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Pure spinors, intrinsic torsion and curvature in odd dimensions

Arman Taghavi-Chabert
Masaryk University, Faculty of Science, Department of Mathematics and Statistics,

Kotlářská 2, 611 37 Brno, Czech Republic

Abstract

We study the geometric properties of a (2m + 1)-dimensional complex manifold M admitting a
holomorphic reduction of the frame bundle to the structure group P ⊂ Spin(2m+1,C), the stabiliser of
the line spanned by a pure spinor at a point. Geometrically, M is endowed with a holomorphic metric
g, a holomorphic volume form, a spin structure compatible with g, and a holomorphic pure spinor field
ξ up to scale. The defining property of ξ is that it determines an almost null structure, i.e. an m-plane
distribution Nξ along which g is totally degenerate.

We develop a spinor calculus, by means of which we encode the geometric properties of Nξ and of
its rank-(m + 1) orthogonal complement N

⊥

ξ corresponding to the algebraic properties of the intrinsic
torsion of the P -structure. This is the failure of the Levi-Civita connection ∇ of g to be compatible with
the P -structure. In a similar way, we examine the algebraic properties of the curvature of ∇.

Applications to spinorial differential equations are given. Notably, we relate the integrability prop-
erties of Nξ and N

⊥

ξ to the existence of solutions of odd-dimensional versions of the zero-rest-mass field
equation. We give necessary and sufficient conditions for the almost null structure associated to a pure
conformal Killing spinor to be integrable. Finally, we conjecture a Goldberg–Sachs-type theorem on the
existence of a certain class of almost null structures when (M, g) has prescribed curvature.

We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

Keywords: complex Riemannian geometry; pure spinors; distributions; intrinsic torsion; curvature
prescription; spinorial equations

1 Introduction and motivation

The present article is the odd-dimensional counterpart of the author’s work presented in [TC16]. Both
articles work share the same motivations and goals, and the reader should refer to the latter work for further
details.

Let (M, g) be an n-dimensional complex Riemannian manifold, where n = 2m + 1. We shall assume
that (M, g) is also equipped with a global holomorphic volume form and a holomorphic spin structure so
that the structure group of the holomorphic frame bundle is reduced to G := Spin(n,C). We work in the
holomorphic category. We shall be considering a projective pure spinor field [ξ], i.e. a spinor field up to
scale that annihilates a totally null m-plane, or γ-plane, distribution. This will also be referred to as its
associated almost null structure Nξ. The structure group of the frame bundle of (M, g) is reduced to P , the
stabiliser of [ξ] at a point. Denote by g and p the respective Lie algebras of G and P , and by V the standard
representation of g. The main aim of the article is to examine the geometric properties of the P -structure
on (M, g). More specifically, we will

• give a P -invariant decomposition of the space W := V⊗ (g/p) of intrinsic torsions;

• give P -invariant decompositions of the spaces of curvature tensors, in particular, tracefree Ricci tensors,
Cotton-York tensors and Weyl tensors;

• apply these decompositions to the study of almost null structures and pure spinor fields on complex
Riemannian manifolds.
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The methodology will be a synthesis of representation theory and a spinor calculus adapted to the P -
structure. Before we proceed, we first highlight the crucial differences between the odd- and even-dimensional
cases:

• there is only one irreducible spinor representation of G as opposed to two chiral ones – paradoxically,
this makes the spinor calculus more fiddly;

• the stabiliser p of [ξ] induces a |2|-grading on g, rather than a |1|-grading;

• the orthogonal complement N⊥
ξ of Nξ is (m+ 1)-dimensional and contains Nξ, rather than N⊥

ξ = Nξ.

Consequently, one has to encode the properties of both Nξ and N⊥
ξ in terms of differential conditions on

[ξ], although there is some degree of interdependency between Nξ and N⊥
ξ . Making the move from even to

odd dimensions is therefore not always straightforward. A case in point is when Nξ is integrable. In even
dimensions, Nξ would be automatically totally geodetic, but in odd dimensions, this condition is stronger.
In addition, one could have the extra requirement for N⊥

ξ to be also integrable, and or even totally geodetic.
This is particularly relevant to generalisations of the Robinson theorem, which can be strikingly different.

The present article can, if not should, be read in conjunction with [TC16] for comparison and ease of
understanding of the notions introduced in the latter. Indeed, these two papers are broadly ‘mirror images’
of each other: the overall structure is the same in both papers as far as the numbering of the sections is
concerned. For the sake of conciseness, we have not always deemed it necessary to re-establish notations and
conventions.

Structure of the paper: Our spinor calculus will first be developed in section 2. New results include
Propositions 2.6 and 2.9, and Corollary 2.10, which provide simpler alternatives to some of Cartan’s formulae
on pure spinors. Proposition 3.2 in section 3 is concerned with the decomposition of the space of intrinsic
torsions of a P -structure. In the same vein, in section 4, Propositions 4.1, 4.2 and 4.4 give P -invariant
decompositions of the spaces of tracefree Ricci tensors, Cotton-York tensors and Weyl tensors respectively.

Section 5 focuses on the geometric applications. Proposition 5.4 is the geometric articulation of Propo-
sition 3.2. Proposition 5.7, Lemma 5.8 and Proposition 5.11 are concerned with geometric interpretations
of Nξ in terms of ∇[ξ]. Three distinct generalisations of the Robinson theorems for three distinct types of
zero-rest-mass fields are given in Theorems 5.19, 5.20 and 5.21. Applications to conformal Killing spinors are
given in Propositions 5.24, 5.28 and 5.30. Conjecture 5.32 postulates a generalisation of the Goldberg–Sachs
theorem given in [TC12]. Integrability conditions for solutions of the field equations involved are also given
in Propositions 5.12, 5.13, 5.14, 5.17, 5.23 and 5.27 among others.

Appendix A contains useful formulae to characterise tracefree Ricci, Cotton–York and Weyl tensors in
the light of the decompositions given in section 4. A brief discussion of spinor calculus in dimensions three
and five can be found in appendix B. In appendix C, we describe conformal transformations of spinor fields.

2 Spinor calculus

Conventions follow those of [TC16], based on [PR84,PR86]. Further background on spinors can be found in
[Car81,PR86,BT89,HS95,Kop97] and on representation theory in [BE89, ČS09b].

2.1 Clifford algebras and spinor representations

Let V be an n-dimensional complex vector space equipped with a non-degenerate symmetric bilinear form
gab = g(ab) ∈ ⊙2V∗, by means of which we shall identify V with its dual V∗. We choose an orientation,
and denote the Hodge star operator by ⋆. Denote the Clifford algebra of (V, g) by Cℓ(V, g) and the Clifford
multiplication by a dot ·. We recall that Cℓ(V, g) ∼= ∧•V as vector spaces. Henceforth, we assume n = 2m+1.
The spin group G := Spin(2m + 1,C) has a single 2m-dimensional irreducible representation, the spinor
space S of (V, g). We can realise S as follows. We split V as V ∼= N ⊕N∗ ⊕ U where N and N∗ are two
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totally null m-dimensional subspaces of V, dual to each other N∗, and the one-dimensional complement U

is non-null. Then S can be identified with ∧•N as an Cℓ(V, g)-module: for any (v, w, u) ∈ V, the action
of the Clifford algebra on S is given by (v, w, u) · ξ = v ∧ ξ − wyξ + iǫu ξ where i2 = −1 and ǫ = 1 if
ξ ∈ ∧mN⊕ ∧m−2N⊕ ∧m−4N⊕ . . ., and ǫ = −1 if ξ ∈ ∧m−1N⊕ ∧m−3N⊕ ∧m−5N⊕ . . ..

The Clifford algebra can be shown to be isomorphic to a direct sum of two inequivalent copies of the
algebra Mat(2m,C) of 2m × 2m-matrices over C acting on S. Elements of S will carry upstairs upper-case
Roman indices, e.g. ξA, and similarly for elements of its dual S∗, with downstairs indices, e.g. ηA. The
Clifford algebra Cℓ(V, g) is generated by the γ-matrices γ B

aA which satisfy

γ C
(aA γ B

b)C = −gabδBA . (2.1)

Thus, only skew-symmetrised products of γ-matrices count, and we shall make use of the notational short
hand γ B

a1a2...apA
:= γ C1

[a1A
γ C2

a2C1
. . . γ B

ap]Cp
for any p. These realise the linear isomorphism ∧•V ∼=

Cℓ(V, g) ∼= Mat(2m,C)⊕Mat(2m,C), and the two copies of Mat(2m,C) will be identified by Hodge duality.
The spinor space S and its dual S∗ are equipped with non-degenerate bilinear forms, denoted γAB,

with which one can in effect raise or lower spinor indices. In particular, we have bilinear maps γa1...apAB
from S × S to ∧pV for any p. Depending on the values of m and p, these can be either symmetric or
skewsymmetric. Our treatment will be largely dimension independent, and we will in general dispense of
their use. Nonetheless, we shall make use of the following result:

Lemma 2.1 We have

γ B
aA γb1...bpBDγ

D
cC = (−1)m

(

γab1...bpcAC − (p+ 1)γ[a b1...bp−1AC
g bp]c

−p ga[b1 γb2... bp]cAC + p(p+ 1)ga[b1 γb2...bp−1AC
g bp]c

)

.

In particular, γa B
A γb1...bpBDγ

D
aC = (−1)m+p(2p− 2m− 1)γb1...bpAC .

2.2 Null structures and pure spinors

Definition 2.2 A null structure or γ-plane on V is an m-dimensional vector subspace N ⊂ V that is totally
null, ie gabX

aY b = 0 for all Xa, Y a ∈ N.

Let ξA be a non-zero spinor in S, and consider the map ξAa := ξBγ A
aB : V→ S. By (2.1), the kernel of

ξAa : V→ S is totally null.

Definition 2.3 A non-zero spinor ξA is said to be pure if the kernel of ξAa : V→ S is m-dimensional, and
thus defines a null structure.

The projectivisation of the line 〈ξA〉 spanned by a pure spinor ξA will be referred to as a projective pure
spinor [ξA] ∈ PS.

Proposition 2.4 ([Car81]) There is a one-to-one correspondence between projective pure spinors and γ-
planes on (V, g).

Henceforth, ξA will denote a fixed pure spinor. The crucial departure from the even-dimensional case is
that a null structure is contained in its orthogonal complement, that is, ξA induces a filtration

{0} =: V2 ⊂ V1 ⊂ V0 ⊂ V−1 , (2.2)

where V−1 := V, V1 := ker ξAa : V → S and the orthogonal complement V0 of V1 with respect to gab is
(m+ 1)-dimensional. The map ξAa allows us to identify elements of V with elements of S, notably

(

V−1/V1
)

⊗S
m
2 ∼= S

m−2

2 , (V0/V1)⊗S
m
2 ∼= S

m
2 , (V−1/V0)⊗S

m
2 ∼= S

m−2

2 /S
m
2 ,

3



where 〈ξA〉 =: S
m
2 ⊂ S

m−2

2 := im ξAa : V→ S. Dually, we also have

V0 ∼= S
m
2 ⊗

(

S−m
2 /S−m−4

2

)

, V0/V1 ∼= S
m
2 ⊗

(

S−m
2 /S−m−2

2

)

, V1 ∼= S
m
2 ⊗

(

S−m−2

2 /S−m−4

2

)

,

where S−m
2 := S∗, S−m−2

2 := ker ξA : C← S∗ and S−m−4

2 := ker ξAa : V∗ ← S∗. Using (2.1), we can check

that S−m−4

2 ⊂ S−m−2

2 ⊂ S−m
2 . More concretely, we have

Lemma 2.5 Let V a be a non-zero vector in V. Then

• V a is an element of V0 if and only if V a = ξaAvA for some non-zero vA ∈ S−m
2 /S−m−4

2 ;

• V a is an element of V1 if and only if V a = ξaAvA for some non-zero vA ∈ S−m−2

2 /S−m−4

2 .

As a direct consequence, a pure spinor ξA must satisfy ξaAξBa = λ ξAξB for some λ. Contracting each side
by ξcCγ D

cA and a little algebra then leads to λ = −1.

Proposition 2.6 A non-zero spinor ξA is pure if and only if it satisfies

ξaCξDa = −ξCξD . (2.3)

By Lemma 2.1, we can express (2.3) equivalently as the following more familiar algebraic characterisation.

Proposition 2.7 ([Car81]) A non-zero spinor ξA is pure if and only if it satisfies

γa1...apAB ξ
AξB = 0 , for all p < m, p ≡ m,m+ 1 (mod 4),

γAB ξ
AξB = 0 , when m ≡ 0, 3 (mod 4),

γa1...amAB ξ
AξB 6= 0 .

(2.4)

We shall refer to both equations (2.3) and (2.4) as the purity conditions of a spinor ξA. These are vacuous
when m ≤ 2, i.e. all spinors are pure when m ≤ 2.

The only non-vanishing irreducible component of the tensor product ξAξB is thus the m-form φa1...am :=
γa1...amABξ

AξB, which can be seen to annihilate V0. It is null (or simple or decomposable) in the sense that

φa1...am = ξA1
a1
. . . ξAm

am
εA1...Am

∈ ∧mV1 for some εA1...Am
∈ ∧m

(

S−m−2

2 /S−m−4

2

)

. Similarly, its Hodge dual

(∗φ)a1...am+1
∈ ∧m+1V0 annihilates V1 and is represented by some εA1...Am+1

∈ ∧m+1
(

S−m
2 /S−m−4

2

)

.

Proposition 2.8 ([Car81]) Let αA and βA be two spinors not proportional to each other. Then the γ-planes
associated to αA and βA intersect in a totally null (m− k)-plane if and only if

γa1...apABα
AβB = 0 , for all p < m− k,

γABα
AβB 6= 0 ,

γa1...am−kAB
αAβB 6= 0 .

for k = 1, . . .m.

As a consequence of Lemma 2.1, we have, in the special case when k = 1, 2, the equivalent characterisations.

Proposition 2.9 Let αA and βA be two spinors not proportional to each other. Then

• the γ-planes associated to αA and βA intersect in a totally null (m− 1)-plane if and only if

αaAβBa = αAβB − 2 βAαB = −α(AβB) + 3α[AβB] ; (2.5)

4



• the γ-planes associated to αA and βA intersect in a totally null (m− k)-plane where k = 1 or 2, if and
only if

αa(AβB)
a = −α(AβB) . (2.6)

Finally, in the context of our present notation, we conclude

Corollary 2.10 Let ξA be a pure spinor in (V, g) and let S
m−2

2 := im ξAa : V→ S as before. Then

• Any non-zero spinor in S
m−2

2 is pure.

• The γ-planes associated to any two pure spinors in S
m−2

2 intersect in a totally null (m − k)-plane
where k can be either 0 or 1 or 2.

