochemically determined estrogen receptor and progesterone receptor expression
40 41	272	and host and tumor factors as predictors of disease-free period in mammary tumors of the
42	273	dog. Veterinary Pathology 42, 200–212.
43	274	
44	275	DEMOULIN, J.B., ESSAGHIR, A. (2014) PDGF receptor signaling networks in normal and
45	276	cancer cells. Cytokine and Growth Factor Reviews 25, 273-283.
46	277	
47	278	DIESSLER, M.E., CASTELLANO, M.C., PORTIANSKY, E.L., BURNS, S., IDIART, J.R. (2016)
48	279	Canine mammary carcinomas: influence of histological grade, vascular invasion,
49 50	280	proliferation, microvessel density and VEGFR2 expression on lymph node status and
50 51	281	survival time. Veterinary and Comparative Oncology (doi: 10.1111/vco.12189).
52	282	
52 53	283	DONNEM, T., AL-SAAD, S., AL-SHIBLI, K., ANDERSEN, S., BUSUND, L.T., BREMNES,
54	284	R.M. (2008) Prognostic impact of platelet-derived growth factors in non-small cell lung
55	285	cancer tumour and stromal cells. <i>Journal of Thoracic Oncology</i> 3 , 963-970.
56	286	current taillout and buomar construction find acto checkogy c, 505 510.
57	287	DONNEM, T., AL-SHIBLI, K., ANDERSEN, S., AL-SAAD, S., BUSUND, LT., BREMNES, RM.
58	288	(2010) Combination of low vascular endothelial growth factor A (VEGF-A)/VEGF receptor
59	200	
60		

Veterinary Record

2		
3	289	2 expression and high lymphocyte infiltration is a strong and independent favorable
4	290	prognostic factor in patients with non small cell lung cancer. Cancer 15, 4318-4325.
5 6	291	
6	292	DOBSON J.M., SAMUEL S., MILSTEIN H., ROGERS K., WOOD J.L. (2002) Canine neoplasia
7	293	in the UK: estimates of incidence rates from a population of insured dogs. <i>Journal of Small</i>
8 9	294	<i>Animal Practice</i> , 43 , 240–246.
9 10	295	
11	296	DOWNING, S., CHIEN, M.B., KASS, P.H., MOORE, P.E., LONDON, C.A. (2002) Prevalence
12	297	and importance of internal tandem duplications in exons 11 and 12 of c-kit in mast cell
13	298	tumours of dogs. American Journal of Veterinary Research 63, 1718-1723.
14	299	
15	300	FRINGS, O., AUGSTEN, M., TOBIN, N.P., CARLSON, J., PAULSSON, J., PENA, C., OLSSON,
16	301	E., VEERLA, S., BERGH, J., OSTMAN, A., ET AL. (2013) Prognostic significance in
17	302	breast cancer of a gene signature capturing stromal PDGF signaling. <i>The American Journal</i>
18	303	of Pathology, 182, 2037-2047.
19	304	of 1 unology, 102, 2037 2017.
20	305	GARDNER, H.L., LONDON, C.A., PORTELA, R.A., NGUYEN, S., ROSENBERG, M.P.,
21	306	KLEIN, M.K., CLIFFORD, C., THAMM, D.H., VAIL, D.M., BERGMAN, P.,
22 23	307	CRAWFORD-JAKUBIAK, M., HENRY, C., LOCKE J., GARRET, LD. (2015)
23 24	308	Maintenance therapy with toceranib following doxorubicin-based chemotherapy for canine
25	308	splenic hemangiosarcoma. <i>BMC Veterinary Research</i> (doi: 10.1186/s12917-015-0446-1).
26		spieliic ileinangiosarcoma. DMC velerinary Research (doi: 10.1180/s12917-015-0440-1).
27	310	GIL DA COSTA, R.M. (2015) C-kit as a prognostic and therapeutic marker in canine cutaneous
28	311	
29	312	mast cell tumours: From laboratory to clinic. The Veterinary Journal 205, 5-10.
30	313	COLDECHNIDT M. DEÑA L. DAGOTTO D. ZADDULLI M. (2011) CL. C. C. J.
31	314	GOLDSCHMIDT, M., PEÑA, L., RASOTTO, R., ZAPPULLI, V. (2011) Classification and
32	315	grading of canine mammary tumours. Veterinary Pathology 48, 117-131.
33	316	
34	317	GUJAM, F.J., EDWARDS, J., MOHAMMED, Z.M., GOING, J., MCMILLAN, D.C. (2014) The
35	318	relationship between the tumour stroma percentage, clinicopathological characteristics and
36 37	319	outcome in patients with operable ductal breast cancer. British Journal of Cancer 111, 157-
38	320	165.
39	321	
40	322	IUSSICH, S., MANISCALCO, L., DI SCIUVA, A., IOTTI, B., MORELLO, E., MARTANO, M.,
41	323	GATTINO, F., BURACCO, P., DE MARIA, R. (2016) PDGFRs expression in dogs affected
42	324	by malignant oral melanomas: correlation with prognosis. Veterinary and Comparative
43	325	<i>Oncology</i> (doi: 10.1111/vco.12190).
44	326	
45	327	JECHLINGER, M., SOMMER, A., MORIGGL, R., SEITHER, P., KRAUT, N., CAPODIECCI, P.,
46	328	DONOVAN, M., CORDON-CARDO, C., BEUG, H., GRÜNERT, S. (2006) Autocrine
47 48	329	PDGFR signaling promotes mammary cancer metastasis. Journal of Clinical Investigation
40	330	116, 1561-1570.
50	331	
51	332	JOHANSSON, I., AALTONEN, K.E., EBBESSON, A., GRABAU, D., WIGERUP, C.,
52	333	HEDENFALK, I., RYDÉN, L.(2012) Increased gene copy number of KIT and VEGFR2 at
53	334	4q12 in primary breast cancer is related to an aggressive phenotype and impaired prognosis.
54	335	Genes Chromosomes Cancer 51, 375-383.
55	336	
56	337	KONDI-PAFITI, A., ARKADOPOULOS, N., GENNATAS, C., MICHALAKI, V., FRANGOU-
57	338	PLEGMENOU, M., CHATZIPANTELIS, P. (2010) Expression of c-kit in common benign
58 50	339	and malignant breast lesions. <i>Tumori</i> 96, 978-984.
59 60		
00		

