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Abstract 36 

Control of lichens on stone cultural heritage is mostly achieved by a combination of mechanical 37 

removal with biocide applications. However, there is a lack of scientific evidence on the efficacy of 38 

different biocides on different species, and on the consistency of biocide effects on heritage sites in 39 

different environmental conditions. This results in some uncertainty when conservation 40 

interventions to control lichens are routinely defined on the basis of restoration tradition or 41 

empirical evaluation, without experimental measures of how lichens respond. In this work, we 42 

quantitatively evaluated (a) the efficacy of five commercially-available biocides, applied using a 43 

brush or with a cellulose poultice, against two species (Protoparmeliopsis muralis, Verrucaria 44 

nigrescens), and (b) whether the effects on the two species were consistent, per treatment, across 45 

three Italian heritage sites. Lichen vitality was quantified through analyses of chlorophyll a 46 

fluorescence (ChlaF) and ergosterol content. The results indicated that all the tested biocides, and 47 

their organic solvents, affected the vitality of both the species. However, most of treatments 48 

displayed different efficacy on each species, across the different sites and between brush and 49 

poultice applications. Accordingly, when a conservation intervention to control lichen growth is 50 

planned, biocide treatments need both species- and site-specific calibrations and lichen vitality 51 

should be properly ascertained in situ by monitoring ChlaF parameters (FV/FM and F0) twenty days 52 

after trial biocide applications. 53 

 54 
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1. Introduction 59 

The effects of lichens on stone monuments are nowadays considered a matter of debate, as 60 

researchers are increasingly contributing, and counterposing, evidence for lichen-related 61 

biodeterioration and bioprotection processes (Salvadori and Casanova-Municchia 2016). The need 62 

to remove lichens in all cases may be reasonably questioned, as for example in cases where lichen 63 

colonization accounts for a negligible deterioration effect, shows some bioprotective attributes, 64 

contributes to the aesthetic of the monument and/or represents biodiversity value (Pinna 2014). 65 

Nevertheless, in cultural heritage management a direct relationship between lichens and weathering 66 

is still usually envisaged, and lichen removal is generally planned as component of restoration 67 

interventions (Caneva et al. 2008). 68 

In any cleaning interventions, devitalization of lichens is necessary to avoid them being undesirably 69 

scattered, rather than controlled, by the cleaning actions (Caneva et al. 2008). So far, the application 70 

of biocides has been the most followed approach to kill lichens, although chemical treatments give 71 

rise to concerns about their impact on the environment (e.g. Gromaire et al. 2015) and have already 72 

showed technical limitations (Speranza et al. 2013 with refs therein). Biocide application has indeed 73 

yielded mixed results, including poor treatment response, changes in community dynamics, 74 

persistence of dead thalli, and damage to substrate surfaces (Seaward 2015). Accordingly, several 75 

innovative and promising approaches have been proposed in the last years to substitute for, or 76 

reduce, biocide application, including heat shock treatments (Tretiach et al. 2012), infrared and 77 

ultraviolet laser irradiation (Speranza et al. 2013; Sanz et al. 2015; Pozo et al. 2016), and others, 78 

which still need to be better calibrated on lichens, such as anatase photocatalysis (Fonseca et al. 79 

2010) or enzymatic treatments (Scarpa et al. 2016). Nevertheless, the adoption of these new 80 

techniques is generally limited by experimental time, extent of surfaces to be treated, and, in some 81 

cases, economic constraints, while the use of biocides persists as a routinely adopted approach, with 82 

protocols often based on traditions and empirical evaluations more than on experimental analyses of 83 

their efficacy in each case-study (Caneva et al. 2008). 84 

Research on biocidal effects on lichens has been conducted since the 1970s and 1980s, with 85 

treatment success being mostly empirically defined in situ (Caneva et al. 1996, and references 86 

therein), while standardization of experimental techniques to assess lichen devitalization after 87 

biocide application (i.e. fluorescence microscopy) was established at the beginning of 1990s 88 

(Normal 1994). Conservators have claimed some difficulties in directly testing a range of biocide 89 

and cleaning agents (Schnabel 1991), and have noted the need for comprehensive reviews on 90 

commonly used biocidal materials (e.g. Caneva et al. 1996). However, as a response, lists of 91 

products rather than investigations into their efficacy have been produced, and some products have 92 

become outdated over the years, following the recognition of their toxicity-related environmental 93 

and health hazards (Nugari and Salvadori 2003; European-Commission-Regulation 2007; 94 

SCENIHR 2009). More recent research has considered the biocidal effect(s) of restricted sets of 95 

products (e.g. Tretiach et al. 2007; de los Ríos et al. 2012), in comparison with physical treatments 96 

(e.g. Fonseca et al. 2010; Tretiach et al. 2012) or in combination with other restoration products 97 

(e.g. Pinna et al. 2012). Different approaches to assess the effects of the treatments have been 98 

considered, including microscopical observation of chlorophyll epifluorescence in photobionts 99 

(Nugari et al. 1993), SEM evaluation of the integrity of anatomical structures of both lichen 100 
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partners (Speranza et al. 2012), fluorimetric analyses of biophotonic activity (Bajpai et al. 1992) 101 

and chlorophyll a fluorescence of photobionts (ChlaF) (Tretiach et al. 2008, 2010), electrical 102 

conductivity of thalli (Cuzman et al. 2013) and molecular assessments (e.g. DGGE; Cámara et al. 103 

2011). The diversity of methods used to assess lichen devitalization in these studies makes it hard to 104 

compare results. Moreover, although a species-specific lichen sensitivity to biocides has been 105 

suggested (Alstrup 1992; Nimis and Salvadori 1997), only few researchers have included a focus on 106 

this feature (Tretiach et al. 2007, 2010, 2012). More remarkably, researchers have neglected to 107 

evaluate the in situ reproducibility of devitalization results across different heritage sites, nor have 108 

they clarified if different biocidal approaches, in terms of active principle, preparation solvent 109 

and/or application method, may be more or less suitable against certain species, on certain stone 110 

substrates or under certain macro- and micro-climatic conditions. However, similar information, in 111 

parallel with research on alternative approaches for lichen control, would be of value to optimize 112 

routinely-adopted biocidal application, and, consequently, reduce related environmental 113 

contamination (Scheerer et al. 2009). 114 

In this research, we compared the effects of five commercial biocides, nowadays widely used in 115 