We omit the proof which is essentially the same as in the even-dimensional case and consists in checking the
veracity of the algebraic conditions (2.3), (2.5) and (2.6)

Splitting It is convenient to choose a splitting of the filtration (2.2) as

V = V−1 ⊕V0 ⊕V1 , (2.7)

where V1 := V−1, and Vi are subspaces such that Vi = Vi ⊕Vi+1, each linearly isomorphic to Vi/Vi+1.
Now, V−1 is a γ-plane dual to V1 to which we associate a pure spinor ηA dual to ξA, i.e. V−1 := ker ηaA :
V→ S∗, where ηaA := ηBγ

B
aA . Conversely, any choice of spinor dual to ξA induces a splitting (2.7).

For convenience, we choose ξA and ηA to satisfy ξAηA = − 1
2 , and define

ua := 2 ηaAξ
A , hab := gab + uaub . (2.8)

Then, ua spans V0, and satisfies uaua = −1, uaξAa = ξA and uaηaA = ηA. Further, hab is a non-degenerate
symmetric bilinear form on V1 ⊕V−1, i.e. habu

a = 0, h c
a h

b
c = h b

a , and h a
a = n− 1.

Next, define S−m−2

2

:= {im ηaA : V → S∗} ∩ {ker ξA : C ← S∗}. This is the dual of Sm−2

2

, the

complement of S
m
2 = 〈ξA〉 in S

m−2

2 . Elements of V1 and V−1 must be of the form ξaAvA and ηaAw
A

respectively, for some vA in S−m−2

2

and wA in Sm−2

2

, i.e. vAξ
A = 0 and wAηA = 0.

Finally, we introduce the map

IBA := ηaAξ
aB + ηAξ

B , (2.9)

which can be seen to be the identity element on Sm−2

2

, or dually, on S−m−2

2

. In particular ξAIBA = ηBI
B
A = 0.

2.3 The stabiliser of a projective pure spinor in so(2m+ 1,C) for m > 1

In what follows, the Lie algebra g := so(2m+ 1,C) will be freely identified with ∧2V or ∧2V∗. At this stage,
we also assume m > 1, the case m = 1 being treated briefly in section B.1.

Filtration The filtration (2.2) induces a filtration of vector subspaces there is a filtration

{0} =: g3 ⊂ g2 ⊂ g1 ⊂ g0 ⊂ g−1 ⊂ g−2 := g , (2.10)

on g, where

g−1 := {φab ∈ g : ξa[A ξbBφabξ
C] = 0} , g0 := {φab ∈ g : ξaAξbBφab = 0} ,

g1 := {φab ∈ g : ξa[A φabξ
B] = 0} , g2 := {φab ∈ g : ξaAφab = 0} .

5



The Lie bracket [·, ·] : g×g→ g on g is compatible with this filtration, i.e. [gi, gj ] ⊂ gi+j , with the convention
that gi = {0} for i ≥ 3, and gi = g for all i ≤ −2, i.e. g is a filtered Lie algebra.

Using the useful identities

φabξ
aAξbBγc C

A γ D
cB = −φab

(

ξaCξbD + 4 ξab[C ξD]
)

, φabξ
abAγc C

A ξDc = −φab
(

ξabCξD + 4 ξaCξbD
)

,

(2.11)

or otherwise, one can show φabξ
aAξbB = 0 if and only if φabξ

ab[A ξB] = 0, and conclude:

Proposition 2.11 The Lie subalgebra p := g0 is the stabilizer of [ξA], i.e. φabξ
abA ∝ ξA.

The stabiliser p of [ξA] is a parabolic Lie subalgebra of g [FH91, ČS09b].

Splitting Splitting (2.10) yields a |2|-grading g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 with [gi, gj ] ⊂ gi+j , for all i, j,
with the convention that gi = {0} for all |i| > 2. In relation to (2.7), we have g±2

∼= ∧2V±1, g±1
∼= V0⊗V±1

and g0 ∼= V−1⊗V1. The Lie subalgebra g0 is isomorphic to gl(m,C), and thus splits further as g0 = z0⊕ sl0
where z0 is the center g0 and sl0 = sl(m,C) is the simple part of g0. The center is spanned by the grading
element Eab := −2 ξA[a η b]A , with image in Cℓ(V, g) given by E B

A := − 1
4Eabγ

ab B
A . For consistency with

[TC16], we also set

ωab := Eab = −2 ξA[a η b]A . (2.12)

An element φab of sl0 can then be written as φab = 2 ξA[a η b]Bφ
B

A for some tracefree φ B
A ∈ S−m−2

2

⊗Sm−2

2

in the sense that φ B
A IAB = 0 where IAB is defined by (2.9).

Parabolic Lie subgroups At the group level, we denote by P the stabiliser of [ξA] in G. This is a
parabolic Lie subgroup of G with Lie algebra p. Its Levy decomposition is given by P = G0 ⋉ P+, where
the image G0 in G→ SO(2m+ 1,C) under the covering map is the complex general linear group GL(m,C),
and P+ is the nilpotent Lie group generated by g1 ⊕ g2. All our p- and g0-modules will also be P - and
G0-modules. The spinor calculus developed here is then manifestly P -invariant.

Associated graded vector space We now introduce the associated graded p-module gr(g) =
⊕2

i=−2 gri(g)

where gri(g) = gi/gi+1. Each gri(g) is linear isomorphic to the g0-module gi, and we have a direct sum
decomposition gr0(g) = g00⊕g10, where g00 :=

(

g1 + z0
)

/g1 and g10 :=
(

g1 + sl0
)

/g1. Writing ξAab := ξBγ A
abB :

∧2V→ S and S
m−4

2 := im ξAab : ∧2V→ S, we can define

g
ξΠ

0
0(φ) := ξabAφab ,

g
ξΠ

1
0(φ) := ξa[Aφabξ

B] +
1

n− 1
ξacCφacγ

[A
bC ξB] .

Then g1 + z0 = {φab ∈ g : g
ξΠ

1
0(φ) = 0} and g1 + sl0 = {φab ∈ g : g

ξΠ
0
0(φ) = 0}. For convenience, we also set

g0i := gri(g) for i = ±1,±2.

2.4 Generalisation

As explained in [TC16], the parabolic subalgebra p induces a filtration {Mi} of indecomposable p-modules on
any finite g-module M. We can split the filtration as a direct sum of g0-modules Mi isomorphic to Mi/Mi+1,
on which the grading element E acts diagonalisably with eigenvalue i. Each Mi/Mi+1, respectively Mi, splits

into a direct sum of irreducible p-submodules M
j
i , respectively g0-submodules M̆

j
i , with M

j
i
∼= M̆

j
i as vector

spaces. We record the action of g1 ⊂ p on each M̆
j
i by an arrow as in [TC16].

To deal with the spinor representation S, we define the maps ξAa1...ak := ξBγ A
a1...akB

: ∧kV → S for
k = 1, . . . , 2m+ 1. Then the spinor module S ∼= S∗ admits a P -invariant filtration

S
m
2 ⊂ S

m−2

2 ⊂ . . . ⊂ S−m−2

2 ⊂ S−m
2 := S ,

6



where S
m
2 = 〈ξA〉, S

m−2k
2 := im ξAa1...ak : ∧kV → S, S−m−2

2 = ker ξA : C ← S∗ and S−m−2k−2

2 =

ker ξAa1...ak : ∧kV∗ ← S∗ for k = 1, . . .m. Further, we can choose subspaces Si ⊂ Si such that Si =
Si ⊕Si+1 such that

S = Sm
2
⊕Sm−2

2

⊕ . . .⊕S−m−2

2

⊕S−m
2
.

The grading element Eab in z0 and the spanning element ua of V0 have eigenvalues m−2k
2 and (−1)k re-

specively on Sm−2k
2

. This description is consistent with the identification of S with ∧•N.

2.5 Null Grassmanians

The space of all null structures or γ-planes in (V, g) is the null (or isotropic) Grassmanian Grm(V, g).
Proposition 2.4 allows us to identify Grm(V, g) as the space of projective pure spinors of (V, g). This is
a compact complex subvariety of PS defined by the purity conditions (2.4), and it is isomorphic to the
1
2m(m+ 1)-dimensional homogeneous space G/P . When m = 1, 2, this space is isomorphic to the complex

projective space CP
1
2
m(m+1).

2.6 Real pure spinors

When V is a real (2m + 1)-dimensional vector space equipped with a definite or indefinite non-degenerate
symmetric bilinear form of signature (p, q), the spinor representation is complex and equipped with a real
or quaternionic structure, by means of which a (complex) pure spinor ξ is sent to its complex conjugate ξ,
and correspondingly, its associated (complex) null structure Nξ to its complex conjugate Nξ. In contrast

to even dimensions, the real index r of ξ, being the dimension of Nξ ∩Nξ, can take any integer value from
0 to min(p, q) – see [KT92]. When g is positive definite, r is always 0, and Nξ defines a metric-compatible
CR structure, also referred to, rather inappropriately, as a contact Riemannian structure. When g is of
Lorentzian signature, i.e. (1, 2m) or (2m, 1), r may be 0 or 1. In the latter case, one obtains a Robinson
structure [NT02,Tra02,TC11,TC14]. When g has signature (m,m+ 1) or (m+ 1,m), and r = m, we obtain
a totally real analogue of the above discussion, i.e. ξ, Nξ and the stabiliser P of [ξ] in the connected identity
component of Spin(m,m+ 1) are all real.

3 Decomposition of the intrinsic torsion

Define the p-module W := V ⊗ (g/p), where as before g := so(2m + 1,C), V its standard representation,
and p ⊂ g stabilises a projective pure spinor [ξA]. We assume m > 1, leaving the case m = 1 to appendix B.

Remark 3.1 In what follows, ⊚ denotes the Cartan product, and g0-modules and p-modules are abbreviated
to g0-mod and p-mod respectively.

Proposition 3.2 The p-module W admits a filtration

W0 ⊂W−1 ⊂W−2 ⊂W−3 ,

where

W−3 := V−1 ⊗
(

g−2/g0
)

, W−2 :=
(

V−1 ⊗
(

g−1/g0
))

⊕
(

V0 ⊗
(

g−2/g0
))

,

W−1 :=
(

V0 ⊗
(

g−1/g0
))

⊕
(

V1 ⊗
(

g−2/g0
))

, W0 := V1 ⊗
(

g−1/g0
)

.

The associated graded p-module

gr(W) = gr−3(W)⊕ gr−2(W)⊕ gr−1(W)⊕ gr0(W)

7



decomposes into a direct sum

gr−3(W) ∼= W0
−3 ⊕W1

−3 , gr−2(W) ∼= W0
−2 ⊕W1

−2 ⊕W2
−2 ,

gr−1(W) ∼= W0
−1 ⊕W1

−1 ⊕W2
−1 , gr0(W) ∼= W0

0 ⊕W1
0 ,

of irreducible p-modules as described below

p-mod g0-mod Dimension

W0
−3 ∧3V−1

1
3!m(m− 1)(m− 2)

W1
−3 V−1 ⊚ g−2

1
3m(m2 − 1)

W0
−2 V0 ⊗ g−2

1
2m(m− 1)

W1
−2 ∧2V−1 ⊗V0

1
2m(m− 1)

W2
−2 ⊙2V−1 ⊗V0

1
2m(m+ 1)

p-mod g0-mod Dimension

W0
−1 z0 ⊗V−1 m

W1
−1 sl0 ⊚V−1

1
2m(m+ 1)(m− 2)

W2
−1 V0 ⊗ g−1 m

W0
0 z0 ⊗V0 1

W1
0 sl0 ⊗V0 m2 − 1

with the proviso that W1
−1, W

0
−3 occur only when m > 2.

Further,

W
j
i =

{

Γabcξ
bBξcC ∈Wi : W

ξ Πk
i (Γ) = 0 , for all k 6= j

}

/Wi+1 , i = −3,−2,−1, 0 ,

where

W
ξ Π0

−3(Γ) := Γabcξ
a[AξbBξcCξD] ,

W
ξ Π1

−3(Γ) := Γabcξ
[AξaB]ξb[CξD]ξc[EξF ] + Γabcξ

[CξaD]ξb[AξB]ξc[EξF ] ,

W
ξ Π0

−2(Γ) := Γabcξ
aAξb[BξcCξD] ,

W
ξ Π1

−2(Γ) := Γabcξ
a[AξbcBξC] ,

W
ξ Π2

−2(Γ) := Γabcξ
[AξaB]ξb[CξD]ξcE + Γabcξ

[CξaD]ξb[AξB]ξcE ,

W
ξ Π0

−1(Γ) := 2 γa A
D Γabcξ

bDξc[BξC] − Γabcξ
aAξbc[BξC] ,

W
ξ Π1

−1(Γ) := Γabcξ
b[BξcCξD] +

1

2(m− 1)
γ

[B|
aE

(

2 γd E
F Γdbcξ

bF ξc|C − Γdbcξ
dEξbc|C

)

ξD] ,

W
ξ Π2

−1(Γ) := Γabcξ
aAξbc[BξC] ,

W
ξ Π0

0(Γ) := γa A
C Γabcξ

bcCξB − ξaAΓabcξ
bcB ,

W
ξ Π1

0(Γ) := Γabcξ
bc[BξC] +

1

2m

(

γ
d [B|
A Γdbcξ

bcAξ|C]
a − ξd[B|Γdbcξ

bcAγ
|C]

aA

)

,

where Γabc ∈ V⊗ g. For m = 2, we have made use of the Spin(5,C)-invariant skewsymmetric bilinear forms
γAB and γAB.
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Finally, the p-module gr(W) can be expressed by means of the directed graph

W2
−1

��✸
✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸

//

��✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮✮
✮

W2
−2

""❊
❊❊

❊❊
❊❊

❊

W1
0

==④④④④④④④④

!!❈
❈❈

❈❈
❈❈

❈

��✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰

W1
−3

W1
−1

��✸
✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸

W1
−2

""❊
❊❊

❊❊
❊❊

❊

<<②②②②②②②②

W0
0

II✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓

!!❈
❈❈

❈❈
❈❈

❈
W0

−3

W0
−1

// W0
−2

<<②②②②②②②②

HH✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒✒

with the proviso that W1
−1, W

0
−3 occur only when m > 2. Here, an arrow from W

j
i to Wk

i−1 for some i, j, k

implies that W̆j
i ⊂ g1 · W̆k

i−1 for any choice of irreducible g0-modules W̆
j
i and W̆k

i−1 isomorphic to W
j
i and

Wk
i−1 respectively.