1 2		
3	340	
4	341	LEMMON M.A., SCHLESSINGER J. (2010) Cell Signalling by receptor tyrosine kinases. Cell 25,
5	342	1117-34.
6	343	
7 8	344	LIAO, A.T., CHIEN, M.B., SHENOY, N., MENDEL, D.B., MCMAHON, G., CHERRINGTON,
8 9	345	J.M., LONDON, C.A. (2002) Inhibition of constitutively active forms of mutant kit by
10	346	multitargeted indolinone tyrosine kinase inhibitors. <i>Blood</i> 100 , 585-593.
11	347	
12	348	LIU, D., XIONG, H., ELLIS, A.E., NORTHRUP, N.C., RODRIGUEZ, C.O., O'REGAN, R.M.,
13	349	DALTON, S., ZHAO, S. (2014) Molecular homology and difference between spontaneous
14	350	canine mammary cancer and human breast cancer. Cancer Research 74, 5045-5056.
15	351	
16 17	352	LONDON, C.A., HANNAH, A.L., ZADOVOSKAYA, R., CHIEN, M.B., KOLLIAS-BAKER, C.,
18	353	ROSENBERG, M., DOWNING, S., POST, G., BOUCHER, J., SHENOY, N. MENDEL,
19	354	DB., MCMACHON, G., CHERRINGTON JM. (2003) Phase I dose-escalating study of
20	355	SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous
21	356	malignancies. Clinical Cancer Research 9, 2755-2768.
22	357	LONDON CA MALDAG DD WOOD FOLLIG GL DOUGUED LE DUGK AW
23	358	LONDON, C.A., MALPAS, P.B., WOOD-FOLLIS, S.L., BOUCHER, J.F., RUSK, A.W.,
24 25	359	ROSENBERG, M.P., HENRY, C.J., MITCHENER, K.L., KLEIN, M.K.,
26	360	HINTERMEISTER, J.G., BERGMAN, PJ., COUTO, GC., MAULDIN, GN., MICHELS,
27	361	GM. (2009) Multi-center, placebo-controlled, double-blind, randomized study of oral
28	362	toceranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of
29	363	dogs with recurrent (either local or distant) mast cell tumour following surgical excision.
30	364 365	Clinical Cancer Research 15, 3856-3865.
31	365 366	LONDON, C., MATHIE, T., STINGLE, N., CLIFFORD, C., HANEY, S., KLEIN, M.K.,
32 33	367	BEAVER, L., VICKERY, K., VAIL, D.M., HERSHEY, B., ET AL., (2012) Preliminary
33	368	evidence for biologic activity of toceranib phosphate (Palladia(®)) in solid tumours.
35	369	Veterinary and Comparative Oncology 10, 194-205.
36	370	velevinary and comparative encodegy 10, 19 + 200.
37	371	MANISCALCO, L., IUSSICH, S., MORELLO, E., MARTANO, M., BIOLATTI, B., RIONDATO,
38	372	F., DELLA SALDA, L., ROMANUCCI, M., MALATESTA, D., BONGIOVANNI, L.,
39	373	TIRRITO, F., GATTINO, F., BURACCO, P., DE MARIA, R. (2013) PDGFs and PDGFRs
40 41	374	in canine osteosarcoma: new targets for innovative therapeutic strategies in comparative
42	375	oncology. The Veterinary Journal 195, 41-47.
43	376	
44	377	MANISCALCO, L., IUSSICH, S., MORELLO, E., MARTANO, M., GATTINO, F., MIRETTI, S.,
45	378	BIOLATTI, B., ACCORNERO, P., MARTIGNANI, E., SÁNCHEZ-CÉSPEDES, R.,
46	379	BURACCO, P., DE MARIA, R. (2015) Increased expression of insulin-like growth factor-1
47 48	380	receptor is correlated with worse survival in canine appendicular osteosarcoma. The
40	381	Veterinary Journal 205 , 272-280.
50	382	
51	383	MILLANTA, F., SILVESTRI, G., VASELLI, C., CITI, S., PISANI, G., LORENZI, D., POLI, A.
52	384	(2006) The role of vascular endothelial growth factor and its receptor Flk-1/KDR in
53	385	promoting tumour angiogenesis in feline and canine mammary carcinomas: a preliminary
54 55	386	study of autocrine and paracrine loops. Research in Veterinary Science 81, 350-357.
55 56	387	
57	388	MURAI, K., NAKAGAWA, T., ENDO, Y., KAMIDA, A., YOSHIDA, K., MOCHIZUKI, M.,
58	389	NISHIMURA, R., SASAKI, N. (2012) Establishment of a pair of novel cloned tumour cell
59		
60		