Europe (BiotinR, BiotinT, DesNovo, Lichenicida 464, Preventol RI80), and their application 116 

solvents (water, acetone, White Spirit) on the vitality of two epilithic lichens [Protoparmeliopsis 117 

muralis (Schreb.) M. Choisy and Verrucaria nigrescens Pers.] commonly found on stone cultural 118 

heritage in Europe and beyond (Nimis et al. 1992). The effects of the herbicide glyphosate (Glifene 119 

SL) and of the lichen secondary metabolite usnic acid, having biocidal potential against other 120 

deteriogenic lithobionts (Gazzano et al. 2013), were also assayed. All the products were applied in 121 

situ, with single brush and poultice applications at concentrations following the producers’ 122 

recommended ranges, on lichen thalli growing on sedimentary rocks in three Italian heritage sites 123 

located in different (phyto-)climatic areas (as defined in Nimis and Martellos 2008). The research 124 

did not aim to rank the performance of the different products, as each product was not tested in all 125 

possible concentrations, application methods and treatment cycles. The aims of the study were to 126 

quantify, for a series of biocide treatments, (a) if each approach (i.e. biocide × application method) 127 

showed a similar efficacy against different lichen species, and (b) if efficacy results were consistent, 128 

per species per treatment, between different sites. To accomplish these aims, we examined in each 129 

study site the vitality of lichen thalli before and after the treatments in terms of chlorophyll a 130 

fluorescence (ChlaF) of the photobiont, recognized as an ideal tool for checking the vitality of 131 

photosynthetic organisms, including lichens (Tretiach et al. 2012; Malaspina et al. 2014). 132 

Additional analyses were also, in turn, performed to clarify the lichen response to biocide 133 

treatments, including microscopic assessment of chlorophyll epifluorescence in photobionts and the 134 

assessment of mycobiont vitality in terms of ergosterol content. 135 

 136 

2. Materials and methods 137 

2.1 Sites and lichen species 138 

Biocide applications on lichens were performed, in situ, at three heritage sites distributed in 139 

different (phyto-)climatic areas of Italy: (A) the Roman Archaeological site of Industria [Monteu da 140 

Po, Torino; UTM ED50, N 5001078, E 422890; 170 m], in the dry sub-Mediterranean area; (B) the 141 

Roman Archaeological site of Luni [Ortonovo, La Spezia; UTM ED50, N 4879338, E 581882; 3 142 
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m], in the humid Mediterranean area; (C) the Boboli Gardens [Firenze; UTM ED50, N 4847851, E 143 

680788; 49 m], in the humid sub-Mediterranean area (Fig. S1). Treatments were performed on 144 

mature thalli of the epilithic crustose placodiomorph Protoparmeliopsis muralis (Schreb.) M. 145 

Choisy and the epilithic crustose areolate Verrucaria nigrescens Pers. (Fig. S1), which were 146 

identified following Smith (2009). These two subcosmopolitan species are extremely common both 147 

in urban and natural habitats (Nimis and Martellos 2008), and on stone cultural heritage (Nimis et 148 

al. 1992). In particular, 60 thalli per species for each site were selected and treated: (A) on local 149 

sandstone masonry blocks at Industria, (B) on sandstone (Macigno sandstone from Lunigiana) 150 

blocks, and the adjacent mortar, at the amphitheatre of Luni, and (C) on the sandstone (Pietra 151 

Serena) pavement slabs of the monumental Fontana dell’Isola in the Boboli Gardens, at approx. 50 152 

cm from the fountain water. 153 

2.2 Biocide application 154 

Biocides were applied by a professional restorer (site A) or under his supervision (sites B and C). 155 

Each biocide was prepared following the manufacturer’s instructions (Table 1, including biocide 156 

abbreviations) and applied, (i) using a paint-brush and (ii) with a cellulose poultice, using similar 157 

quantities of biocide and after having moistened the thalli with sprayed water (Fig. S1). The applied 158 

cellulose poultice was kept covered with a cotton fabric for four hours and then gently removed 159 

with a small spatula. After the four hours, all brush- and poultice-treated thalli were gently washed 160 

with water. The solvents recommended for biocide dilution (water, acetone, White Spirit) were also 161 

separately tested. Bottled water with low salt contents was used for all experiments, to avoid any 162 

salt-induced reduction in biocide efficiency (Caneva et al. 1996). Three thallus replicates per 163 

species per biocide per application method were examined. 164 

Daily meteorological data (air temperature, relative humidity, rainfall) for the week preceding and 165 

the three weeks following the biocide application at the three sites (A, October 2015; B, April 2016; 166 

C, May 2016) were obtained from nearby monitoring stations: A, Verolengo station (ARPA 167 

Piemonte 2016), B, Luni station (ARPA Liguria 2016), C, Firenze-Lamma station (ARPA Toscana 168 

2016). 169 

2.3 Lichen vitality measurements 170 

Chlorophyll a fluorescence measurements (ChlaF) were carried out in situ one day before (T0), and 171 

one (T1) and 20 (T20) days after the biocide treatments, using a Handy-PEA fluorimeter (Plant 172 

Efficiency Analyser, Hansatech instruments Ltd., Norfolk, England). Analyses were performed 173 

early in the morning on dark-adapted moistened thalli, previously sprayed with bottled water and 174 

covered overnight with a black cotton fabric. Fifteen minutes before each measurement, thalli were 175 

again sprayed and covered. Five measurements were taken on each thallus, positioning the sensor 176 

head, equipped with three light emitting diodes (LED), at 90° over its surface and avoiding, in the 177 

case of P. muralis, areas covered by apothecia. Chl a fluorescence was induced by a red light (peak 178 

at 650 nm) and data recorded after a saturating light pulse of 1 s (Malaspina et al. 2014). ChlaF 179 

increases from F0, when all the reaction centres (RCs) of Photosystem II (PSII) are open, to FM, 180 

when all the RCs of PSII are closed. The maximum quantum efficiency of PSII, that is FV/FM 181 