Proof. The idea of the proof is to choose a splitting (2.7) for V, and thus for the filtration on W. We can
then decompose an element Γabc ∈ V⊗ ∧2V, in the obvious notation,

Γabcξ
bBξcC = ξAa Γ BC

A − uaΓBC + ηaAΓABC + 2 ξAa Γ
[B

A: ξC] − 2 uaΓ
[BξC] + 2 ηaAΓA:[BξC] ,

Γabcξ
bcD =

(

ξAa Γ EC
A − uaΓEC + ηaAΓAEC

)

ηcCγ
c D
E − 2

(

ξAa Γ D
A: − uaΓD + ηaAΓA:D

)

+ 2
(

ξAa Γ B
AB − uaΓ B

B + ηaAΓA B
B

)

ξD ,

γa A
D Γabcξ

bcD = 4 Γ C
C: ξ

A + 4 Γ CA
C − 2 ΓA + ηaBγ

a A
C

(

ΓBC − ΓB:C + ΓC:B
)

+ ηbBηcCΓDBCγbc A
D

− 2 Γ B
B ξA + 2 ΓA B

B .

(3.1)

Here, ΓABC := Γabcη
aAξbBξcC , ΓBC := Γabcu

aξbBξcC and Γ BC
A := Γabcη

a
Aξ

bBξcC are skew-symmetric in
their last two indices, and the colon : in Γ C

A: := Γabcη
a
Au

bξcC and ΓA:C := Γabcξ
aAubξcC separates the

1-form index from the Lie algebra indices. Then, elements of the g0-modules W̆
j
i linearly isomorphic to W

j
i

are given by

Γ[ABC] ∈ W̆0
−3 , Γ(AB)C ∈ W̆1

−3 ,

ΓAB ∈ W̆0
−2 , Γ[A:B] ∈ W̆1

−2 , Γ(A:B) ∈ W̆2
−2 ,

Γ BA
B ∈ W̆0

−1 , Γ BC
A − 2

m− 1
I
[B|
A Γ

D|C]
D ∈ W̆1

−1 , ΓA ∈ W̆2
−1 ,

Γ A
A: ∈ W̆0

0 , Γ B
A: −

1

m
IBAΓ C

C: ∈ W̆1
0 .

Details are analogous to the even-dimensional case, and are left to reader. �
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4 Decomposition of the curvature

Assume m > 1, and consider the following g-modules

g-mod Dimension Description

F m(2m+ 3) {Φab ∈ ⊗2V∗ : Φab = Φ(ab) ,Φ
c
c = 0}

A 1
3 (2m− 1)(2m+ 1)(2m+ 3) {Aabc ∈ ⊗3V : Aabc = Aa[bc] , A[abc] = 0 , Aaac = 0}

C 1
3 (m− 1)(m+ 1)(2m+ 1)(2m+ 3) {Cabcd ∈ ⊗4V : Cabcd = C[ab][cd] , C[abc]d = 0 , Cabad = 0}

The tracefree Ricci tensor, Cotton-York tensor and the Weyl tensor of a Levi-Civita connection at a point
belong to F, A and C respectively. We now give p-invariant decompositions of these modules, where p

stabilises a projective pure spinor [ξA] as described in section 2.

4.1 Decomposition of the space of tracefree Ricci tensors

Proposition 4.1 The space F of tracefree symmetric 2-tensors admits a filtration

{0} =: F3 ⊂ F2 ⊂ F1 ⊂ F0 ⊂ F−1 ⊂ F−2 := F ,

of p-modules

Fi := {Φab ∈ F : F
ξΠk

i−1(Φ) = 0 , for all k} , i = −1, 0, 1, 2,

where the maps F
ξΠj

i are defined in appendix A.2.

The associated graded p-module gr(F) =
⊕2

i=−2 gri(F), where gri(F) := Fi/Fi+1, splits into a direct sum

gr±2(F) = F0
±2 , gr±1(F) = F0

±1 , gr0(F) = F0
0 ⊕ F1

0 ,

of irreducible p-modules F
j
i as described below:

p-mod g0-mod Dimension

F0
±2 V±1 ⊚V±1

1
2m(m+ 1)

F0
±1 V0 ⊚V±1 m

p-mod g0-mod Dimension

F0
0 V0 ⊚V0 1

F1
0 V±1 ⊚V∓1 m2 − 1

Further,

F
j
0 := {Φab ∈ F0 : F

ξΠk
0(Φ) = 0 , for k 6= j}/F1 .

Finally, the p-module gr(F) can be expressed by means of the directed graph

F1
0

%%❑
❑❑

❑❑
❑

F0
2

// F0
1

::✉✉✉✉✉✉

$$❏
❏❏

❏❏
❏ F0

−1
// F0

−2

F0
0

99ssssss

where an arrow from F
j
i to Fki−1 for some i, j, k implies that F̆

j
i ⊂ g1 · F̆ki−1 for any choice of irreducible

g0-modules F̆
j
i and F̆ki−1 isomorphic to F

j
i and Fki−1 respectively, or equivalently that ker F

ξΠj
i ⊂ ker F

ξΠk
i−1.
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4.2 Decomposition of the space of Cotton-York tensors

Proposition 4.2 The space A of tensors with Cotton-York symmetries admits a filtration

{0} =: A4 ⊂ A3 ⊂ A2 ⊂ A1 ⊂ A0 ⊂ A−1 ⊂ A−2 ⊂ A−3 := A ,

of p-modules

Ai = {Aabc ∈ A : A
ξ Πk

i−1(A) = 0 , for all k} , i = −2,−1, 0, 1, 2, 3,

where the maps C
ξΠj

i are defined in appendix A.2.

The associated graded p-module gr(A) =
⊕3

i=−3 gri(A), where gri(A) := Ai/Ai+1, splits into a direct sum

gr±3(A) = A0
±3 , gr±2(A) = A0

±2 ⊕ A1
±2 ,

gr±1(A) = A0
±1 ⊕ A1

±1 ⊕ A2
±1 ⊕ A3

±1 , gr0(A) = A0
0 ⊕ A1

0 ⊕ A2
0 ,

of irreducible p-modules A
j
i as described below:

p-mod g0-mod Dimension

A0
±3 V±1 ⊚ g±2

1
3m(m+ 1)(m− 1)

A0
±2 V0 ⊚ g±2

1
2m(m− 1)

A1
±2 V±1 ⊚ g±1

1
2m(m+ 1)

A0
±1 V±1 ⊚ z0 m

A1
±1 V0 ⊚ g±1 m

A2
±1 V∓1 ⊚ g±2

1
2m(m− 2)(m+ 1)

A3
±1 V±1 ⊚ sl0

1
2m(m+ 2)(m− 1)

p-mod g0-mod Dimension

A0
0 V0 ⊚ z0 1

A1
0 V0 ⊚ sl0 (m− 1)(m+ 1)

A2
0 V1 ⊚ g−1 (m− 1)(m+ 1)

with the proviso that when m = 2, A2
±1 does not occur. Further,

A
j
i = {Aabc ∈ Ai : A

ξ Πk
i (A) = 0 , for all k 6= j}/Ai+1 , for |i| ≤ 2.

Finally, the p-module gr(A) can be expressed by means of the directed graph

A3
1

((❘❘
❘❘❘

❘❘❘
A3

−1

((◗◗
◗◗◗

◗◗◗
◗

A1
2

77♣♣♣♣♣♣♣♣♣

��✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹
A1

0 ⊕ A2
0

55❦❦❦❦❦❦❦❦❦

��❀
❀❀

❀❀
❀❀

❀❀
❀❀

❀❀
❀❀

❀❀
❀

))❙❙
❙❙❙

❙❙❙
❙

A1
−2

&&▼▼
▼▼▼

▼

A0
3

::tttttt

$$❏
❏❏

❏❏
❏ A2

1

66♠♠♠♠♠♠♠♠♠
A2

−1

((◗◗
◗◗◗

◗◗◗
◗ A0

−3

A0
2

''◆◆
◆◆◆

◆◆

77♣♣♣♣♣♣♣♣♣
A0

0

))❙❙
❙❙❙

❙❙❙
❙ A0

−2

88rrrrrr

A0
1 ⊕ A1

1

66♠♠♠♠♠♠♠♠

BB✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝
A0

−1 ⊕ A1
−1

66♠♠♠♠♠♠♠

CC✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

where an arrow from A
j
i to Aki−1 for some i, j, k implies that Ă

j
i ⊂ g1 · Ăki−1 for any choice of irreducible

g0-modules Ă
j
i and Ăki−1 isomorphic to A

j
i and Aki−1 respectively.

Remark 4.3 The presence of the isotopic pairs of p-modules {A0
±1,A

1
±1} and {A1

0,A
2
0} in the decomposition

of gr(A) allows us to define further p-submodules whereby there are algebraic relations among them. For
instance, one distinguish {Aabc ∈ A0

1⊕A1
1 : A

ξ Π0
2(A) = 0} and {Aabc ∈ A0

1⊕A1
1 : A

ξ Π1
2(A) = 0}. In particular,

it is certainly not true that ker A
ξ Π1

2 ⊂ kerA
ξ Π0

1 or ker A
ξ Π1

2 ⊂ kerA
ξ Π1

1, and so on. It thus makes it difficult to

characterise the arrows of the diagram in terms of inclusions of kernels of ker A
ξ Πi

j as we did in [TC16].
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4.3 Decomposition of the space of Weyl tensors

Proposition 4.4 The space C of tensors with Weyl symmetries admits a filtration

{0} =: C5 ⊂ C4 ⊂ C3 ⊂ C2 ⊂ C1 ⊂ C0 ⊂ C−1 ⊂ C−2 ⊂ C−3 ⊂ C−4 := C ,

of p-modules

Ci = {Cabcd ∈ C : C
ξΠk

i (C) = 0 , for all k} , i = −3,−2,−1, 0, 1, 2, 3, 4,

where the maps C
ξΠj

i are defined in appendix A.2.

The associated graded p-module gr(C) =
⊕4

i=−4 gri(C), where gri(C) := Ci/Ci+1, splits into a direct sum

gr±4(C) = C0
±4 , gr±3(C) = C0

±3 , gr±2(C) = C0
±2 ⊕ C1

±2 ⊕ C2
±2 ,

gr±1(C) = C0
±1 ⊕ C1

±1 ⊕ C2
±1 , gr0(C) = C0

0 ⊕ C1
0 ⊕ C2

0 ⊕ C3
0 ⊕ C4

0 ,

of irreducible p-modules C
j
i as described below:

p-mod g0-mod Dimension

C0
±4 g±2 ⊚ g±2

1
12m

2(m2 − 1)

C0
±3 g±1 ⊚ g±2

1
3m(m2 − 1)

C0
±2 z0 ⊚ g±2

1
2m(m− 1)

C1
±2 g±1 ⊚ g±1

1
2m(m+ 1)

C2
±2 sl0 ⊚ g±2

1
3m

2(m2 − 4)

C0
±1 z0 ⊚ g±1 m

C1
±1 g∓1 ⊚ g±2

1
2m(m− 2)(m+ 1)

C2
±1 sl0 ⊚ g±1

1
2m(m+ 2)(m− 1)

p-mod g0-mod Dimension

C0
0 z0 ⊚ z0 1

C1
0 sl0 ⊚ z0 m2 − 1

C2
0 g1 ⊚ g−1 m2 − 1

C3
0 g2 ⊚ g−2

1
4m

2(m+ 1)(m− 3)

C4
0 sl0 ⊚ sl0

1
4m

2(m− 1)(m+ 3)

with the proviso that when m = 2, the modules C2
±2, C

1
±1, C

1
0 and C3

0 do not occur, and when m = 3, the
module C3

0 does not occur. Further,

C
j
i = {Cabcd ∈ Ci : C

ξΠk
i (C) = 0 , for all k 6= j}/Ci+1 , for |i| ≤ 3.

Finally, the p-module gr(C) can be expressed by means of the directed graph

C4
0

''❖❖
❖❖❖

❖❖❖

C2
2

��✼
✼✼

✼✼
✼✼

✼✼
✼

// C2
1

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸

77♣♣♣♣♣♣♣♣♣
C2
−1

//

��❀
❀❀

❀❀
❀❀

❀❀
❀

C2
−2

��❀
❀❀

❀❀
❀❀

❀❀
❀

C3
0

''❖❖
❖❖❖

❖❖❖

C0
4

// C0
3

��✼
✼✼

✼✼
✼✼

✼✼
✼

CC✞✞✞✞✞✞✞✞✞✞
// C1

2

CC✞✞✞✞✞✞✞✞✞✞

��✼
✼✼

✼✼
✼✼

✼✼
✼

C1
1

''◆◆
◆◆◆

◆◆

77♣♣♣♣♣♣♣♣♣
C1
−1

AA☎☎☎☎☎☎☎☎☎☎

��❀
❀❀

❀❀
❀❀

❀❀
❀

C1
−2

// C0
−3

// C0
−4

C1
0 ⊕ C2

0

DD✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

''❖❖
❖❖❖

❖❖

77♦♦♦♦♦♦

C0
2

//

CC✞✞✞✞✞✞✞✞✞✞
C0
1

''◆◆
◆◆◆

◆◆◆
◆

77♣♣♣♣♣♣♣
C0
−1

//

AA☎☎☎☎☎☎☎☎☎☎
C0
−2

AA☎☎☎☎☎☎☎☎☎☎

C0
0

77♦♦♦♦♦♦♦♦
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where an arrow from C
j
i to Cki−1 for some i, j, k implies that C̆

j
i ⊂ g1 · C̆ki−1 for any choice of irreducible

g0-modules C̆
j
i and C̆ki−1 isomorphic to C

j
i and Cki−1 respectively.

Remark 4.5 Analogous to Remark 4.3, one can define additional p-submodules from the isotopic pair of p-
modules {C1

0,C
2
0}. For instance, one has {Cabcd ∈ C1

0⊕C2
0 : C

ξΠ0
1(C) = 0} and {Cabcd ∈ C1

0⊕C2
0 : C

ξΠ1
1(C) = 0},

and so on. Again, it is not true that ker C
ξΠ1

1 ⊂ ker C
ξΠ1

0 or ker C
ξΠ1

1 ⊂ ker C
ξΠ2

0. This is why we have

not characterise the arrows of the diagram in terms of inclusions of kernels of ker C
ξΠi

j unlike in [TC16].
Proposition 5.13 in section 5 will illustrate the issue.

5 Differential geometry of pure spinor fields

As before, conventions are taken from [TC16] and references therein. Throughout, (M, g) will denote an
n-dimensional oriented complex Riemannian manifold, where n = 2m+1, with holomorphic tangent denoted
by TM and so on. The holomorphic Levi-Civita connection will be denoted ∇a, the Riemann tensor Rabcd,
the Weyl tensor Cabcd, the Ricci tensor Rab, with tracefree part Φab, and the Ricci scalar R, their relation
being given by

Rabcd = Cabcd +
4

n− 2
Φ[a|[cgd]|b] +

2

n(n− 1)
Rga[cgd]b . (5.1)

In dimension n = 3, the Weyl tensor vanishes identically, i.e. Rabcd = 4 Φ[a|[cgd]|b] + 1
3Rga[cgd]b.