1		
2		
3	390	lines with or without metastatic potential from canine mammary adenocarcinoma. Research
4	391	in Veterinary Science 93, 468-472.
5	392	
6	393	NAKOPOULOU, L., STEFANAKI, K., PANAYOTOPOULOU, E., GIANNOPOULOU, I.,
7	394	ATHANASSIADOU, P., GAKIOPOULOU-GIVALOU, H., LOUVROU, A. (2002).
8 9	395	Expression of the vascular endothelial growth factor receptor-2/Flk-1 in breast carcinomas:
9 10	396	correlation with proliferation. Human Pathology 33, 863-870.
11	397	
12	398	PATRUNO, R., MARECH, I., ZIZZO, N., AMMENDOLA, M., NARDULLI, P., GADALETA, C.,
13	399	INTRONA, M., CAPRIUOLO, G., RUBINI, R.A., RIBATTI, D., ET AL. (2014) c-Kit
14	400	expression, angiogenesis, and grading in canine mast cell tumour: a unique model to study
15	401	c-Kit driven human malignancies. BioMed Research International (doi:
16	402	10.1155/2014/730246).
17	403	
18 19	404	PAULSSON, J., MICKE, P. (2014) Prognostic relevance of cancer-associated fibroblasts in human
20	405	cancer. Seminars in Cancer Biology 25, 61-68.
21	406	
22	407	PEÑA, L., GAMA, A., GOLDSCHMIDT, M.H., ABADIE, J., BENAZZI, C., CASTAGNARO,
23	408	M., DÍEZ, L., GÄRTNER, F., HELLMÉN, E., KIUPEL, M., ET AL. (2014) Canine
24	409	mammary tumours: a review and consensus of standard guidelines on epithelial and
25	410	myoepithelial phenotype markers, HER2, and hormone receptor assessment using
26	411	immunohistochemistry. Veterinary Pathology 51, 127-145.
27	412	
28 29	413	PINTO, M.P., DYE, W.W., JACOBSEN, B.M., HORWITZ, K.B. (2014) Malignant stroma
29 30	414	increases luminal breast cancer cell proliferation and angiogenesis through platelet-derived
31	415	growth factor signaling. BMC Cancer (doi: 10.1186/1471-2407-14-735).
32	416	
33	417	PLANTAMURA, I., CASALINI, P., DUGNANI, E., SASSO, M., D'IPPOLITO, E.,
34	418	TORTORETO, M., CACCIATORE, M., GUARNOTTA, C., GHIRELLI, C., BARAJON,
35	419	I., ET AL. (2014) PDGFRβ and FGFR2 mediate endothelial cell differentiation capability of
36	420	triple negative breast carcinoma cells. <i>Molecular Oncology</i> 8, 968-981.
37	421	
38 39	422	RANIERI, G., PANTALEO, M., PICCINNO, M., RONCETTI, M., MUTINATI, M., MARECH, I.,
40	423	PATRUNO, R., RIZZO, A., SCIORSCI, R.L. (2013) Tyrosine kinase inhibitors (TKIs) in
41	424	human and pet tumours with special reference to breast cancer: a comparative review.
42	425	Critical Reviews in Oncology/Hematology 88, 293-308.
43	426	
44	427	RESTUCCI, B., BORZACCHIELLO, G., MAIOLINO, P., MARTANO, M., PACIELLO, O.,
45	428	PAPPARELLA, S. (2004) Expression of vascular endothelial growth factor receptor Flk-1
46	429	in canine mammary tumours. <i>Journal of Comparative Pathology</i> 130 , 99-104.
47 48	430	
40 49	431	RYDÉN, L., STENDAHL, M., JONSSON, H., EMDIN, S., BENGTSSON, N.O., LANDBERG, G.
50	432	(2005) Tumour-specific VEGF-A and VEGFR2 in postmenopausal breast cancer patients
51	433	with long-term follow-up. Implication of a link between VEGF pathway and tamoxifen
52	434	response. Breast Cancer Research Treatment 89, 135-143.
53	435	
54	436	SÁNCHEZ-CÉSPEDES, R., MANISCALCO, L., IUSSICH, S., MARTIGNANI, E., GUIL-LUNA,
55	437	S., DE MARIA, R., DE LAS MULAS, J., MILLÁN, Y. (2013) Isolation, purification,
56	438	culture and characterisation of myoepithelial cells from normal and neoplastic canine
57 58	439	mammary glands using a magnetic-activated cell sorting separation system. The Veterinary
58 59	440	Journal 197, 474-482.
60		