(where FV=FM-F0), a temperature-independent parameter of ChlaF emission, was used to check the 182 

vitality of the thalli (Tretiach et al. 2012). 183 
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The analysis of FV/FM was combined with a wider evaluation of the OJIP transient, the polyphasic 184 

transient exhibited by ChlaF when plotted on a logarithmic time scale, and of F0 values. The shape 185 

of the OJIP curves is informative on the structure and function of the photosynthetic apparatus 186 

(mostly related to PSII) (Malaspina et al. 2014), while F0 is related to the chlorophyll contents of 187 

the light harvesting complex (Baruffo and Tretiach 2007). In site B, additional parameters of the 188 

OJIP analysis, including the number of reaction centres (RC), the energy flux trapped by the 189 

reaction centres (TR) and the energy flux dissipated as heat (DI), were also considered as indirectly 190 

informative on the structure and function of the photosynthetic apparatus upon exposure to stress 191 

factors (Malaspina et al. 2014, 2015). All these data were referred to excited cross sections (CS) of 192 

the examined lichen, determined by the area of the thallus subjected to the light impulse emitted by 193 

PEA (Malaspina et al. 2014). 194 

At site A, ChlaF measurements were also performed 180 days after the biocide treatments (T180) 195 

and combined with epifluorescence observations of hand-made cross-sectioned thalli, carried out 196 

under a Nikon Eclipse 300 microscope. Quality and quantity of the fluorescence emitted by 197 

photobiont cells, spatially informative on the vitality of the photobiont layer (e.g. Pinna et al. 2012), 198 

were evaluated, and the data interpreted using an ordinal scale on the relative abundance of viable 199 

(red coloured) and devitalized (appearing white) cells. 200 

At site C, the analysis of ChlaF in the photobiont of P. muralis was combined with analysis of 201 

ergosterol content in the mycobiont. Ergosterol is indeed the main sterol of the mycobiont plasma 202 

membranes and its content is correlated with basal respiration rates and cell membrane integrity 203 

(Sundberg et al. 1999). Analyses were performed as previously described by Vannini et al. (2016). 204 

In brief, thallus fragments (100 mg) were homogenized for 10 min in 99% ethanol, and the extracts 205 

were shaken in the dark at 25 °C for 30 min, then vortexed and centrifuged at 10,000 g for 20 min. 206 

The resulting supernatant was immediately analyzed by HPLC (Hitachi 665A-12 with LC 207 

Controller L-5000) using a Phenomenex C18 column (150 x 4.6 mm2; particle size 5 µm) at a flow 208 

rate 0.8 mL/min and isocratic elution with methanol as mobile phase. Total analysis time was 15 209 

min. Absorbance at 280 nm was measured with a UV detector (Jasco 875/UV). A standard curve 210 

was prepared ranging 1–200 mg ergosterol from Sigma-Aldrich (USA) dissolved in 1 mL of 211 

ethanol. Two replicates were measured for each sample.  212 

2.4 Statistics 213 

Generalized Linear Models (GLMs) were applied for each lichen species to describe the effects of 214 

the treatments on photobiont vitality (FV/FM). For each model we set biocide (water vs. different 215 

biocides), time (T0 vs. T1, T20), application method (brush vs. poultice), and site (site C vs. sites A, 216 

B) as fixed factors. Second level interactions between biocide, time, application method and site 217 

were also considered. GLM analyses were carried out with R (R Development Core Team 2010), 218 

using glmer function of lme4 package (Bates et al. 2014). A factorial ANOVA analysis was 219 

performed to detect significant differences in FV/FM according to the different predictors (biocide, 220 

time, application method, site). Calculations were performed using the software package Statistica 221 

Version 8.0 (StatSoft, Tulsa, OK). 222 

For each study case, significant differences in FV/FM related to time and respect to a threshold 223 

(arbitrarily fixed at FV/FM = 0.15, as discussed in section 4.2) were analyzed by means of ANOVA 224 
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with post-hoc Tukey’s and t-test, respectively, using SYSTAT 10.2 (P<0.05 as significant). For 225 

each study case, decreases of F0 at T1 and T20, with respect to T0, significantly higher than 80%, 226 

were assessed by means of ANOVA with post-hoc t-test (P<0.05 as significant). Data on the other 227 

parameters of the OJIP analysis and ergosterol contents were analyzed by means of ANOVA with 228 

Tukey’s post-hoc test. 229 

 230 

3. Results 231 

GLM tests (Table 2) indicated, for each species, rather uniform FV/FM values before the biocide 232 

treatments. Slightly higher values characterized P. muralis at site A, and lower values occasionally 233 

characterized individuals of V. nigrescens (in particular, the individuals used to assay BR and WS at 234 

site C): however, these values were still within the expected range of variability in viable thalli of 235 

this species (Speranza et al. 2012). When treated with water (control), both species did not show 236 

variations of FV/FM according to time (T0 vs. T1 and T20). Significant differences upon application 237 

of all biocides and organic solvents were evident at T1 and T20 (DN, PV, BT, BR, LI, WS, AC × 238 

T1, T20). UA did not affect FV/FM, while GL only affected P. muralis at T20. Biocide application 239 

with cellulose poultice was more effective than brushing in reducing FV/FM.  240 

For each species, the range of variability observed in the predictor estimates calculated for the 241 

biocide and solvent treatments (at T20: from -0.51 to -0.24 in P. muralis, and from -0.38 to -0.15 in 242 

V. nigrescens) indicated some further differences in their effectiveness. Figures 1 and 2 show FV/FM 243 

values for the two species at T1 and T20, and percentage decrease in F0 values with respect to T0, 244 

respectively. Only in a few cases did the significant decrease of FV/FM with respect to controls 245 

correspond to the complete zeroing of the parameter (i.e. 0.00). However, for both species, all 246 

biocides (DN, PV, BT, BR, LI) and the two organic solvents (WS, AC) were able to induce, at least 247 

in some study cases (application method × site), a decrease in FV/FM below the threshold fixed at 248 

0.15, putatively indicative of the loss of vitality of the photobionts (as discussed in section 4.2). 249 