We assume (M, g) to be spin so that the structure group of the frame bundle FM ofM is Spin(2m+1,C).
The connection on the spinor bundle S will also be denoted ∇a, and preserves the Clifford module structure
of S, i.e. ∇aγ D

bC = 0, and recall that 2∇[a∇ b]ξ
A = − 1

4Rabcdγ
cd A
B ξB for any holomorphic spinor field ξA,

and similarly for dual spinor fields.

Remark 5.1 (Notation) As in the previous sections, we shall make use of the short-hand notation ξAa1...ak :=
ξBγ A

a1...akB
for any holomorphic spinor field ξA and any k > 0.

Assumptions 5.2 We work in the holomorphic category throughout, and Γ(·) denotes the space of holo-
morphic sections of a holomorphic fiber bundle. See section 5.3 for extensions to real manifolds.

Henceforth, we assume n > 3 for definiteness, relegating the case n = 3 to appendix B.1. Nonetheless,
many of the statements made in this section still apply by setting Cabcd = 0.

Finally, we stress that the results presented herein are local in nature.

5.1 Projective pure spinor fields

Definition 5.3 An almost null structure N on (M, g) is a rank-m distribution that is totally null, i.e.
g(v, w) = 0 for all sections v, w of N .

An almost null structure N will also be referred to as a γ-plane distribution. The orthogonal complement
N⊥ of N is a rank-(m+ 1) subbundle of TM that contains N . The bundle of all almost null structures on
(M, g) will be denoted Grm(TM, g). We can use the spin structure on (M, g) to identify an almost null
structure as a projective pure spinor field, i.e. a spinor field defined up to scale and which is pure at every
point.

Now, let [ξA] be a holomorphic projective pure spinor field on M, i.e. a (global) holomorphic section of
Grm(TM, g), with associated holomorphic almost null structure Nξ and orthogonal complement N⊥

ξ . This

geometric data is equivalent to a reduction of the structure group of FM to the stabiliser P of [ξA]. The
representation theory of P , or of its Lie algebra p, which we have described in sections 2, 4 and 3, gives
rise to holomorphic vector bundles in the standard way as already explicated in [TC16]. In particular, the
pointwise algebraic degeneracy of the curvature tensors will be expressed in terms of the maps F

ξΠj
i ,

A
ξ Πj

i

and C
ξΠj

i given in Appendix A.2.
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5.1.1 Intrinsic torsion

For simplicity, we choose a holomorphic connection 1-form Γ c
ab for ∇a such that

∇aξA = −1

4
Γabcγ

bc A
B ξB . (5.2)

We can identify the notion of intrinsic torsion [Che53,Ber60,Sal89] of the P -structure defined by [ξA] with

Γabcξ
bBξcC ∈ V−1 ⊗ ∧2Sm−2

2 ,

which, at a point, we identify as an element of the p-module W := V⊗ g/p defined in section 3. When the
intrinsic torsion vanishes, the Levi-Civita connection preserves [ξA], i.e.

∇a[ξA] = 0 , i.e. ∇aξA = αaξ
A , (5.3)

for some 1-form αa. If the intrinsic torsion does not vanish, we can nevertheless investigate the differential
and geometric properties of [ξA], Nξ and N⊥

ξ in terms of the decomposition of W given in Proposition 3.2.
Before we proceed, we compute, from (5.2) and (2.11), the formula

(

∇aξbB
)

ξCb = −
(

∇aξB
)

ξC + Γabcξ
bBξcC

from which we deduce
(

∇aξb(B
)

ξ
C)
b = −

(

∇aξ(B
)

ξC) ,
(

∇aξb[B
)

ξ
C]
b = −

(

∇aξ[B
)

ξC] + Γabcξ
bBξcC ,

(

∇aξb[B
)

ξCb ξ
D] = Γabcξ

b[BξcCξD] ,
(

∇aξb[A
)

ξB]ξ
[C
b ξ

D] = Γabcξ
b[AξB]ξc[CξD] .

The first of these identities is trivially satisfied by virtue of the purity condition. These formulae together
with Proposition 3.2 prove the following result.

Proposition 5.4 Let [ξA] be a holomorphic projective pure spinor field on (M, g), and let Γabcξ
bBξcC ∈W

be its associated intrinsic torsion. Then, pointwise,

• W
ξ Π0

−3(Γ) = 0 if and only if (m > 2 only)

(

ξa[A∇aξbB
)

ξCb ξ
D] = 0 ; (5.4)

• W
ξ Π1

−3(Γ) = 0 if and only if

ξ[A
(

ξaB]∇aξb[C
)

ξD]ξ
[E
b ξF ] + ξ[C

(

ξaD]∇aξb[A
)

ξB]ξ
[E
b ξF ] = 0 ; (5.5)

• W
ξ Π0

−2(Γ) = 0 if and only if

(

ξaA∇aξb[B
)

ξCb ξ
D] = 0 ; (5.6)

• W
ξ Π1

−2(Γ) = 0 if and only if

(

ξa[A∇aξB
)

ξC] = 0 ; (5.7)

• W
ξ Π2

−2(Γ) = 0 if and only if

ξ[A
(

ξaB]∇aξEb
)

ξb[CξD] + ξ[C
(

ξaD]∇aξEb
)

ξb[AξB] = 0 ; (5.8)
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• W
ξ Π0

−1(Γ) = 0 if and only if

(

γa A
D ∇aξbD

)

ξ
[B
b ξC] + 2

(

ξaA∇aξ[B
)

ξC] = 0 ; (5.9)

• W
ξ Π1

−1(Γ) = 0 if and only if (m > 2 only)

(

∇aξb[B
)

ξCb ξ
D] +

1

m− 1
γ

[B
aE

(

(

γc E
F ∇cξbF

)

ξ
|C
b + 2

(

ξbE∇bξ|C
))

ξD] = 0 ; (5.10)

• W
ξ Π2

−1(Γ) = 0 if and only if

(

ξaA∇aξ[B
)

ξC] = 0 ; (5.11)

• W
ξ Π0

0(Γ) = 0 if and only if

(

∇aξaA
)

ξB − ξaA∇aξB = 0 ; (5.12)

• W
ξ Π1

0(Γ) = 0 if and only if

(

∇aξ[B
)

ξC] − 2

m

((

∇bξb[B
)

ξC]
a − ξb[B∇bξC]

a

)

= 0 . (5.13)

These statements are independent of the scale of ξA.

Remark 5.5 The case m = 2, i.e. n = 5, is also dealt separately in Appendix B.2, where the spinor calculus
simplifies the formulae above.

5.1.2 Geometric properties

Definition 5.6 An almost null structure N is said to be integrable if [Γ(N ),Γ(N )] ⊂ Γ(N ), totally geodetic
if ∇XY ∈ Γ(N ) for all X,Y ∈ Γ(N ), co-integrable if [Γ(N⊥),Γ(N⊥)] ⊂ Γ(N⊥), and totally co-geodetic if
∇XY ∈ Γ(N⊥) for all X,Y ∈ Γ(N⊥).

The geometric properties of Nξ and N⊥
ξ can be encoded in terms of differential conditions on [ξA].

Proposition 5.7 Let Nξ be an almost null structure with associated projective pure spinor field [ξA] on
(M, g). Then

• [Γ(Nξ),Γ(Nξ)] ⊂ Γ(N⊥
ξ ) if and only if

ξ[A
(

ξaB]∇aξb[C
)

ξDb ξ
E] = 0 ; (5.14)

• Nξ is integrable if and only if (5.7) holds, i.e.

(

ξa[A∇aξB
)

ξC] = 0 ;

• Nξ is totally geodetic if and only if

(

ξ[AξaB]∇aξ[B
)

ξC] = 0 . (5.15)
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• Nξ is co-integrable if and only if

(

ξa[A∇aξbB]
)

ξ
[C
b ξ

D] = 0 ; (5.16)

• Nξ is integrable and co-integrable if and only if

(

ξaA∇aξb[B
)

ξCb ξ
D] = 0 ; ξ[A

(

ξaB]∇aξ[C
)

ξD] = 0 . (5.17)

• Nξ is totally co-geodetic if and only if (5.11) holds, i.e.

(

ξaA∇aξ[B
)

ξC] = 0 .

Proof. We compute each of the conditions in turn using (5.2) and (3.1) in terms of the connection components.
It then suffices to interpret the vanishing of these components in terms of the Lie bracket relations (since
∇a is torsionfree). More explicitly, these are given by

• ΓABC = 0,

• ΓABC = Γ[A:B] = 0,

• ΓABC = ΓA:B = 0,

• ΓABC = 0 and ΓA:B = ΓAB, (in particular, Γ(A:B) = 0),

• ΓABC = ΓAB = ΓA:B = 0,

• ΓABC = ΓAB = ΓA:B = ΓA = 0,

respectively. �

In contrast to the even-dimensional case, a (co-)integrable almost null structure is not necessarily totally
(co-)geodetic. However, it is straightforward to show, as an consequence of Proposition 5.7, or otherwise:

Lemma 5.8 Let [ξA] be a projective pure spinor. Then (5.11) ⇒ (5.17) ⇒ (5.15) ⇒ (5.7) . Equivalently,
for any almost null structure N ,

• if N is totally co-geodetic, then it is integrable and co-integrable;

• if N is integrable and co-integrable, then it is totally geodetic;

• if N is totally geodetic, then it is integrable.

Definition 5.9 Let [ξA] be a holomorphic projective pure spinor field on (M, g) with almost null structure
Nξ. We say that ξA is geodetic, respectively co-geodetic, if Nξ is totally geodetic, respectively co-geodetic.

Remark 5.10 Proposition 5.4 can also be used to characterise the properties given in Proposition 5.7 in
terms of the intrinsic torsion Γabcξ

bBξcC ∈ W of the P -structure. In particular, (5.14) holds if and only if
Γabcξ

bBξcC ∈W−2. Similarly, (5.17) holds if and only if Γabcξ
bBξcC ∈W−1.
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Conformal invariance With reference to appendix C, we prove

Proposition 5.11 Conditions (5.4), (5.5), (5.6), (5.7), (5.8), (5.10) and (5.16), (and thus (5.14), (5.17))
are conformally invariant.

Suppose that [ξA] satisfies (5.10) and

(

γa A
D ∇aξbD

)

ξ
[B
b ξC] + 2

(

ξaA∇aξ[B
)

ξC] = (n− 3) ξAξ[BξbC]∇bf ;

for some holomorphic function f . Then there exists a conformal rescaling for which [ξA] satisfies

(

∇aξb[B
)

ξCb ξ
D] = 0 , (5.18)

i.e. ∇X ∈ Γ(N⊥
ξ ) for all X ∈ Γ(Nξ), where Nξ is the almost null structure associated to [ξA].

Curvature conditions The integrability conditions for these equations can easily be computed by differ-
entiation a second time and commuting the covariant derivatives.

Proposition 5.12 Let ξA be a geodetic spinor on (M, g), i.e. ξA satisfies (5.15). Then

C
ξΠ0

−3(C) = 0 , i.e. ξ[AξaBξbC]ξcDξdECabcd = 0 .

Suppose further that ξA is co-geodetic, i.e. ξA satisfies (5.11). Then ξaAξbBξcCξdDRabcd = 0 and

F
ξΠ0

−2(Φ) = 0 ⇐⇒ C
ξΠ1

−2(C) = 0 ,

i.e. ξ[AξaB]Φabξ
b[CξD] = 0 if and only if ξaAξbBξcCξdDCabcd = 0.

For a parallel projective pure spinor, we have the following – see also [Gal13] in more generality.

Proposition 5.13 Let [ξA] be a parallel projective pure spinor on (M, g), i.e. ξA satisfies (5.3). Then

ξaAξbBRabcd = 0 , (5.19)

ξaAξbBRab = 0 , (5.20)

ξaAξb[B ξC]Φab = 0 , i.e. F
ξΠ0

−1(Φ) = 0 , (5.21)

ξaAξbBξc[C ξD]Cabcd = 0 i.e. C
ξΠ0

−1(C) = C
ξΠ1

−1(C) = C
ξΠ2

−1(C) = 0 , (5.22)

and in addition, when m > 2,

C
ξΠ1

1(C) = 0 . (5.23)

Further,

R = 0 ⇐⇒ F
ξΠ0

0(Φ) = 0 ⇐⇒ C
ξ Π0

0(C) = 0 , (5.24)

F
ξΠ1

0(Φ) = 0 , ⇐⇒ C
ξΠ1

0(C) = 0 ⇐⇒ C
ξ Π2

0(C) = 0 , (5.25)

F
ξΠ0

1(Φ) = 0 ⇐⇒ C
ξΠ0

1(C) = 0 . (5.26)

Proof. Equations (5.19) and (5.20) are is a direct consequence of (5.3). Equation (5.21) follows from relating
Rab and Φab as Φabξ

aAξbB = 1
n
R ξAξB, from which we also conclude the first part of (5.24). Next, (5.1)
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yields (5.22). To conclude the remaining conditions, we use the definitions of F
ξΠj

i and C
ξΠj

i together with
the computations

ξcCCc[ab]dξ
dD =

2

n− 2
ξ
[C
[a Φb]dξ

dD] +
1

n(n− 1)
R ξC[aξ

D
b] ,

Cbcadξ
bcBξdD = −2(n− 4)

n− 2
ξBξdDΦad −

2

n− 2
ξDξdBΦad −

2(n− 2)

n(n− 1)
RξDa ξ

B +
2

n(n− 1)(n− 2)
RξBa ξ

D ,

Cbcadξ
bc(BξdD) = −2(n− 3)

n− 2

(

ξ(BξdD)Φad +
1

n
R ξ(BξD)

a

)

,

Cbcadξ
adAξbcB = −2

n− 3

n− 2
RξAξB ,

Cabcdξ
bBξcCξdD = − 2

n− 2
ξBξ[CΦadξ

dD] +
2

n(n− 1)(n− 2)
R ξBξ[CξD]

a .