1		
2		
3	441	CALAG V MÁDOUEZ A DIAZ D DOMEDO I (2015) E 11 1 1 1 10/ 1 CM
4	442	SALAS, Y., MÁRQUEZ, A., DIAZ, D., ROMERO, L. (2015) Epidemiological Study of Mammary
5 6	443	Tumours in Female Dogs Diagnosed during the Period 2002-2012: A Growing Animal
7	444	Health Problem. PLoS One (doi: e0127381).
8	445	
9	446	SANTOS, A., LOPES, C., GÄRTNER, F., MATOS, A.J. (2014) VEGFR-2 expression in malignant
10	447	tumours of the canine mammary gland: a prospective survival study. <i>Veterinary and</i>
11	448	Comparative Oncology (doi: 10.1111/vco.12107).
12	449	
13	450	TOMASINO, R.M., MORELLO, V., GULLO, A., POMPEI, G., AGNESE, V., RUSSO, A.,
14	451	RINALDI, G. (2009) Assessment of "grading" with Ki-67 and c-kit immunohistochemical
15	452	expressions may be a helpful tool in management of patients with flat epithelial atypia
16	453	(FEA) and columnar cell lesions (CCLs) on core breast biopsy. Journal of Cellular
17 18	454	<i>Physiology</i> 221 , 343-349.
18	455	
20	456	VAIL, D.M., MACEWEN, E.G. (2000) Spontaneously occurring tumours of companion animals as
20	457	models for human cancer. Cancer Investigation 18, 781-792.
22	458	
23	459	
24	460	VASCELLARI, M., CAPELLO, K., CARMINATO, A., ZANARDELLO, C., BAIONI, E.,
25	461	MUTINELLI, F. (2016) Incidence of mammary tumours in the canine population living in
26	462	the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer.
27	463	Preventive Veterinary Medicine 126 , 183-189.
28	464	
29	465	ZHU, Y., WANG, Y., GUAN, B., RAO, Q., WANG, J., MA, H., ZHANG, Z., ZHOU, X. (2014) C-
30	466	kit and PDGFRA gene mutations in triple negative breast cancer. <i>International Journal of</i>
31 32	467	Clinical Experimental Pathology 7, 4280-4285.
32 33	468	Clinical Experimental I anology 1, 1200 1205.
34	400	
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51		
52		
53		
54		
55 50		
56 57		
57 58		
58 59		
60		