In P. muralis, the decrease of FV/FM at T1, including some values below 0.15, was associated with a 250 

moderate decrease in F0; while at T20, most FV/FM values below 0.15 were associated with a strong 251 

decrease in F0 (>80% in 82% of cases). In other cases, similarly strong F0 decreases at T20 were 252 

associated with slight signals of FV/FM recovery from T1 to T20 (at site C), and, occasionally, with 253 

minor lowering of FV/FM. 254 

In V. nigrescens, the relationship between FV/FM values below 0.15 and the strong decrease in F0 255 

(>80%) was restricted to a more limited set of cases (mostly the poultice treatments at site A). In 256 

some others, as described for P. muralis, strong decreases in F0 were related to a moderate lowering 257 

of FV/FM or, at site C, to slight signals of recovery. Differently, at site B, values of FV/FM below 258 

0.15 were associated with relatively poor decreases in F0 (30-60%). 259 

OJIP transients (Fig. 3) clarified that in all cases the strong decreases of FV/FM (<0.15) and/or F0 260 

(>80%) reflected a substantial loss of vitality of the photobiont. At site C, those slight increases of 261 

FV/FM from T1 to T20, simulating a partial recovery of both the species (e.g. for BR and LI), 262 

depended on ground noise of ChlaF around zero (Fig. 3C, D). The low percentage decrease of F0 in 263 

V. nigrescens at site B was associated with lower initial (T0) values than in other sites (Fig. 3B). 264 
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In P. muralis thalli which displayed strong decreases of FV/FM (<0.15) and/or F0 (>80%) 265 

parameters, the number of reaction centres (RC0/CS) and the trapped excitons (TR0/CS) dropped 266 

already at T1 and did not recover at T20 (Table S3). The heat dispersion (DI0/CS) increased at T1, 267 

and then remarkably dropped at T20. Other thalli displayed a gradual and less pronounced decrease 268 

of RC0/CS and TR0/CS; they also displayed a relative DI0/CS increase, which, however, was not 269 

followed by dropping at T20. 270 

Thalli of V. nigrescens strongly affected in FV/FM and F0 also showed a fast drop of RC0/CS and 271 

TR0/CS (with the exception of DN samples, for which the parameters dropped at T20) and the 272 

increase of DI0/CS at T1, which however mostly recovered initial low values at T20 (Table S4). In 273 

thalli displaying no or minor variations in FV/FM and F0, parameters RC0/CS, TR0/CS and DI0/CS 274 

were not significantly affected. 275 

Epifluorescence observations run on thalli from site A at T180 also displayed some differences 276 

between the two species in the photobiont response to biocides (Table S5). Thalli of P. muralis 277 

which showed a decrease of FV/FM values below 0.15 did not exhibit any living photobiont cell. By 278 

contrast, in V. nigrescens, even the thalli with FV/FM below 0.15, and a decrease of F0 by 98-99%, 279 

still showed some residual viable cells in the lower part of the photobiont layer. In parallel, for both 280 

the species, analyses carried out at T180 showed that results evaluated at T20 were mostly reliable 281 

indicators of the long-term response of the thalli to the biocide treatments: only in one out of the 40 282 

treatments (AC applied to P. muralis by brush), FV/FM values at T20 and T180 displayed a different 283 

position with respect to the threshold fixed at 0.15. 284 

To evaluate the consistency of treatment effects across the different sites, the strong decreases of 285 

FV/FM (<0.15) and/or F0 (>80%) were considered indicative of the loss of photobiont vitality (while 286 

residual vitality microscopically observed in V. nigrescens was disregarded). At least for some 287 

“biocide × application method” cases, results obtained at the three sites showed differences (Table 288 

3), possibly due to contrasting environmental conditions. A potential influence of meteorological 289 

conditions preceding, during and following the biocide application (Table S6 in Supplementary 290 

Materials) was considered. Biocide application in site C was performed during a rainy day, and 291 

surfaces were provisionally protected with a plastic canopy and a tarpaulin. Precipitation rates in the 292 

weeks preceding and following the biocide application were rather comparable for the three sites, 293 

while air temperature (T) and humidity (RH) showed relatively slight, but significant (ANOVA, 294 

P<0.05) differences, with T in site A ≤ B ≤ C and RH in A ≥ B ≥ C. 295 

Finally, ergosterol content (Fig. 4), although limited to P. muralis at site C, reflected the damage 296 

endured by the lichen mycobiont, and suggested further patterns of variability in the potential 297 

effectiveness of the different biocidal approaches (biocide × application method). Significant 298 

decreases with respect to the water controls were detected for biocides PV, BR and LI and the 299 

organic solvent WS, their effect also depending on the application method. Moreover, a decrease in 300 

ergosterol content was observed for thalli treated with UA when applied with cellulose poultice. 301 

 302 

4. Discussion 303 
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Review of the literature suggested that the same active principle may have different levels of 304 

biocidal performance in relation to different intrinsic (concentrations, solvents, solution pH, 305 

duration of the application) and extrinsic (nature and conservation of the substrate, colonization 306 

extent, microclimate) parameters (Caneva et al. 1996, 2008). In the case of lichens, early empirical 307 

evaluations (see Caneva et al. 1996) have been poorly supported with quantitative comparative 308 

evaluations of intra- and interspecific variability through different case studies. 309 

In this work, we showed the sensitivity of P. muralis and V. nigrescens to treatments with five 310 

widely used biocides, replicated on sandstone surfaces at three heritage sites. Analyses of ChlaF, 311 

quantified as vitality of the photobiont (Tretiach et al. 2010, 2012), demonstrated a significant 312 

efficacy of all products, including biocides and their organic solvents, against both species. 313 

However, the investigation also displayed for each treatment different levels of efficacy against the 314 

two species and/or across the different sites, exposed to slightly different meteorological conditions 315 

in days following the biocide applications, and specific patterns of residual vitality. 316 

4.1 Performance and timing of biocidal applications 317 

The tested products are known to exert different biocidal mechanisms: quaternary ammonium 318 

compounds, including benzalkonium chloride (DN, PV), interfere with biological membranes by 319 

changing their structure and permeability; isothiazolinones (BT, BR, LI) oxidate thiol-containing 320 

cytoplasmic and membrane-bound compounds, yielding metabolic inhibition (Denyer and Stewart 321 