In particular, we note that the dimensions of the irreducible p-invariant parts of the Weyl tensor must match
those of the tracefree Ricci tensor. From the invariant diagram of Proposition 4.4, one sees that condition
(5.23) imposes algebraic conditions on elements of the isotopic modules C1

0 and C2
0, which, by dimension

counting must match F1
0. More explicitly, on referring to the maps C

ξΠj
i , we have

C
ξΠ1

0(C)BCaξ
A = −2

n− 5

n− 3
ξ(BF

ξΠ1
0(Φ) C)A

a , C
ξΠ2

0(C)
A(BC)

d = − 1

n− 2
ξ(BF

ξΠ1
0(Φ)

C)A
d (mod ξBξCαDa ) ,

where we have rewritten F
ξΠ1

0(Φ) := ξAξbBΦba − 1
n−1ξ

bAξcCΦbcγ
B

bC (mod ξAξBαa). Condition (5.25) now
follows. �

5.2 Spinorial differential equations

5.2.1 Scale-dependent geodetic and co-geodetic spinors

A scale-dependent variation of (5.15) is given by ξ[AξaB]∇aξB = 0, with integrability condition C
ξΠ0

−2(C) =

ξ[AξaBξbC]ξcdDCabcd = 0. This is conformally invariant provided ξA has conformal weight −1.
Similarly, a scale-dependent variation of (5.11) is given by ξaA∇aξB = 0, with integrability condi-

tions given by ξaAξbBξcdCRabcd = 0. Further, F
ξΠ0

−1(Φ) = ξ[A ξaB]Φabξ
bC = 0 if and only if C

ξΠ0
−1(C) =

ξaAξbBCabcdξ
cdC = 0

5.2.2 Parallel pure spinors

The next proposition follows from Proposition 5.13.

Proposition 5.14 Let ξA be a parallel pure spinor field on (M, g), i.e. ∇aξA = 0. Then Rabcdξ
cdD = 0,

F
ξΠ0

1(Φ) = Φabξ
bB = 0, R = 0, and C

ξΠ0
2(C) = Cabcdξ

cdD = 0.

5.2.3 Null zero-rest-mass fields

The smaller irreducible part of the covariant derivative of a spinor field ξA leads to the (Weyl-)Dirac equation

γa B
A ∇aξA = 0 , (5.27)

In contrast to even dimensions, this equation admits not one, but two generalisations to irreducible spinor
fields of higher valence.
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Definition 5.15 Let φA1A2...Ak = φ(A1A2...Ak) be a holomorphic spinor field on (M, g) irreducible in the
sense that γa C

A1
γ D
aA2

φA1A2A3...Ak = −φCDA3...Ak . We say that φA1...Ak is a zero-rest-mass (zrm) field if
it satisfies

γ
a (A1

B ∇aφA2...Ak)B = 0 , (5.28)

and a co-zero-rest-mass (co-zrm) field if it satisfies

γ
a [A1

B ∇aφA2]A3...AkB = 0 . (5.29)

Remark 5.16 When k = 2, an irreducible spinor field as above is simply an m-form, or by Hodge duality,
an (m + 1)-form. Equation (5.28), respectively, (5.29) are then equivalent to this m-form to be closed,
respectively, co-closed, hence the use of terminology. This follows from the fact that matrices γ AB

a1...am+1

and γ AB
a1...am−1

are symmetric and skewsymmetric respectively.

Equations (5.28) and (5.29) are conformally invariant provided that φA1...Ak is of conformal weight−m− k
2

and −m− k respectively. In particular, a solution of both (5.28) and (5.29), i.e.

γa A1

B ∇aφA2...AkB = 0 , (5.30)

is not conformally invariant. In the case k = 2, such a solution corresponds to a closed and co-closed m-form.
The integrability condition for the existence of solutions to equations (5.28) and (5.29) of valence greater

than two is given by the following lemma.

Proposition 5.17 For k > 2, let φA1A2...Ak be a solution of (5.28) or (5.29) on (M, g). Then

γa A
C1

γb B
C2

Cabcdγ
cd (C3

D φC4...Ck)C1C2D = 0 . (5.31)

If φA1A2...Ak is a solution of (5.30), then we have in addition

γ
b [A|
C2

Φbdγ
d (C3

D φC4...Ck)C2D|B] = 0 . (5.32)

Proof. Equations (5.28), (5.29) and (5.30) can be rewritten as γa A1

B ∇aφA2...AkB = ψA1A2...Ak , where
ψ(A1A2...Ak) = 0, ψ[A1A2]A3...Ak = 0, and ψA1A2...Ak = 0 respectively. Taking a second covariant derivative
and commuting lead to

(k − 2) γa A
C1

γb B
C2

Cabcdγ
cd (C3

D φC4...Ck)C1C2D − 4(k − 2) γ
b [A|
C2

Pbdγ
d (C3

D φC4...Ck)C2D|B]

= 2 γ
a [A
D ∇aψB]C3C4...CkD .

By the conformal invariance of (5.28) and (5.29), the first term on the LHS must vanish identically, while the
second term on the LHS cancels the RHS, hence (5.31). When (5.30) holds, conformal invariance is broken,
and one has the additional constraint (5.32). �

A spinor field φA1A2...Ak is referred to as null if it takes the form φA1A2...Ak = eψξA1ξA2 . . . ξAk for some
holomorphic pure spinor field ξA, and holomorphic function ψ. Specialising Proposition 5.17 yields

Corollary 5.18 For k > 2, suppose that φA1A2...Ak := eψξA1ξA2 . . . ξAk is a solution of (5.28) or (5.29) on
(M, g). Then

C
ξΠ0

−1(C) = 0 , i.e. ξaAξaBCabcdξ
cdC = 0 , (5.33)

Further, if φA1A2...Ak is a solution of (5.30), then we have in addition

F
ξΠ0

−1(Φ) = 0 , i.e. ξaAξb[BΦabξ
C] = 0 . (5.34)
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The relation between null solutions of the zrm-field equation and the existence of foliating spinors is
known as the Robinson theorem [Rob61] in four dimensions, and was later generalised to even dimensions
in [HM88]. Here, we give odd-dimensional versions of the theorem.

Theorem 5.19 (Robinson theorem for zrm fields) Let ξA be a holomorphic pure spinor field on (M, g)
with almost null structureNξ. Let ψ be a holomorphic function and suppose that φA1A2...Ak := eψξA1ξA2 . . . ξAk

satisfies the zrm field equation (5.28). Then locally, ξA satisfies

ξ[A
(

ξaB]∇aξ[C
)

ξD] + ξ[C
(

ξaD]∇aξ[A
)

ξB] = 0 , (5.35)

(

ξa[A∇aξbB]
)

ξ
[C
b ξD] − k − 2

2k

(

ξ[A
(

ξaB]∇aξbC
)

ξDb + ξ[A
(

ξaB]∇aξC
)

ξD
)

= 0 . (5.36)

In particular, [Γ(Nξ),Γ(Nξ)] ⊂ Γ(N⊥
ξ ). When k = 2, ξA locally satisfies (5.16), i.e. Nξ is co-integrable.

Suppose that ξA satisfies (5.16), i.e. Nξ is co-integrable. Then locally there exists a holomorphic func-
tion ψ such that the spinor field φAB := eψξAξB satisfies (5.28). There is the freedom of adding to ψ a
holomorphic function constant along the leaves of N⊥

ξ .

Proof. For any φA1A2...Ak := eψξA1ξA2 . . . ξAk , we have, in regions where φA1A2...Ak does not vanish,

γa A1

B ∇aφA2...AkB = eψ
(

ξA2 . . . ξAkξaA1∇aψ + (k − 1)
(

ξaA1∇aξ(A2

)

ξA3 . . . ξAk) +
(

∇aξaA1
)

ξA2 . . . ξAk

)

.

(5.37)

If φA1...Ak satisfies (5.28), then we have

0 = ξ(A2ξA3 . . . ξAkξaA1)∇aψ + (k − 1)
(

ξa(A1∇aξA2

)

ξA3 . . . ξAk) +
(

∇aξa(A1

)

ξA2ξA3 . . . ξAk) . (5.38)

Tensoring with ξBξC and skewing over A1B and A2C lead to (5.35). Working in the splitting 2.7 with a
choice of spinor ηA dual to ξA, and using (3.1), this implies Γ(B:C) = ΓABC = 0, i.e. ξA satisfies (5.14).
Expanding (5.38) now yields

0 =

(

−1

4

(

k ΓBC − 2 ΓB:C
)

ηaBγ
a (A1

C + ψ(A1

)

ξA2ξA3 . . . ξAk) ,

for some ψA ∈ S
m−2

2 . Since the first term on the RHS lies in Sm−4

2

, we must have k ΓBC = 2 ΓB:C, i.e.

(5.36) holds. When k = 2, (5.36) reduces to (5.16).
For the converse when k = 2, we follow the geometrical proof given in [Eas95,MHK95]. Suppose that ξA

satisfies (5.16), i.e. Nξ is co-integrable. Then, locally, M is fibered over the leaf space L of N⊥
ξ . Choose a

holomorphic section φ of the tautological line bundle ∧mT∗L of L. Then, φ is clearly closed. Its pull-back to
M must be orthogonal to each leaf of the foliation, i.e. it must be of the form φAB := φa1...amγ

a1...amAB =
eψξAξB for some holomorphic function ψ. Further, since the exterior derivative commutes with the pull-back,
φ is also closed, i.e. φAB satisfy (5.28).

Finally, in both cases, adding any holomorphic function constant along the leaves of N⊥
ξ to ψ, i.e.

annihilated by ξaA∇a, leaves the relevant field equations unchanged. �

Theorem 5.20 (Robinson theorem for co-zrm fields) Let ξA be a holomorphic pure spinor field on
(M, g) with almost null structure Nξ. Let ψ be a holomorphic function and suppose that φA1A2...Ak :=
eψξA1ξA2 . . . ξAk satisfies the co-zrm field equation (5.29). Then locally ξA satisfies (5.7), i.e. Nξ is integrable.
Further, when k > 2, ξA satisfies (5.15), i.e. Nξ is totally geodetic.

Suppose that ξA satisfies (5.7), i.e. Nξ is integrable. Then locally there exists a holomorphic function
ψ such that the pure spinor field φAB = eψξAξB satisfies (5.29). Further, if ξA satisfies (5.15), i.e. Nξ is
totally geodetic, and the curvature condition (5.33), then locally, for every k > 2, there exists a holomorphic
function ψ such that the spinor field φA1A2...Ak = eψξA1ξA2 . . . ξAk satisfies (5.29). In both cases, there is
the freedom of adding to ψ a holomorphic function constant along the leaves of Nξ.
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Proof. For k ≥ 2, if φA1...Ak satisfies (5.29), then equation (5.37) becomes

0 = ξA3 . . . ξAkξ[A2ξaA1]∇aψ +
(

ξa[A1∇aξA2]
)

ξA3 . . . ξAk

+ (k − 2)
(

ξ[A2ξaA1]∇aξ(A3

)

ξA4 . . . ξAk) +
(

∇aξa[A1

)

ξA2]ξA3 . . . ξAk . (5.39)

Then, tensoring with ξB and skewing over A1A2B yield (5.7), i.e. Nξ is integrable. When k > 2, one can
also tensor with ξB and skew over A3B, and conclude (5.15), i.e. Nξ is totally geodetic.

For the converse, the case k = 2 is similar to the proof of Theorem 5.19 except that one obtains a closed
(m + 1)-form, which is Hodge dual to a co-closed m-form. So we focus on the case k > 2 and assume that
condition (5.15) holds. This is equivalent to

ξaA∇aξB = ξAAB + ξABB + C ξAξB +DAξB , ∇aξaA = E ξA + FA −BA +AB + C ξA +DA , (5.40)

for some functions C, E, spinors BA, DA, FA in S
m−2

2 = im ξAa , and AA in S
m−4

2 im ξAab. We want to show
that locally there exists a holomorphic function ψ such that (5.39) holds, i.e.

ξ[AξaB]∇aψ = ξa[A∇aξB] +
(

∇aξa[A
)

ξB] − (k − 2) ξ[ADB] = ξ[A
(

2BB] − kDB] − FB]
)

=: ξ[AψB] .

(5.41)

Differentiating the above equation with respect to ξ[AξaB]∇a, i.e. along Nξ, yields the integrability condition

ξ[ADBψC] = ξ[AξaB∇aψC] . (5.42)

We expand the RHS of (5.42) using the expression (5.41) for ψA:

ξ[AξaB∇aψC] = −ξa[A∇a
(

ξBψC]
)

+
(

ξa[A∇aξB
)

ψC]

= −ξa[A∇a
(

ξbB∇bξC]
)

− ξa[A∇a
(

(

∇bξbB
)

ξC]
)

+ (k − 2)ξa[A∇a
(

ξBDC]
)

+
(

ξa[A∇aξB
)

ψC] .

We compute each term in turn using the assumption (5.33). For the third term, we find

ξa[A∇a
(

ξBDC]
)

ξD = ξa[A∇a
(

ξBDC]ξD
)

−
(

ξa[A|∇aξD
)

ξ|BDC] = ξa[A∇a
(

ξBξbC]∇bξD
)

=
(

ξa[A∇aξB
)(

ξbC]∇bξD
)

− ξ[A
(

ξaB∇aξbC]
)

∇bξD −
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘

1

8
ξ[AξaBξbC]Cabcdξ

cdD .

For the second term, we have

ξa[A∇a
(

(

∇bξbB
)

ξC]
)

=
(

ξa[A∇a∇bξbB
)

ξC] −
(

ξa[A∇aξB
)

∇bξbC]

=
(

ξa[A∇b∇aξbB
)

ξC] +
1

4
ξa[A|Rabcdξ

cdDγ
b |B
D ξC] −

(

ξa[A∇aξB
)

∇bξbC]

= ∇b
(

ξa[A∇aξbB
)

ξC] −
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭

(

∇bξa[A
)

(

∇aξbB
)

ξC] −
✘
✘
✘
✘
✘
✘
✘1

2
ξa[ARabξ

BξC] −
(

ξa[A∇aξB
)

∇bξbC]

= ∇a
((

ξb[A∇bξaB
)

ξC]
)

−
(

ξa[A∇aξbB
)

∇bξC] −
(

ξa[A∇aξB
)

∇bξbC]

while the first term simply becomes

ξa[A∇a
(

ξbB∇bξC]
)

=
(

ξa[A∇aξbB
)

∇bξC] −
✘
✘
✘
✘
✘
✘
✘
✘
✘1

8
ξa[AξbBCabcdξ

cdC] ,

The last step is to use (5.40) and (5.41) to express the covariant derivative of ξA in all these expressions
in terms of ξA, AA, BA, C, DA, E and FA. Thus, we get ξa[A∇a

(

ξBDC]
)

= −ξ[ADB
(

AC] +BC]
)

and
similarly for the other terms. Applying (5.41) to the LHS of (5.42) reveals that (5.42) is indeed satisfied.

Finally, in both cases, adding any holomorphic function constant along the leaves of Nξ to ψ, i.e. anni-
hilated by ξ[AξaB]∇a, leaves the relevant field equations unchanged. �

We omit the proof of the following theorem, which follows roughly the one given in [HM88].