 471 Sources, specificity and dilutions of the antibodies employed in immunohistochemistry (IHC) and

472 Western Blot (WB).

172 173	Western	n Blot (WB).				
5	Antibody	Туре	Source	Specificity ^a	IHC	WB
	VEGFR-2	Rabbit polyclonal	Santa Crutz Biotechnology	m	1:150	1:1000
	PDGFRα	Rabbit polyclonal	Santa Crutz Biotechnology	h	1:100	1:1000
PDC	GFRβ	Rabbit polyclonal	Santa Crutz Biotechnology	h, m, r	1:200	/
PDGFI	λ β	Rabbit polyclonal	Cell Signaling Technology	h, m, r	/	1:1000
CD	117	Rabbit polyclonal	DAKO	h	1:400	1:1000
a	(Juman (h)	, mouse (m) and rat (
	riunan (n)	, mouse (m) and fat (1).			

Table 2

478 Relationships between tumour characteristics and Tirosine Kinase Receptors expressions in

479 neoplastic cells

	PDGFRα positi	ive PDGFRα		PDGFRβ	PDGFRβ		VEGFR-2	VEGFR-2		CD117	CD117	
Clinicopathologic	n (%)	negative		positive	negative		positive	negative		positive	negative	
characteristics		n (%)	P value	n (%)	n (%)	P value	e n (%)	n (%)	P value	n (%)	n (%)	P vali
Simple carcinomas	16/83 (9.6)	26/83 (24.1)	0.002	12/83 (14.4)	30/83 (36.2)	0.03	22/83 (26.5)	20/83 (24.1)	> 0.05	20/83 (24.1)	22/83 (26.5)	> 0.05
Complex and mixed carcinomas	30/83 (45.8)	11/83 (20.5)		21/83 (25.3)	20/83 (24.1)		24/83 (28.9)	17/83 (20.5)		12/83 (14.4)	29/83 (34.9)	
Total	46	37		33	50		46	37		32	51	
Grade I	11/83 (13.2)	13/83 (15.7)	> 0.05	11/83 (13.2)	13/83 (15.7)	> 0.05	14/83 (16.9)	10/83 (12.0)	> 0.05	10/83 (12.0)	14/83 (16.9)	> 0.05
Grade II	21/83 (25.3)	13/83 (15.7)		16/83 (19.3)	18/83 (21.7)		20/83 (24.1)	14/83 (16.9)		14/83 (16.9)	20/83 (24.1)	
Grade III	14/83 (16.9)	11/83 (13.2)		6/83 (7.2)	19/83 (22.9)		12/83 (14.4)	13/83 (15.7)		8/83 (9.6)	17/83 (20.5)	
Total	46	37		33	50		46	37		32	51	
Dimension <3cm	23/83 (27.8)	18/83 (21.7)	> 0.05	18/83 (21.7)	23/83 (27.8)	> 0.05	23/83 (27.8)	18/83 (21.5)	> 0.05	16/83 (19.3)	25/83 (30.1)	> 0.05
Dimension 3-5cm	14/83 (16.9)	11/83 (13.2)		8/83 (9.6)	17/83 (20.5)		15/83 (18.7)	10/83 (12.0)		10/83 (12.0)	15/83 (18.7)	
Dimension >5cm	9/83 (10.8)	8/83 (9.6)		7/83 (8.4)	10/83 (12.0)		8/83 (9.6)	9/83 (10.8)		6/83 (7.2)	11/83 (13.2)	
Total	46	37		33	50		46	37		32	51	
								0				

Table 3

483
484 Relationships between tumour characteristics and Tirosine Kinase Receptors expressions in stromal
485 cells