1998). Biocides rapidly (T1) reduced the functionality of the photosynthetic process in both tested 322 

species, while limited effects (T20) were observed for GL on P. muralis, and almost no effect for 323 

UA. In laboratory experiments, the same commercial glyphosate solution, at the same concentration 324 

(3 times higher than the highest suggested dose), determined a zeroing of FV/FM in Xanthoria 325 

parietina (Vannini et al. 2016), suggesting that different lichen species can differently tolerate this 326 

herbicide, which targets a key enzyme (5-enolpyruvyl-shikimate-3-phosphatesynthase, EPSPS) 327 

involved in the production of the aromatic aminoacids (phenylalanine, tyrosine and tryptophan), or 328 

that, alternatively, laboratory conditions may not properly mimic glyphosate applications on stone 329 

materials in situ. UA, which was effective to control the growth of other biodeteriogens, such as 330 

cyanobateria and microcolonial fungi (Gazzano et al. 2013), did not affect the Trebouxia 331 

photobionts of P. muralis, a lichen which produces UA (Smith et al. 2009). No effects of UA were 332 

also observed on the photobiont partners of V. nigrescens, (e.g. Diploshphaera sp.; Thus et al. 333 

2011), which does not secrete lichen secondary metabolites. On the other hand, effects of UA on the 334 

mycobiont of P. muralis suggest a potential role of the secondary metabolite in autoallelopathic 335 

processes, poorly explored for lichens and certainly far from being exploitable to control lichens on 336 

stone cultural heritage. 337 

Remarkably, we observed a significant effect of pure organic solvents (AC, WS) in the inhibition of 338 

photosynthetic processes of both the species. A different AC tolerance of different lichen species 339 

was already known (Solhaug and Gauslaa 2001): in laboratory experiments, the time of immersion 340 

in AC required to zero FV/FM in different lichen species ranged from few hours, compatible to our 341 

field treatments, to hundreds of hours (Solhaug and Gauslaa 2001). A higher level of tolerance was 342 

attributed to Trebouxia-bearing species displaying a high drought resistance, as AC may exert a 343 

negative effect by extracting residual water from the dried thalli (Solhaug and Gauslaa 2001). 344 

However, AC does not easily pass or destroy the membranes when cells are desiccated (Solhaug 345 
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and Gauslaa 2012), while AC was here applied to wet thalli. Accordingly, P. muralis and V. 346 

nigrescens appeared similarly affected by AC, and comparable effects were also observed upon WS 347 

treatments. 348 

Biocides were applied after wetting thalli and during humid seasons (Autumn in site A, Spring in 349 

sites B and C), when significant rain events, as expected in (sub-)Mediterranean areas, similarly 350 

occurred in all the experimental sites, and high values of RH% were generally recorded (see Table 351 

S6). Although seasonal variations are known for FV/FM
 in lichens (Baruffo and Tretiach 2007), 352 

measurements at T0 generally indicated an overall healthy state of thalli before the biocide 353 

application. Effective biocidal effects were already recognizable at T1, in terms of FV/FM, RC0/CS 354 

and TR0/CS decreases, and only for some brush applications of biocides dissolved in water 355 

significant decreases were observed later, from T1 to T20. Increased DI0/CS values at T1 also 356 

indicated a fast biocidal activity, as photobionts rapidly attempted to increase controlled de-357 

excitation processes, as thermal energy dissipation, to avoid oxidative damage related to an affected 358 

electron flow in the photosynthetic apparatus, as reported under other stress condition (Malaspina et 359 

al. 2015). 360 

Since early empirical observations, more noticeable effects of biocides have been recognized when 361 

they were applied to wet thalli or when rain events followed their application, while effects have 362 

also been observed after some months when biocides were applied in arid seasons (Nimis and 363 

Salvadori 1997). When poikilohydric organisms, like lichens, are dehydrated, their structures and 364 

macromolecules are protected by glass-like matrices and can tolerate extreme conditions (Tretiach 365 

et al. 2012; Fernandez-Marin et al. 2013), including biocide application (Alstrup 1992). 366 

Accordingly, the slow-rate effect observed in this study for water-dissolved biocides applied by 367 

brush likely depends on the fact that thalli were more rapidly air-dried than those treated with 368 

poultices and remained active for a shorter period after the treatment. Moreover, water retention by 369 

the porous sandstone lithologies may have contributed to absorb and dilute the brush-applied, 370 

water-dissolved biocides (Caneva et al, 1996), limiting a rapid effect. 371 

The application method did not only influence the timing, but, in general, also the biocide 372 

performance, with the highest efficacy mostly detected for poultice applications being reasonably 373 

explained by an increased contact time between biocide, hydrated thalli, and sandstone substrates 374 

(Nugari and Salvadori 2008; Pinna et al. 2012). This may increase rapid effects (observed at T1), 375 

but also successive ones, by enhancing biocide retention within substrate, and possibly limiting its 376 

washing out under rainy conditions (Young et al. 1995; Caneva et al. 1996; Cameron et al. 1997). In 377 

our work, this was evident for the applications of biocides dissolved in water, while minor 378 

divergence between the effects of brush and poultice applications was detected for those prepared 379 

with organic solvents. Reduced efficacy and recovery were observed when solvents alone were 380 

applied by brushing, likely because of the rapid evaporation of the products. 381 

 382 

4.2 ChlaF measures and specific residual vitality 383 

The effect of different biocides was associated with different persistence of thallus remnants on the 384 

stone surfaces or penetrating structures within the substrate after the mechanical cleaning (de los 385 

Ríos et al. 2012). However, scarce information exists to evaluate whether lichen recolonization 386 
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depends on the arrival of new propagules dispersed by external populations (Favero-Longo et al. 387 

2014; Morando et al. in press), or whether mechanical cleaning enhances the spreading of living 388 

remnants of partially killed thalli, as documented during attempts to remove thalli without previous 389 

devitalization (Seaward 2004, 2015). Cases of recolonization of restored surfaces by lichen 390 

communities different from those occurring before the treatments suggest external inputs 391 