21



Theorem 5.21 (Non-conformally invariant Robinson theorem) Let ξA be a holomorphic pure spinor
field on (M, g) with almost null structure Nξ. Let ψ be a holomorphic function and suppose that φA1A2...Ak :=
eψξA1ξA2 . . . ξAk is both a zrm field and a co-zrm field, i.e. φA1A2...Ak satisfies (5.30). Then locally ξA satisfies
(5.11), i.e. Nξ is totally co-geodetic.

Suppose that ξA satisfies (5.11), i.e. Nξ is totally co-geodetic. Then locally there exists a holomor-
phic function ψ such that φAB := eψξAξB satisfies (5.30). Suppose further that ξA satisfies the curvature
conditions (5.33) and (5.34). Then, for every k > 2, there exists a holomorphic function ψ such that
φA1A2...Ak := eψξA1ξA2 . . . ξAk satisfies (5.30). In both cases, there is the freedom of adding to ψ a holomor-
phic function constant along the leaves of N⊥

ξ .

Remark 5.22 In flat even-dimensional space, the Robinson theorem is often used in conjunction with the
Kerr theorem [KS09, Pen67, HM88], by means of which one (locally) generates null structures in terms
of geometric data in a ‘twistor space’. It is interesting to note that one can also distinguish three odd-
dimensional counterparts of the Kerr theorem as presented in [TC17] depending the various ‘degrees’ of
integrability of an almost null structure.

5.2.4 Conformal Killing spinor

Complementary to (5.27), one defines the twistor equation

∇aξA +
1√
2
γ A
aB ζB = 0 , (5.43)

for any holomorphic spinor field ξA. Here, (5.43) determines ζB =
√
2
n
γa B
A ∇aξA. A solution ξA will be

referred to as a conformal Killing spinor or twistor-spinor. The spinor field ζA can be shown to satisfy

∇aζB +
1√
2

Pabγ
b B
A ξA = 0 , (5.44)

where Pab := 1
2−nΦab −R 1

2n(n−1)gab is the Rho or Schouten tensor (see Appendix C). Equations (5.43) and

(5.44) are conformally invariant provided that ξA and ζA transform as

ξA 7→ ξ̂A = ξA , ζA 7→ ζ̂A = Ω−1

(

ζA +
1√
2

Υaξ
aA

)

. (5.45)

The equivalence class of pairs of spinors (ξA, ζA) ∼ (ξ̂A, ζ̂A) related by (5.45) can be thought of as a section
(ξA, ζA) of the local twistor bundle [PR86,BEG94] or spin tractor bundle [HS11], and we shall refer to such
a section as a tractor-spinor. These are spinors for the group Spin(2m+ 3,C). Tracing (5.44) yields

∇aζaB = − 1

2
√

2(n− 1)
RξB . (5.46)

The integrability condition for the existence of a conformal Killing spinor is well-known, see e.g. [BJ10].
Here, we restate it in the context of pure spinor fields.

Proposition 5.23 Let ξA be a pure conformal Killing spinor on (M, g) with ζB :=
√
2
n
γa B
A ∇aξA. Then

Cabcdξ
cdD = 0 , i.e. C

ξΠ0
2(C) = 0 ,

Cabcdζ
bcC − 2

√
2Acabξ

cE = 0 ,

Acabξ
cAξabB = 0 , i.e. A

ξ Π0
0(A) = 0 ,

(5.47)

where Aabc := 2∇[bPc]a is the Cotton-York tensor (see appendix C).
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Proposition 5.24 Let ξA be a pure conformal Killing spinor on (M, g) with almost null structure Nξ. Set

ζB :=
√
2
n
γa B
A ∇aξA. Then ξA satisfies (5.8), i.e.

ξ[A
(

ξaB]∇aξEb
)

ξb[CξD] + ξ[C
(

ξaD]∇aξEb
)

ξb[AξB] = 0 .

Further, ξA satisfies (5.17), i.e. Nξ is integrable and co-integrable, if and only if

ζaAζBa = −ζAζB , ζaAξBa = ζAξB − 2 ξAζB , (5.48)

i.e. ζA, if non-zero, is pure and its almost null structure Nζ intersects Nξ in a totally null plane of dimension
m− 1 or m at every point.

Suppose that ξA satisfies (5.17) so that ζA satisfies (5.48). Then

(

ζa[A∇aζbB
)

ζCb ζ
D] = 0 . (5.49)

Proof. To prove that ξA satisfies (5.8), it suffices to contract equation (5.43) with ξaA and γb C
D ξAb . We find

(

ξaA∇aξbB
)

ξCb +
1√
2

(

ξaAζBabξ
bC + ζBξAξC

)

= 0 .

The second term is skew-symmetric in AC. Therefore, symmetrising over AC yields (5.8).
Next, suppose that ξA satisfies (5.17), which is equivalent to

ξaA∇aξB = − 1√
2

(

ξAαB + βAξB
)

∈
(

S
m
2 ⊗S

m−2

2

)

⊕
(

S
m−2

2 ⊗S
m
2

)

at every point – here S
m
2 = 〈ξA〉 and S

m−2

2 = im ξAa . By (5.43), the LHS is − 1√
2
ξaAζBa and must lie in the

same module as the RHS. This in particular means that ξA and ζA must satisfy (5.48) – checking that indeed
αA = − 1

2β
A = ζA can be done by aplying (2.9). The converse, that (5.48) implies (5.17), is immediate.

Finally, assume ξA satisfies (5.17) so that (5.48) holds. Contracting equation (5.44) with ζaA and γb C
D ζAb

leads to

(

ζaA∇aζbB
)

ζCb −
1√
2
ζaAPabξ

bBζC + 2
√

2 ζaAPabζ
b[BξC] = 0 ,

and the result (5.49) follows by symmetry considerations. �

Remark 5.25 Using (5.45), one checks that the statements of Proposition 5.24 are conformally invariant.
Further, the condition that the conformal Killing spinor ξA be pure and ζA satisfy (5.48) is equivalent

to the corresponding tractor-spinor (ξA, ζA) being a pure section of the local twistor bundle, i.e. it is a pure
spinor for Spin(2m+ 3,C). See [HM88,TC17].

Example 5.26 Using the method of equivalence, Cartan [Car10] showed how to encode the invariance
properties of certain ODEs of Monge type in terms of a (2, 3, 5)-distribution, i.e. a rank-2 distribution N
on a five-dimensional smooth manifold, that bracket-generates the tangent bundle. This is more invariantly
expressed as a G2-principal bundle equipped with a Cartan connection. In [Nur05], Nurowski associates to
this (2, 3, 5)-distribution a five-dimensional split-signature conformal structure, with respect to which N is
totally null, with orthogonal complement [N ,N ]. The general theory, expounded in the language of parabolic
geometries, is given in [ČS09,HS09], more particularly, in [HS11], where it is shown how such manifolds are
characterised by the existence of a real conformal Killing spinor, generic in the sense that ξAζA 6= 0. In
five dimensions, this is consistent since (5.8) implies (5.14). This example works equally in the holomorphic
category.

23



Killing spinors A holomorphic spinor field ξA that is both a solution to the twistor equation (5.43) and
an eigenspinor of the Dirac operator, i.e. γa C

B ∇aξB = λ ξC for some holomorphic function λ on M, is
known as a Killing spinor. Otherwise put, ξA satisfies the Killing equation

∇aξA + λ
1

n
ξAa = 0 . (5.50)

That this equation is not conformally invariant is reflected in the geometric properties of its solutions. In
particular, as a special case of (5.43), (5.44), (5.46) and (5.47) with ζA = λ ξA, we prove:

Proposition 5.27 Let ξA be a pure Killing spinor on (M, g) with almost null structure Nξ. Then

C
ξΠ0

2(C) = 0 , i.e. Cabcdξ
cdD = 0 ,

A
ξ Π0

2(A) = A
ξ Π1

2(A) = 0 i.e. ξaAAabc = 0 ,

F
ξΠ1

0(Φ) = 0 .

Further, its eigenfunction λ satisfies ξaA∇aλ = −
(

λ2 + n
4(n−1)R

)

ξA, and is thus constant along Nξ.

The following proposition is straightforward.

Proposition 5.28 Let ξA be a pure conformal Killing spinor on (M, g) with almost null structure Nξ. Set

ζA :=
√
2
n
∇aξaA. Then ξA satisfies (5.11), i.e. Nξ is totally co-geodetic, if and only if ξ[AζB] = 0, i.e. ξA is

a Killing spinor. This being the case, we have further
(

∇aξb[A
)

ξBb ξ
C] = 0.

Remark 5.29 The gist of Propositions 5.24 and 5.28 is the filtration of p-modules S
m
2 ⊂ S

m−2

2 ⊂ S
m−4

2 .
The spinor ζA belonging to one of these submodules determines the geometric property of Nξ.

The following result is analogous to the one given in even dimensions in [HSŠ+16].

Proposition 5.30 Let ξA be a pure conformal Killing spinor whose associated null structure Nξ is integrable
and co-integrable. Then, locally, there exists a conformal rescaling such that ξA is parallel, up to the freedom
of adding to such a conformal rescaling any holomorphic function constant along the leaves of N⊥

ξ .

Proof. We assume thatNξ is integrable and co-integrable so that by Proposition 5.24, ξA and ζA :=
√
2
n
∇aξaA

satisfy (5.48). In particular, ζA ∈ im ξAa . We must apply the transformation (5.45) to find a holomorphic

conformal factor Ω such that ζ̂A = 0. First, we show that locally one can always find a holomorphic function
φ such that ξ[AζB] = − 1√

2
ξ[AξaB]∇aφ, which follows from the integrability of Nξ, the twistor equation (5.43)

and its prolongation (5.44). This yields a conformal factor such that ξA is a solution of the Killing spinor
equation (5.50). One can then find a holomorphic function ψ such that λ ξA := ξaA∇aψ, which yields a
conformal factor that turns our Killing spinor into a parallel spinor. There is the freedom of adding to the
scale a smooth function constant along N⊥

ξ . �

A similar result is given in [Lis13].

5.2.5 Relation to the Goldberg-Sachs theorem

In four dimensions, the Goldberg-Sachs theorem [GS09] gives a relation between the existence of integrable
null structures and degeneracy conditions on the Weyl curvature – for generalisations, see [GHN10]. A
‘coarse’ higher-dimensional generalisation is given in [TC12], which can be formulated in the following way
in odd dimensions.
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Theorem 5.31 ([TC11,TC12]) Assume m ≥ 2. Let [ξA] be a holomorphic projective pure spinor field on
a (2m + 1)-dimensional complex Riemannian manifold (M, g) with associated almost null structure Nξ.
Suppose the Weyl tensor and the Cotton-York tensor satisfies the algebraic degeneracy conditions

C
ξΠ0

−1(C) = C
ξΠ1

−1(C) = C
ξΠ2

−1(C) = 0 , i.e. ξaAξbBξc[CCabcdξ
D] = 0 ,

A
ξ Π0

−2(A) = A
ξ Π1

−2(A) = 0 , i.e. ξ[AξaB]ξbCξcDAabc = 0 .
(5.51)

Suppose further that the Weyl tensor is otherwise generic. Then [ξA] satisfies (5.17), i.e. Nξ is integrable
and co-integrable.

In the light of Proposition 5.24 and Example 5.26, there are pure spinor fields with non-integrable and non-
co-integrable almost null structures, whose integrability condition satisfies (5.51), but violates the genericity
assumption by virtue of Proposition 5.23. This motivates the following conjecture improving [TC12]:

Conjecture 5.32 Suppose that [ξA] is a projective pure spinor field on a (2m+1)-dimensional non-conformally
flat Einstein spin complex Riemannian manifold (M, g) such that the Weyl tensor satisfies ξaAξbBξc[CCabcdξ

D] =
0. Then ξA satisfies (5.8).

Weaker conditions such as (5.5) may well be possible too, but an investigation of the veracity of the above
conjecture is beyond the scope of this article.

Remark 5.33 A non-conformally invariant Goldberg-Sachs theorem in dimension three is given in [NTC15].

5.3 Application to real pseudo-Riemannian manifolds

Almost null structures on odd-dimensional real pseudo-Riemannian manifolds are subject to considerations
regarding reality conditions and analyticity similar to the even-dimensional case – see [TC16] for details. It
suffices to say here that the real index of a pure spinor – see section 2.6 – allows for a wider range of geometric
interpretations. For positive definite metric, the intrinsic torsion of an almost contact metric structure, i.e.
an odd-dimensional analogue of an almost Hermitian structure, was investigated in [AG86, CG90]. Finally,
we emphasise that all the results obtained in the present article can be translated into the smooth category
in the case of a spin oriented and time-oriented smooth peudo-Riemannian manifold of signature (m,m+ 1)
equipped with a real projective pure spinor or a real almost null structure.
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A Spinorial description of curvature tensors

We follow the notation of section 2 throughout, i.e. V is a (2m + 1)-dimensional complex vector space
equipped with a non-degenerate symmetric bilinear form gab and a pure spinor ξA.
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A.1 Elements of the g0-modules of F, A and C

We choose a pure spinor ηA such that ξAηA = − 1
2 to split V as (2.7). We shall use the elements ua, hab and

ωab given by (2.8) and (2.12). Upstairs and downstairs spinor indices will refer to Sm−2

2

= im ξAa ∩ker ηA and

S−m−2

2

= im ηaA ∩ ker ξA respectively. A spinor will be referred to as (totally) tracefree, if the contraction

of any pair of indices with IAB , as given by (2.9), vanishes, e.g. σ B
A IAB = 0. We now describe elements of

the g0-modules given in Propositions 4.1, 4.2 and 4.4.

The tracefree Ricci tensor Let Φab ∈ F. Then

• Φab ∈ F̆1
0 if and only if Φab = ξA(a η b)BΦ B

A for some tracefree Φ B
A ;

• Φab ∈ F̆0
0 if and only if Φab = Φ

(

uaub + 1
n−1hab

)

for some complex Φ;

• Φab ∈ F̆0
1 if and only if Φab = ξA(aΦAub) for some ΦA;

• Φab ∈ F̆0
2 if and only if Φab = ξAa ξ

B
b ΦAB for some ΦAB = Φ(AB).

Using the duality (F̆0
−i)

∗ ∼= F̆0
i , spinorial decompositions of elements of F̆j−i for i = 1, 2 can be obtained by

interchanging ξA and ηA, and making appropriate changes of index structures.