	PDGFRa	PDGFRa		PDGFRβ	PDGFRβ		VEGFR-2	VEGFR-2	
	positive	negative		positive	negative		positive	negative	
	n (%)	n (%)	P value	n (%)	n (%)	P value	n (%)	n (%)	P valu
Simple carcinomas	8/83 (9.6)	34/83 (41.0)	> 0.05	5/83 (6.0)	37/83 (44.6)	0.01	9/83 (10.8)	33/83 (39.9)	> 0.05
Complex and mixed carcinomas	10/83 (12.0)	31/83 (37.4)		14/83 (16.9)	27/83 (32.5)		9/83 (10.8)	32/83 (38.5)	
Total	18	65		19	64		18	65	
Grade I	4/83 (4.8)	20/83 (24.1)	> 0.05	5/83 (6.0)	19/83 (22.9)	> 0.05	8/83 (9.6)	16/83 (19.3)	> 0.0:
Grade II	7/83 (8.4)	27/83 (32.6)		11/83 (13.2)	23/83 (27.8)		4/83 (4.8)	30/83 (36.2)	
Grade III	7/83 (8.4)	18/83 (21.7)		3/83 (3.6)	22/83 (26.5)		6/83 (7.2)	19/83 (22.9)	
Total	18	65		19	64		18	65	
Dimension <3cm	7/83 (8.4)	34/83 (41.0)	> 0.05	11/83 (13.2)	30/83 (36.2)	> 0.05	10/83 (12.0)	31/83 (37.4)	> 0.0:
Dimension 3-5cm	8/83 (9.6)	17/83 (20.5)		6/83 (7.2)	19/83 (22.9)		3/83 (3.6)	22/83 (26.5)	
Dimension >5cm	3/83 (3.6)	14/83 (16.9)		2/83 (2.2)	15/83 (18.7)		5/83 (6.0)	12/83 (14.4)	
Total	18	65		19	64		18	65	

https://mc.manuscriptcentral.com/vetrec

1
2
3 4
3 4 5 6 7
6
7
8
9
10
11
12
13
14
15
16
10
10
20
21
$egin{array}{c} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 16\\ 17\\ 18\\ 19\\ 21\\ 223\\ 24\\ 25\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 34\\ 35\\ 37\\ 38\\ 39 \end{array}$
23
24
25
26
27
28
29
30
31
32
33
34
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 51
51 52
ວ∠ 53
53 54
55
56
57
58
59
60

nM, 600 nM, 1 µM, 1,5 µM).

1

488 489	Figure legends
490	Fig. 1. Simple carcinomas. Picture A and B showed a strong cytoplasmic immunolabelling in the
491	neoplastic cells for platelet-derived growth factor receptors (PDGFR)- α and β , respectively. Pictures
492	C and D showed intermediate immunolabelling in the stromal cells for PDGFR α and β ,
493	respectively. Picture E showed a strong cytoplasmic immunolabelling in the neoplastic cells for
494	vascular endothelial growth factor receptor-2 (VEGFR-2) (E) and an intermediate cytoplasmic
495	immunolabelling for CD117 (picture F). Streptavidin-biotin-peroxidase method. Mayer's
496	haematoxylin counterstain. Scale bar 50 μM.
497	
498	Fig. 2. Western Blot analysis of Platelet-derived growth factor receptors (PDGFR)- α and β and
499	Vascular endothelial growth factor receptor-2 expression in normal epithelial mammary cell lines
500	NEM (lane1), and neoplastic cell lines CYPp (lane 2), CYPm (lane 3), CTB (lane 4), CF33 (lane 5),
501	Lilly (lane 6), Chicca (lane 7), Milly (lane 8) cell lines. Specific molecular weight of protein are
502	indicated as Kilodalton (KDa). Alpha Tubulin expression was used as the loading control.
503	
504	Fig. 3: Immunocitochemistry against CD117, PDGFR α , PDGFR β and VEGFR2 on canine
505	mammary carcinoma cell lines. (A) CTB cells stained with CD117 antibody (20X magnification),
506	(B) CypM cells stained with PDGFR β antibody (20X magnification), (C) CypP cells stained with
507	PDGFR α antibody (20X magnification), (D) CTB cells stained with VEGFR2 antibody (20X
508	magnification)
509	
510	Fig. 4. Evaluation of in vitro response to toceranib phosphate for CTB (Fig. 4A), CYPm (Fig. 4B)
511	and Penny (Fig. 4C) cell lines at different time (12 h, 24 h, 48 h) and concentration (150 nM, 300