(Nascimbene et al. 2009). Nevertheless, in other cases, the persistence of lichen remnants after 392 

cleaning was correlated with short-term re-increases of lichen cover (e.g. 16 months after the 393 

application of isothiazolones combined with benzalkonium chloride or other active principles, in 394 

Cámara et al. 2011). 395 

In our investigation, the analysis of FV/FM was combined with OJIP transients and F0 variations 396 

with the aim of offering a straightforward information on the death of lichen thalli. A threshold of 397 

FV/FM values reflecting dead photobionts has not been explicitly stated in literature, although dips 398 

below 0.100-0.200 often reflect dead material (e.g. Solhaug and Gauslaa 2001; Speranza et al. 399 

2012; Tretiach et al. 2012). Accordingly, we accounted for a threshold at FV/FM=0.150, strictly 400 

associated with a dropping of the number of reaction centres (RC0/CS) and trapped energy fluxes 401 

(TR0/CS). 402 

An overview on the OJIP shapes at T20, with a focus on the starting base fluorescence of the curve 403 

(F0), combined with the quantification of the FV/FM parameter, helped to check for the residual 404 

vitality of the biocide treated thalli. In particular, a strong % decrease of F0 values (threshold 405 

tentatively fixed at -80%), associated with the flattening of curve and the dropping of RC0/CS and 406 

TR0/CS parameters, appears an additional marker of death. Slight FV/FM recoveries, as those 407 

observed for both the species in site C, appear irrelevant (as related to measuring noises) when 408 

calculated on flat transients with zeroed F0 values. F0 variations are primarily related to chlorophyll 409 

contents of the light harvesting complex (Baruffo and Tretiach 2007), which are fatally or, at least, 410 

severely affected when flat and zeroed curves are calculated.  411 

In the light of these discussed ChlaF parameters, we can finally consider (at least for the poultice 412 

applications) that all biocides, and the organic solvents, were effective in killing both the species at 413 

least in one of the sites (see Table 4). However, P. muralis and V. nigrescens were not 414 

strongly/fatally affected in 14% and 24%, respectively, of poultice applications of biocides and 415 

organic solvents, and displayed different sensitivity to the same treatment (i.e. significant decrease 416 

of FV/FM and/or F0 below the thresholds, or not) in 29% of examined cases (biocide × site; see 417 

Table 3). Moreover, epifluorescence observations carried out at T180 suggested some higher 418 

resistance for V. nigrescens, as some residual healthy photobiont cells were observed in the lower 419 

part of the photobiont layer, even in thalli for which both FV/FM and F0 decreased below the fixed 420 

thresholds. Accordingly, V. nigrescens already showed more resistance to cleaning treatments than 421 

another compared species [Lecidella stigmatea (Ach.) Hertel & Leuckert] after the application of 422 

Biotin R (de los Ríos et al. 2012). Thalli of P. muralis are thicker than those of V. nigrescens, and 423 

also display a thicker cortex. However, the very tightly packed, short-celled hyphae of the 424 

paraplectenchymatous cortex of V. nigrescens, with melanin in the uppermost layers, may 425 

determine a lower permeability with respect to the different cortex type of P. muralis (cone-cortex; 426 

see Büdel and Scheidegger 2008), covered by the hydrophobic, but organic solvent-soluble usnic 427 

acid (Smith 2009). 428 
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Differences across the three sites in the sandstone substrates, possibly related to different physical 429 

and chemical properties as suggested by the extreme variability between and within each sandstone 430 

type (e.g. Franzini et al. 2007; Fratini et al. 2015), may primary account for the efficacy variability 431 

observed for certain treatments. Different porosity, capillary water absorption capacity and mineral 432 

composition of different sandstones can indeed affect the quantity of biocide absorbed by the 433 

substrate and its effective life span in a bioactive form (Young et al. 1995; Cameron et al. 1997). 434 

The substrate chemical composition also influences the performance of some biocides, including 435 

the quaternary ammonium salts (Caneva et al. 1996). In parallel, different meteorological conditions 436 

of each site in the days following the biocide applications could also account for some variability 437 

(Nimis and Salvadori 1997). However, cases of poor efficacy were randomly distributed rather than 438 

clearly related to any of the heritage sites. Relevance of the variability in T, RH, and sandstone 439 

properties between sites on the biocidal mechanism of each product may be hypothesized (Caneva 440 

et al. 1996), but should be tested on a wider set of heritage sites, and is beyond the aim of this work. 441 

Influences of other environmental conditions, including microclimate differences (Caneva et al. 442 

2008), but also biocide-specific population resistances, should be also worth of investigation.  443 

Accordingly, waiting for further research to address reliable models to predict the suitability of a 444 

biocide against certain species in certain environmental conditions, species- and site-specific 445 

calibration of biocidal strategies is necessary. Such calibration would likely exclude the usage of 446 

products, concentrations or application methods which may not show the desirable killing efficacy, 447 

and would strongly reduce the dispersal of fragments with residual vitality during the mechanical 448 

procedures which follow the chemical treatment. If biocides are applied to wet thalli, their efficacy 449 

can be confirmed within few weeks (T20) by ChlaF measurements. Pilot biocide assays appear thus 450 

compatible with the time pressure which often characterizes restoration interventions. On the other 451 

hand, our results highlighted how the different biocides may also differently affect the mycobiont 452 

(as shown by ergosterol content), suggesting the opportunity of conducing controlled experiments 453 

on the potential recovery trends on the medium and long term of both the symbiotic partners and 454 

their joined influence on the recolonization potential of the different lichen species. 455 

 456 

5. Conclusions 457 

On the basis of quantitative ChlaF measurements, our work showed that (a) different biocidal 458 

approaches (product × application method) may affect the vitality of lichens at a heritage site, 459 

however with different efficacy against each species. Moreover, our findings indicate that (b) the 460 

efficacy of a biocidal treatment against a lichen species cannot be assumed to be consistent across 461 

different heritage sites. Such complexity suggests that if a biocide approach is planned to manage 462 

lichens on a stone surface, in situ pilot assays to calibrate biocidal treatments on the particular study 463 

case (species × site) should be run. 464 

 465 
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Tables 626 

Table 1 - Biocides and solvents applied in the experiments 627 

 628 

 629 

630 

Commercial 

product
Producer Active principle Solvent

Recommended 

concentration

Used 

concentration

Water W  -  -  -

Glifene SL GL Chmiberg-Diachem (Caravaggio, Italy) Glyphosate [i.e. N-(phosphonomethyl)glycine; 30-40%] in  water Water 0.003 - 0.011% 0.04%