The Cotton-York tensor Let Aabc ∈ A. Then

• Aabc ∈ Ă0
0 if and only if Aabc = a

(

uaωbc − u[bω c]a
)

for some complex a;

• Aabc ∈ Ă1
0 if and only if Aabc = uaAbc − u[bA c]a where Aab = ξA[a η b]BA

B
A for some tracefree A B

A ;

• Aabc ∈ Ă2
0 if and only if Aabc = A

a[bu c] where Aab = ξA(a η b)BA
B

A for some tracefree A B
A ;

• Aabc ∈ Ă0
1 if and only if Aabc = Aaωbc −A[bω c]a + 3

n−2ha[bω c]dA
d where Ac = ξCc AC for some AA;

• Aabc ∈ Ă1
1 if and only if Aabc = uau[bA c] + 1

n−2ha[bA c] where Aa = ξAa AA for some AA;

• Aabc ∈ Ă2
1 if and only if Aabc = ηaC ξ

A
b ξ

B
c A

C
AB − ξAa ξB[b η c]CA C

AB for some tracefree A C
AB = A C

[AB] ;

• Aabc ∈ Ă3
1 if and only if Aabc = ξAa ξ

B
[b η c]CA

C
AB for some tracefree A C

AB = A C
(AB) ;

• Aabc ∈ Ă0
2 if and only if Aabc = uaAbc − u[bA c]a where Aab = ξAa ξ

B
b AAB fo some AAB = A[AB];

• Aabc ∈ Ă1
2 if and only if Aabc = Aa[bu c] where Aab = ξAa ξ

B
b AAB for some AAB = A(AB);

• Aabc ∈ Ă0
3 if and only if Aabc = ξAa ξ

B
b ξ

C
c AABC for some AABC = AA[BC] satisfying A[ABC] = 0.

Using the duality (Ăj−i)
∗ ∼= Ă

j
i , spinorial decompositions of elements of Ăj−i for i = 1, 2, 3 can be obtained

by interchanging ξA and ηA, and making appropriate changes of index structures.
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The Weyl tensor Let Cabcd ∈ C. Then

• Cabcd ∈ C̆0
0 if and only if Cabcd = c

(

2ωabωcd − 2ω
a[c ω d]b + 6

n−2 ha[c hd]b

)

for some complex c;

• Cabcd ∈ C̆1
0 if and only if

Cabcd = ωabCcd + Cabωcd − 2ω[a |[cCd]| b] −
6

n− 3

(

h[a |[cω
e

d] C| b]e + h[c |[aω
e

b] C|d]e

)

,

where Ccd := 2 ξC[c ηd]DC
D

C for some tracefree C D
C ;

• Cabcd ∈ C̆2
0 if and only if Cabcd = u[aC b][c u d] − 1

n−3 h[a |[cCd]| b] where Ccd := 2 ξC(c ηd)DC
D

C for some

tracefree C D
C ;

• Cabcd ∈ C̆3
0 if and only if

Cabcd = ξAa ξ
B
b ηcCηdDC

CD
AB + ξAc ξ

B
d ηaCηbDC

CD
AB − 2 ξA[a |ξ

C
[c ηd]|Dη b]BC

DB
AC

for some tracefree C DB
AC = C

[DB]
[AC] ;

• Cabcd ∈ C̆4
0 if and only if Cabcd = ξA[a |ξ

C
[c ηd]|Dη b]BC

DB
AC for some tracefree C DB

AC = C
(DB)

(AC) ;

• Cabcd ∈ C̆0
1 if and only if

Cabcd = ωabC[c u d] + ωcdC[a u b] − ω[a |[cCd]u| b] − ω[c |[aC b]u|d]

+
3

n− 2

(

h[a |[cu d]ω
e

| b] Ce + h[c |[au b]ω
e

|d] Ce

)

,

where Ca = ξAa CA for some CA ;

• Cabcd ∈ C̆1
1 if and only if Cabcd = u[aC b]cd + u[cCd]ab where Ccab = ηcC ξ

A
a ξ

B
b C

C
AB − ξAc ξB[a η b]CC C

AB

for some tracefree C C
AB = C C

[AB] ;

• Cabcd ∈ C̆2
1 if and only if Cabcd = u[aC b]cd +u[cCd]ab , where Ccab = ξAc ξ

B
[a η b]CC

C
AB for some tracefree

C C
AB = C C

(AB) ;

• Cabcd ∈ C̆0
2 if and only if Cabcd = ωabCcd + Cabωcd − 2ω[a |[cCd]| b] where Cab := ξAa ξ

B
b CAB for some

CAB = C[AB];

• Cabcd ∈ C̆1
2 if and only if Cabcd = u[aC b][c u d] − 1

n−3h[a |[cCd]| b] where Ccd := ξCc ξ
D
d CCD for some

CAB = C(AB);

• Cabcd ∈ C̆2
2 if and only if Cabcd = ξAa ξ

B
b ξ

C
[c ηd]DC

D
ABC + ξAc ξ

B
d ξ

C
[a η b]DC

D
ABC for some C D

ABC =

C D
[AB]C satisfying C D

[ABC] = 0;

• Cabcd ∈ C̆0
3 if and only if Cabcd = u[aC b]cd + u[cCd]ab , where Cabc = ξAa ξ

B
b ξ

C
c CABC for some CABC =

C[AB]C satisfying C[ABC] = 0;

• Cabcd ∈ C̆0
4 if and only if Cabcd = ξAa ξ

B
b ξ

C
c ξ

D
d CABCD for some CABCD = C[AB][CD] satisfying C[ABC]D =

0.

Using the duality (C̆j−i)
∗ ∼= C̆

j
i , spinorial decompositions of elements of C̆j−i for i = 1, 2, 3 can be obtained by

interchanging ξA and ηA, and making appropriate changes of index structures.
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A.2 Maps describing elements of p-modules of F, A and C

The kernels of the following maps F
ξΠj

i ,
A
ξ Πj

i and C
ξΠj

i are p-submodules of the spaces F, A and C, and are

related to irreducible p-modules F
j
i , A

j
i and C

j
i as described in Propositions 4.1, 4.2 and 4.4.

The tracefree Ricci tensor For Φab ∈ F, define

F
ξΠ0

−2(Φ) := ξ[A ξaB]Φabξ
b[C ξD] , F

ξΠ0
−1(Φ) := ξ[A ξaB]Φabξ

bC ,

F
ξΠ0

0(Φ) := ξaAξbBΦab ,
F
ξΠ1

0(Φ) := ξ[A ξaB]Φab +
1

n− 1
γ

[A
bC ξcB]ξdCΦcd ,

F
ξΠ0

1(Φ) := ξaAΦab ,

The Cotton-York tensor For Aabc ∈ A, define

A
ξ Π0

−3(A) := ξ[A ξaB]ξb[C ξcDξE]Aabc ,

A
ξ Π0

−2(A) := ξ[AξaBξbC]ξcDAabc ,
A
ξ Π1

−2(A) := ξ[AξaB]ξb[CξD]ξcEAabc + ([AB]↔ [CD]) ,

A
ξ Π0

−1(A) := ξ[A ξaB]ξbcCAabc −
1

n− 2
ξaCξbAξcBAabc ,

A
ξ Π1

−1(A) := ξaAξbBξcCAabc ,

A
ξ Π2

−1(A) := ξ[AξaBξbC]Aabc +
1

2(n− 3)
ξ[AξaB|ξbdDAabdγ

|C]
cD − 1

2(n− 3)
ξaDξb[AξdBAabdγ

C]
cD ,

A
ξ Π3

−1(A) := ξ[AξaB]ξb[CξD]Aabc +
3

2(n+ 1)
ξ[AξaB]ξbdEAabdγ

[C
cE ξD] +

1

2(n+ 1)
ξaEξbCξdDAabdγ

[A
cE ξB]

+ ([AB]↔ [CD]) ,

A
ξ Π0

0(A) := ξaAξbcBAabc ,
A
ξ Π1

0(A) := ξaAξb[BAabcξ
C] +

1

n− 1
ξaAξbdDAabdγ

[B
cD ξC] ,

A
ξ Π2

0(A) := ξ[AξaB]ξbCAabc −
1

2
Acabξ

ab[AξB]ξC − 1

n− 1
ξaCξbdDAabdγ

[A
cD ξB] ,

A
ξ Π0

1(A) := ξbcCAabcξ
D +

2

n− 2
ξbBξbCAbca ,

A
ξ Π1

1(A) := ξaAξbBAabc ,

A
ξ Π2

1(A) := A[ab]cξ
c[CξD] +

1

2(n− 3)
γ

[C
[aE ξD]Ab]cdξ

cdE +
1

n− 3
ξcEξd[CAcd[aγ

D]
b]E ,

A
ξ Π3

1(A) := A(ab)cξ
c[CξD] − 3

2(n+ 1)
γ

[C
(aE ξD]Ab)cdξ

cdE − 1

n+ 1
ξcEξd[CAcd(aγ

D]
b)E ,

A
ξ Π0

2(A) := ξcCA[ab]c ,
A
ξ Π1

2(A) := ξcCA(ab)c .

The Weyl tensor For Cabcd ∈ C, define

C
ξΠ0

−4(C) := ξ[A ξaBξbC]Cabcdξ
c[D ξdEξ F ] , C

ξΠ0
−3(C) := ξ[A ξaBξbC]Cabcdξ

cDξdE ,

C
ξΠ0

−2(C) := ξ[A ξaBξbC]Cabcdξ
cdD , C

ξΠ1
−2(C) := ξaAξbBCabcdξ

cCξdD ,
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C
ξΠ2

−2(C) := ξaAξbBCabcdξ
c[CξD] +

1

n+ 1

(

ξaAξbBCabceξ
ceEγ

[C
dE − ξa[C|ξb[A|Cabceξ

ceEγ
|B]

dE

)

ξD]

− 1

n− 3
γ

[A|
dE ξaEξb|B]Cabdeξ

dCξeD (mod ξ[Aα
B][C
d ξD]) ,

C
ξΠ0

−1(C) := ξaAξbBCabcdξ
cdC ,

C
ξΠ1

−1(C) := ξaAξbBCabcdξ
dD − ξ[AξabB]Cabcdξ

dD +
1

n− 3
ξabDCabed ξ

eEξd[Aγ
B]

cE ,

C
ξΠ2

−1(C) := ξaAξbBCabcdξ
dD − ξabDCabcdξd[AξB] + ξab[ACabcdξ

dB]ξD

− 1

n+ 1

(

ξabECabed ξ
eAξdBγ D

cE − ξab[ACabedξeB]ξdEγ D
cE

)

− 1

n+ 1

(

ξabECabdeξ
de[Aγ

B]
cE ξD − ξabECabdeξdeDγ [A

cE ξB]
)

(mod ξDξ[Aα
B]
d ) ,

C
ξΠ0

0(C) := ξabACabcdξ
cdB ,

C
ξΠ1

0(C) := ξab(ACabcdξ
dB)ξC − 1

n− 1
ξabEξde(ACabdeγ

B)
cE ξC − 2

n− 1

n− 3
ξaCξb(ACabcdξ

dB) (mod ξAξBα C
d ) ,

C
ξΠ2

0(C) := ξaAξbBCabcdξ
cC ,

C
ξΠ3

0(C) := ξa[ACa[bc]dξ
dBξC] +

1

n− 5

(

γ
[A

[bE ξdBξC]Cc]daeξ
aeE + ξa[AξeB|Cae[b|f ξ

fEγ
|C]

c]E

)

− 1

2(n− 3)(n− 5)

(

ξaeECaedf ξ
df[Aγ B

[bE ξ
C]
c] − ξaeECaedf ξdf[Aγ B

bcE ξC]
)

,

C
ξΠ4

0(C) := ξ[AξaB]Ca(bc)dξ
d[CξD] +

1

n+ 3

(

ξ[Aξ
B]
(b Cc)daeξ

d[CξaeD] + ξ[Aγ
B]

(bE Cc)daeξ
dEξae[CξD]

+2 ξ[Aγ
B]

(bE Cc)daeξ
d[CξD]ξaeE − ξ[Aγ B]

(bE Cc)daeξ
dEξaCξeD

)

− 1

(n+ 1)(n+ 3)

(

ξ[Aγ
B]

(bE γ
[C

c)F ξD]ξaeECaedf ξ
dfF +

1

2
ξ
[A
b ξ

aeB]Caedf ξ
df [CξD]

+ξ[Aγ
B]

(bE γ
[C

c)F ξaD]ξfF ξaeECaedf − γ [A
(bE ξaeB]ξ

[C
c) ξ

dD]ξfECaedf

)

+ ([AB]↔ [CD]) ,

C
ξΠ0

1(C) := ξabBCabcdξ
dC ,

C
ξΠ1

1(C) := ξaACa[bc]dξ
dD +

1

2(n− 3)

(

γ
[A|

[b|E ξaeECae|c]dξ
d|D] + γ

[A
[b|E ξaeD]Cae|c]dξ

dE
)

− 1

2(n− 1)(n− 3)

(

ξaeECaefd ξ
fd[Aγ

D]
bcE

)

,

C
ξΠ2

1(C) := ξaACa(bc)dξ
dD +

3

2(n+ 1)

(

γ
(A|

(b|E ξaeECae|c)dξ
d|D) + γ

(A
(b|E ξaeD)Cae|c)dξ

dE
)

+
3

2(n− 1)(n+ 1)

(

ξaeECaefdξ
fdF γ A

(bE γ D
c)F

)

(mod ξAξDCbc ) ,
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C
ξΠ0

2(C) := ξabACabcd ,
C
ξΠ1

2(C) := ξaACa(bc)dξ
dB ,

C
ξΠ2

2(C) := ξ[AξaD]Cabcd −
1

n− 3

(

ξa[ACab[c|eγ
D]

|d]E ξeE − ξa[ACa[c|beγ
D]

|d]E ξeE
)

− 1

n+ 1

(

ξaeECaecdγ
[A

bE ξD] − ξaeECaeb[cγ
[A

d]E ξD]
)

− 3

2(n+ 1)(n− 3)

(

ξaeECaebf ξ
fF γ

[A
[cE γ

D]
d]F − ξaeECae[c|f ξfF γ

[A
|d]E γ

D]
bF

)

+
1

2(n+ 1)(n− 3)

(

ξae[A|Caebf ξ
fEγ

|D]
cdE − ξae[A|Cae[c|f ξ

fEγ
|D]

|d]bE

)

− 2

(n+ 1)(n− 3)

(

ξaeECaebf ξ
f [Aγ

D]
cdE − ξaeECae[c|f ξf [Aγ

D]
|d]bE

)

+
2

(n+ 1)(n− 1)(n− 3)
ξaeECaefg ξ

fgF
(

γ
[A

bE γ
D]

cdF − γ [A
[cE γ

D]
d]bF

)

,

C
ξΠ0

3(C) := ξaACabcd ,

B Spinor calculus in three and five dimensions

In this appendix, we give a brief description of spinor calculus in dimensions three and five.