DesNovo DN Bresciani S.r.l. (Milano, Italy) Benzalkonium chloride (i.e. alkyl dimethyl benzyl ammonium 

chloride; 10%) in water

Water 0.5 - 10% 2.00%

Preventol® RI80 PV Lanxess (Köln, Germany) Benzalkonium chloride (i.e. alkyl dimethyl benzyl ammonium 

chloride; approx. 80%) + isopropyl alcohol (2%) in water

Water 1 - 2% 2.00%

BiotinT BT C.T.S. S.r.l. (Altavilla Vicentina, Italy) N-octyl-isothiazolinone (7.0-10.0%) + didecyl-dimethyl 

ammonium chloride (40.0-60.0%%) + formic acid (2.0-2.5%) + 

isopropyl alcohol (15.0-20.0%)

Water 1 - 3 % 2.00%

White Spirit WS Sinopia S.A.S. (Torino, Italy)  -  -  -  -

BiotinR BR C.T.S. S.r.l. N-octyl-isothiazolinone (3-5%) + 3-iodoprop-2-ynyl N-

butylcarbamate (10-25%) in diethylene glycol butyl ether

White Spirit 

(100%)

3 - 5% 3.00%

Acetone (≥99.9% 

for HPLC)

AC Sigma-Aldrich (St. Luis, MO, USA)  -  -  -

Lichenicida 464 LI Bresciani S.r.l. 4,5-Dichloro-2-octyl-4-isothiazolin-3-one (25.0-<40.0%) +  3-Iodo-

2-propynyl N-butylcarbamate (12.5-<15.0%) + 2-Octyl-4-

isothiazolin-3-one (0.06-<0.10%) + benzyl alcohol (40.0-<60.0%)

Acetone 

(100%)

1 - 2% 2.00%

Usnic Acid UA Sigma-Aldrich Usnic acid [i.e. 2,6-Diacetyl-7,9-dihydroxy-8,9b-

dimethyldibenzofuran-1,3(2H,9bH)-dione; powder]

Acetone      

(1%)

 - 0.0005%
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Table 2 - Summary of the Generalized Linear Models examining the effects of predictors on FV/FM, 631 

written as FV/FM~Biocide × Application method × Site × Time. *, P<0.05; **, P<0.01; ***, 632 

P<0.001. 633 

 634 

  635 

Predictor

Estimate
Standard 

error
t value P value Estimate

Standard 

error
t value P value

(Intercept) 5.02E-01 2.58E-02 19.443 <2E-16 *** 5.91E-01 2.57E-02 22.987 <2E-16 ***

Biocide-AC 5.11E-02 3.53E-02 1.449 0.1481 -4.15E-02 3.54E-02 -1.171 0.24228

Biocide-BR 5.69E-02 3.53E-02 1.612 0.1076 -6.97E-02 3.54E-02 -1.968 0.04958 *

Biocide-BT 2.87E-02 3.53E-02 0.814 0.4159 -3.59E-02 3.54E-02 -1.012 0.31187

Biocide-DN 3.68E-02 3.48E-02 1.056 0.2914 -3.61E-02 3.54E-02 -1.018 0.30907

Biocide-GL 4.87E-02 3.53E-02 1.381 0.168 -4.53E-02 3.54E-02 -1.28 0.20108

Biocide-LI 5.01E-02 3.53E-02 1.419 0.1566 -5.82E-02 3.54E-02 -1.644 0.1007

Biocide-PV -5.92E-05 3.53E-02 -0.002 0.9987 -4.72E-02 3.54E-02 -1.332 0.18346

Biocide-UA 3.57E-02 3.53E-02 1.011 0.3125 -3.65E-02 3.54E-02 -1.031 0.30322

Biocide-WS 3.65E-02 3.53E-02 1.033 0.3019 -9.94E-02 3.54E-02 -2.806 0.00521 **

Time T1 6.66E-02 3.48E-02 1.915 0.056 . 9.99E-03 3.45E-02 0.29 0.77214

Time T20 1.81E-02 3.48E-02 0.52 0.6035 -4.36E-02 3.54E-02 -1.23 0.21914

Application-Poultice -5.95E-02 9.18E-03 -6.487 2.07E-10 *** -7.32E-02 9.35E-03 -7.834 2.76E-14 ***

Site A (Industria) 8.65E-02 1.12E-02 7.724 5.92E-14 *** 7.57E-03 1.14E-02 0.662 0.50804

Site B (Luni) -7.84E-03 1.13E-02 -0.694 0.4883 -1.77E-02 1.15E-02 -1.543 0.12355

Biocide AC : Time T1 -4.61E-01 4.99E-02 -9.238 <2E-16 *** -4.41E-01 5.01E-02 -8.815 <2E-16 ***

Biocide BR : Time T1 -5.99E-01 4.99E-02 -12.001 <2E-16 *** -4.19E-01 5.01E-02 -8.366 5.70E-16 ***

Biocide BT : Time T1 -2.76E-01 4.99E-02 -5.533 5.02E-08 *** -2.76E-01 5.01E-02 -5.516 5.51E-08 ***

Biocide DN : Time T1 -1.97E-01 4.92E-02 -4.004 7.16E-05 *** -1.36E-01 5.01E-02 -2.724 0.00666 **

Biocide GL : Time T1 -9.75E-03 4.99E-02 -0.195 0.8451 -2.34E-02 5.01E-02 -0.467 0.64043

Biocide LI : Time T1 -5.92E-01 4.99E-02 -11.863 <2E-16 *** -4.29E-01 5.01E-02 -8.557 <2E-16 ***

Biocide PV : Time T1 -3.35E-01 4.99E-02 -6.715 4.98E-11 *** -3.05E-01 5.01E-02 -6.091 2.21E-09 ***

Biocide UA : Time T1 2.04E-02 4.99E-02 0.408 0.6831 1.28E-02 5.01E-02 0.256 0.79834