B.1 Three dimensions

Let (M, g) be a three-dimensional complex Riemannian manifold equipped with a holomorphic volume form
and a holomorphic spin structure. The spin group is the complex special linear group SL(2,C) acting on
two-dimensional spinor space S and its dual S∗, which we shall identify by means of volume forms εAB and
εAB. All spinors are pure. By and large, this is analogous to the two-spinor calculus of [PR86], except that
there is no ‘primed’ spinor space. We can convert tensorial quantities into spinorial ones by means of the
normalised γ-matrices 1√

2
γ AB
a , which are symmetric in their spinor indices, and satisfy the identity

γ B
aA γa D

C = −δDA δBC + εACε
BD , i.e. γaABγ

a
CD = −2 εA(C εD)B .

The standard representation V of SO(3,C) is isomorphic to ⊙2S, and, by Hodge duality, to ∧2V. There is no
Weyl tensor in dimension three, while the tracefree Ricci tensor and the Cotton-York tensor are represented
by totally symmmetric spinors ΦABCD and AABCD respectively.

B.1.1 Projective spinor fields

Let [ξA] be a holomorphic projective pure spinor field. Then, unlike in in higher odd dimensions, its stabiliser
P , with Lie algebra p, at a point induces a |1|-grading on the Lie algebra g ∼= ∧2V of Spin(3,C). As in

dimension four, the spinor ξA defines a P -invariant filtration S
k
2 ⊂ S

k
2
−1 ⊂ . . . ⊂ S− k

2
+1 ⊂ S−k

2 on

S− k
2 := ⊙kS, where S

k−2ℓ+2

2 :=
{

φA1...Ak
∈ S−k

2 : φA1...AℓAℓ+1...Ak
ξA1 . . . ξAℓ

}

, and ξA is said to be a

principal spinor of φA1...Ak
if it lies in S− k

2
+1.

Intrinsic torsion The projective spinor field [ξA] induces a P -invariant filtration W0 ⊂W−1 ⊂W−2 on
the p-module W := V ⊗ (g/p) of intrinsic torsions. From a geometric point of view, the associated almost
null structure Nξ of [ξA] is of rank-1 and thus always integrable. The relation between W and the geometric
properties of Nξ and N⊥

ξ is given below.
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Proposition B.1 Let [ξA] be a holomorphic projective spinor field on (M, g) with associated null structure
Nξ. Denote by ∇AB the Levi-Civita connection of g. Then, pointwise, the intrinsic torsion of [ξA]

• lies in W−1 if and only if ξAξBξC∇ABξC = 0 if and only if Nξ is co-integrable if and only if Nξ is
(totally) geodetic;

• lies in W0 if and only if ξBξC∇ABξC = 0 if and only if Nξ is (totally) co-geodetic;

• vanishes if and only if ξC∇ABξC = 0.

Remark B.2 The above conditions are equivalent to the null vector field kAB := ξAξB being geodetic,
dilation free and recurrent respectively. The properties of null structures in dimension three were also
studied in [NTC15] in the context of a Goldberg–Sachs-type theorem.

B.2 Five dimensions

Let (M, g) be a five-dimensional complex Riemannian manifold equipped equipped with holomorphic volume
form and a holomorphic spin structure. We first work at a point. The spin group is isomorphic to the complex
symplectic group Sp(4,C), so that the spinor space S is a four-dimensional complex vector space equipped
with non-degenerate skew-symmetric bilinear form γAB with inverse γAB, i.e. γACγ

BC = δBA , by means of
which we shall lower and raise indices. All spinors are pure. Tensor indices are converted into spinorial ones
by means of the normalised skewsymmetric γ-matrices i

2γ
AB
a , tracefree with respect to γAB , which satisfy

γ B
aA γa D

C = δBAδ
D
C − 2 δDA δ

B
C − 2 γACγ

BD , i.e. γaABγ
a
CD = γABγCD + 4 γA[C γD]B . (B.1)

In particular, we have V ∼= (∧2S)◦ and ∧2V ∼= ⊙2S where V is the standard representation of SO(5,C).
The tracefree Ricci tensor, the Weyl tensor and the Cotton tensor admit the spinorial expressions

ΦABCD = Φ[AB][CD] , CABCD = C(ABCD) , AABCD = A[AB](CD) ,

respectively, all of which are completely tracefree, and where Φ[ABC]D = 0, A[ABC]D = 0.

B.2.1 Projective spinor fields

Let [ξA] be a projective spinor field on (M, g) with stabiliser P ⊂ Spin(5,C) at a point. Following section
2, we have the induced P -invariant filtrations S1 ⊂ S0 ⊂ S−1 and V1 ⊂ V0 ⊂ V−1 where

S−1 := S , S0 := {αA ∈ S : αAξ
A = 0} , S1 := 〈ξA〉 = {αA ∈ S : α[AξB] = 0} ,

V−1 := V , V0 :=
{

V AB ∈ V : ξCV
C[A ξB] = 0

}

, V1 :=
{

V AB ∈ V : ξCV
CA = 0

}

.

Equivalently, V1 =
{

V AB ∈ V : ξ[AVBC] = 0
}

. Similarly, we can express the various P -invariant submodules
of g ∼= ⊙2S in terms of the maps

g
ξΠ

0
−2(φ) := ξAξBφAB ,

g
ξΠ

0
−1(φ) := ξAφ

[B
A ξC] ,

g
ξΠ

0
0(φ) := ξAφ B

A , g
ξΠ

1
0(φ) := ξ[AφB][C ξD] ,

g
ξΠ

0
1(φ) := φA[B ξC] ,

where φAB = φ(AB).

The explicit expressions for the maps F
ξΠj

i ,
A
ξ Πj

i and C
ξΠj

i defined in section 4 can be significantly simplified.
For ΦABCD ∈ F, we have

F
ξΠ0

−2(Φ) := ξ[F ΦA]BC[D ξ
BξCξE] ,

F
ξΠ0

−1(Φ) := ΦABC[D ξ
BξCξE] ,

F
ξΠ0

0(Φ) := ΦABCDξ
BξC , F

ξΠ1
0(Φ) := ξ[AΦB]ECDξ

E + ε[A|[CΦD]EF |B]ξ
EξF ,

F
ξΠ0

1(Φ) := ΦABCDξ
B .
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For AABCD ∈ A, we have

A
ξ Π0

−3(A) := ξ[EAA]BCDξ
BξCξD ,

A
ξ Π0

−2(A) := AABCDξ
BξCξD , A

ξ Π1
−2(A) := ξ[AAB]EF [Cξ

EξF ξD] + ξ[CAD]EF [Aξ
EξF ξB] ,

A
ξ Π0

−1(A) := 4 ξ[AAB]DECξ
DξE −AABDEξDξEξC , A

ξ Π1
−1(A) := AABC[D ξ

BξCξE] ,

A
ξ Π3

−1(A) := ξ[AAB]G[C |[E ξ
GξF ]ξ|D] + ξ[CAD]G[E |[A ξ

GξB]ξ|F ] + ξ[EAF ]G[A |[C ξ
GξD]ξ|B] ,

A
ξ Π0

0(A) := AABCDξ
BξC , A

ξ Π1
0(A) := ξFAAF [B|[DξE]ξ|C] ,

A
ξ Π2

0(A) := ξ[Aξ
FAB]FE[CξD] + ξ[Aξ

FAB]EF [CξD] ,

A
ξ Π0

1(A) := ξ[Aξ
EAB]ECD − ξEAABE(CξD) ,

A
ξ Π1

1(A) := ξEAAEB[CξD]

A
ξ Π3

1(A) := AAB[C |[E ξF ]ξ|D] +ACD[E |[A ξB]ξ|F ] +AEF [A |[C ξD]ξ|B] ,

A
ξ Π0

2(A) := ξDAADBC ,
A
ξ Π1

2(A) := AABC[DξE] +ADEC[AξB] .

Finally, for CABCD ∈ C, we have

C
ξΠ0

−4(C) := CABCDξ
AξBξCξD , C

ξΠ0
−3(C) := CABC[D ξ

AξBξCξE] ,

C
ξΠ0

−2(C) := CABCDξ
AξBξC , C

ξΠ2
−2(C) := ξ[F CA]BC[D ξ

BξCξE] ,

C
ξΠ0

−1(C) := CABC[D ξ
BξCξE] ,

C
ξΠ1

−1(C) := ξ[F CA]B[C |[D ξ
BξE]ξ|F ] ,

C
ξΠ0

0(C) := CABCDξ
BξC , C

ξΠ2
0(C) := ξ[F CA]BC[D ξ

BξF ] ,

C
ξΠ4

0(C) := ξ[G ξ|[F CA]|B][C |[D ξE]ξ|F ] ,

C
ξΠ0

1(C) := ξ[F CA]BCDξ
B , C

ξΠ1
1(C) := ξ[F CA]B[C |[D ξE]ξ|F ] ,

C
ξΠ0

2(C) := CABCDξ
B , C

ξΠ2
2(C) := ξ[F CA]BC[D ξE] ,

C
ξΠ0

3(C) := CABC[D ξE] .

Intrinsic torsion Denote by ∇AB the Levi-Civita connection of g. Then the differential characterisations
of the intrinsic torsion of [ξA] can be re-expressed as

(5.5) ⇐⇒ ξ[A
(

ξC∇B]Cξ
D
)

ξD = 0 , (B.2)

(5.6) ⇐⇒
(

ξB∇ABξC
)

ξC = 0 , (B.3)

(5.7) ⇐⇒
(

ξD∇D[AξB

)

ξC] = 0 , (B.4)

(5.8) ⇐⇒ ξ[A
(

ξE∇B]Eξ[C
)

ξD] + ξ[C
(

ξE∇D]Eξ[A
)

ξB] = 0 , (B.5)

(5.9) ⇐⇒ (∇ABξC)ξC = 0 , (B.6)

(5.11) ⇐⇒
(

ξD∇ADξ[B
)

ξC] = 0 , (B.7)

(5.12) ⇐⇒ (∇ACξC)ξB − (ξC∇ACξB) = 0 , (B.8)

(5.13) ⇐⇒
(

∇ABξ[C
)

ξD] + ξ[CεD][A∇B]Eξ
E + ε[C|[Aξ

E∇B]Eξ|D] = 0 . (B.9)

Finally, denote by Nξ the almost null structure associated to [ξA]. Then condition (5.14) for Nξ to satisfy
[Γ(Nξ),Γ(Nξ)] ⊂ Γ(N⊥

ξ ) reduces to (B.2). Condition (5.16) for Nξ to be co-integrable can be expressed as

ξ[A

(

ξE∇B]Eξ[C

)

ξD] + ξ[CεD][A

(

ξE∇B]EξF

)

ξF = 0 . (B.10)

Condition (5.17) for Nξ to be integrable and co-integrable can be expressed as

(

ξB∇ABξC
)

ξC = 0 , ξ[A
(

ξE∇B]Eξ[C
)

ξD] = 0 . (B.11)
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As an example, one can check that a solution ξA of the twistor equation

∇ABξC +
1

5
εABζC +

4

5
ζ[A εB]C = 0 , ζA = ∇ABξB ,

satisfies equations (B.11) if and only if ξAζA = 0 as claimed in Proposition 5.24.

C Conformal structures

Background information on (holomorphic) conformal structures is already given [TC16] to which the reader
should refer. Here, we merely collect useful formulae concerning spinor transformations under a conformal
change of holomorphic metrics ĝab = Ω2gab for some non-vanishing holomorphic function Ω on M. Corre-
spondingly, the γ-matrices can be chosen to transform as γ B

aA 7→ γ̂ B
aA = Ωγ B

aA where γ̂ B
aA denote the

γ-matrices for metric ĝab. In addition, we can choose the spin invariant bilinear forms γAB on S to rescale
with a conformal weight of 1, and their dual with a conformal weight of −1. This means in particular that
the quantities γ AB

a and γaAB have conformal weight 0. Then the spin connection ∇̂a is related to ∇a by

∇̂aξB = ∇aξB −
1

2
Υbγ

b B
aC ξC +

1

2
Υaξ

B = ∇aξB −
1

2
Υbγ

b D
C γ B

aD ξC , (C.1)

for any holomorphic spinor field ξA
′

, and similarly for dual spinors. This connection preserves the hatted
γ-matrices and the hatted bilinear forms on S, in agreement with the convention of [PR84].

If we now assume that ξA is a pure spinor field, we then obtain from (C.1)

(

∇̂aξ̂bB
)

ξ̂ C
b =

(

∇aξbB
)

ξCb +
1

2
Υbξ

bDγ B
aD ξC + 2 Υbξ

b[BξC]
a ,

(

γ̂a A
B ∇̂aξ̂bB

)

ξ̂ C
b = Ω−1

(

(

γa A
B ∇aξbB

)

ξCb +
n− 2

2

(

2 Υbξ
bCξA −Υbξ

bAξC
)

)

,

ξ̂aA∇̂aξB = Ω−1

(

ξaA∇aξB −
1

2
Υbξ

bBξA + Υbξ
bAξB

)

,

(

ξ̂aA∇̂aξ̂bB
)

ξ̂ C
b = Ω−1

(

(

ξaA∇aξbB
)

ξCb −
1

2
Υbξ

bBξAξC − 2Υbξ
b[AξC]ξB

)

,

(

∇̂aξ̂aB
)

ξC − ξ̂aB∇̂aξC = Ω−1

(

(

∇aξaB
)

ξC − ξaB∇aξC +
n− 2

2
Υbξ

bBξC +
1

2
Υbξ

bCξB
)

,

where we have set ξ̂aA := γ̂a A
B ξB. In particular, from the first three expressions, we get

(

∇̂aξ̂b[B
)

ξ̂ C
b ξD] =

(

∇aξb[B
)

ξCb ξ
D] + 2 Υbξ

b[BξCa ξ
D], ,

(

γ̂a A
B ∇̂aξ̂bB

)

ξ̂
[C
b ξD] = Ω−1

(

(

γa A
B ∇aξbB

)

ξ
[C
b ξD] + (n− 2) ξAΥbξ

b[CξD]
)

,

(

ξ̂aA∇̂aξ[B
)

ξC] = Ω−1

(

(

ξaA∇aξ[B
)

ξC] − 1

2
ξAΥbξ

b[BξC]

)

,

from which the conformal invariance of (5.10) follows.
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[Kop97] W. Kopczyński, Pure spinors in odd dimensions, Classical Quantum Gravity 14 (1997), no. 1A, A227–A236. Geom-
etry and physics.

[KS09] R. P. Kerr and A. Schild, Republication of: A new class of vacuum solutions of the Einstein field equations, Gen.
Relativity Gravitation 41 (2009), no. 10, 2485–2499. Reprinted from ıt Atti del Convegno sulla Relatività Generale:
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