Biocide WS : Time T1 -5.08E-01 4.99E-02 -10.186 <2E-16 *** -2.70E-01 5.01E-02 -5.4 1.03E-07 ***

Biocide AC : Time T20 -3.32E-01 4.99E-02 -6.66 7.07E-11 *** -3.60E-01 5.07E-02 -7.093 4.39E-12 ***

Biocide BR : Time T20 -5.08E-01 4.99E-02 -10.195 <2E-16 *** -2.79E-01 5.07E-02 -5.496 6.14E-08 ***

Biocide BT : Time T20 -2.36E-01 4.99E-02 -4.741 2.76E-06 *** -2.61E-01 5.07E-02 -5.141 3.89E-07 ***

Biocide DN : Time T20 -2.56E-01 4.89E-02 -5.238 2.38E-07 *** -2.61E-01 5.07E-02 -5.137 3.98E-07 ***

Biocide GL : Time T20 -1.12E-01 4.99E-02 -2.239 0.0256 * 2.28E-02 5.07E-02 0.449 0.65339

Biocide LI : Time T20 -4.93E-01 4.99E-02 -9.893 <2E-16 *** -3.79E-01 5.07E-02 -7.466 3.59E-13 ***

Biocide PV : Time T20 -3.37E-01 4.99E-02 -6.748 4.06E-11 *** -3.14E-01 5.07E-02 -6.181 1.30E-09 ***

Biocide UA : Time T20 -3.59E-02 4.99E-02 -0.719 0.4724 4.52E-03 5.07E-02 0.089 0.929

Biocide WS : Time T20 -2.77E-01 4.99E-02 -5.557 4.41E-08 *** -1.54E-01 5.07E-02 -3.043 0.00246 **

P. muralis V. nigrescens
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Table 3 - Synoptic comparison of biocide efficacy at T20 against the photobionts of P. muralis and 636 

V.nigrescens at the three sites. For each species, biocide treatments which determined devitalization 637 

(†,*, or †*) in all the heritage sites are marked in bold. Biocide abbreviations are reported in Table 638 

1. 639 

 640 

=, FV/FM did not significantly decrease with respect to T0, and F0 decreased with respect to T0 < 80% 641 

-, FV/FM significantly decreased with respect to T0, but it was not significantly lower than the threshold fixed at 0.15, 642 

and F0 decreased < 80%  643 

†, FV/FM significantly decreased with respect to T0 and it was significantly lower than 0.15, but F0 decrease < 80% 644 

*, F0 decreased > 80%, but FV/FM was not significantly lower than 0.15  645 

†*, FV/FM was significantly lower than 0.15, and F0 decreased > 80%  646 

  647 

Brush Poultice

P. muralis

Site A 

(Industria)

Site B     

(Luni)

Site C     

(Boboli)

Site A 

(Industria)

Site B     

(Luni)

Site C     

(Boboli)

W  =  =  =  =  =  =
GL  =  -  -  =  =  -
DN  =  -  = *  †  -
PV  *  -  - *  † †*
BT  =  -  = * †* *

WS  -  -  =  - †* *

BR †* †* * †* †* †*

AC *  =  -  = †* *

LI †* †* * †* †* *
UA  =  -  =  -  -  -

V. nigrescens

W  =  =  =  =  -  =
GL  =  =  -  =  =  -
DN  -   †  - †*  -  -

PV  †  =  = †*   † *
BT *  =  = †*   †  -

WS  =  =  = †*   † *
BR  -  = *  =   †   †*

AC †*   †  = †*   †  -
LI †*   † *  †   † *
UA  =  =  -  =  =  =
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Figure captions 648 

Fig. 1 - Maximum quantum efficiency of Photosystem II photochemistry (FV/FM) in thalli of 649 

Protoparmeliopsis muralis (A-F) and Verrucaria nigrescens (G-L) measured in situ (Site A, 650 

Industria; site B, Luni; site C, Boboli) before (T0), and 1 (T1) and 20 (T20) days after the biocide 651 

application with brush or using a cellulose poultice. Biocide abbreviations are reported in Table 1. 652 

For each case study (biocide × application method × site), FV/FM values (mean ±SD) which are 653 

significantly lower than a threshold fixed at 0.15 (horizontal dashed line) are marked (*; ANOVA, 654 

t-test; P<0.05). Overview tables of measures on P. muralis and V. nigrescens, including a statistical 655 

comparison for each study case of FV/FM values at T0, T1 and T20, are reported in Supplementary 656 

Materials S1 and S2, respectively. 657 

 658 
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 659 

  660 
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Fig. 2 - Variation of F0 values (Δ% at T1 and T20 with respect to T0, i.e. 1 and 20 days after the 661 

biocide application with brush or using a cellulose poultice) in thalli of P. muralis (A-F) and V. 662 

nigrescens (G-L) examined in site A, Industria, site B, Luni, and site C, Boboli. Biocide 663 

abbreviations are reported in Table 1. For each case study (biocide × application method × site), 664 

variations of F0 (mean ±SD) which are significantly lower than -80% (horizontal dashed line) are 665 

marked (*; ANOVA, t-test; P<0.05). 666 
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 667 
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Fig. 3 - OJIP fluorescence transients at T20 (exemplifying set) of P. muralis (A) and V. nigrescens 669 

(B) in site B (Luni) after the biocide application with brush, and of P. muralis in site C (Boboli) 670 

after the biocide application with brush (C) or using a cellulose poultice (D). Each transient is the 671 

average of the data obtained for the different replicates (5 measures for 3 thalli) of each case study. 672 

Biocide abbreviations are reported in Table 1. 673 

 674 

 675 

 676 

  677 
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Fig. 4 – Ergosterol content in thalli of P. muralis in site C (Boboli) 20 days after the biocide 678 

application (T20) by brush (light grey columns) or with cellulose poultice (dark grey columns). 679 

Data are expressed as mean value ± SD. For each application method, significant decreases in 680 

ergosterol following the biocide treatments, with respect to contents in thalli sprayed with water 681 

only, are indicated (*, ANOVA, Tukey’s test; P<0.05). Biocide abbreviations are reported in Table 682 

1. 683 

 684 

 685 


