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Abstract

We study the geometric properties of a (2m + 1)-dimensional complex manifold M admitting a
holomorphic reduction of the frame bundle to the structure group P C Spin(2m + 1, C), the stabiliser of
the line spanned by a pure spinor at a point. Geometrically, M is endowed with a holomorphic metric
g, a holomorphic volume form, a spin structure compatible with g, and a holomorphic pure spinor field
& up to scale. The defining property of £ is that it determines an almost null structure, i.e. an m-plane
distribution N along which g is totally degenerate.

We develop a spinor calculus, by means of which we encode the geometric properties of N¢ and of
its rank-(m + 1) orthogonal complement Ng‘ corresponding to the algebraic properties of the intrinsic
torsion of the P-structure. This is the failure of the Levi-Civita connection V of g to be compatible with
the P-structure. In a similar way, we examine the algebraic properties of the curvature of V.

Applications to spinorial differential equations are given. Notably, we relate the integrability prop-
erties of M and NEL to the existence of solutions of odd-dimensional versions of the zero-rest-mass field
equation. We give necessary and sufficient conditions for the almost null structure associated to a pure
conformal Killing spinor to be integrable. Finally, we conjecture a Goldberg—Sachs-type theorem on the
existence of a certain class of almost null structures when (M, g) has prescribed curvature.

We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

Keywords: complex Riemannian geometry; pure spinors; distributions; intrinsic torsion; curvature
prescription; spinorial equations

1 Introduction and motivation

The present article is the odd-dimensional counterpart of the author’s work presented in [TCI16]. Both
articles work share the same motivations and goals, and the reader should refer to the latter work for further
details.

Let (M, g) be an n-dimensional complex Riemannian manifold, where n = 2m + 1. We shall assume
that (M, g) is also equipped with a global holomorphic volume form and a holomorphic spin structure so
that the structure group of the holomorphic frame bundle is reduced to G := Spin(n,C). We work in the
holomorphic category. We shall be considering a projective pure spinor field [£], i.e. a spinor field up to
scale that annihilates a totally null m-plane, or «y-plane, distribution. This will also be referred to as its
associated almost null structure N¢. The structure group of the frame bundle of (M, g) is reduced to P, the
stabiliser of [¢] at a point. Denote by g and p the respective Lie algebras of G and P, and by U the standard
representation of g. The main aim of the article is to examine the geometric properties of the P-structure
on (M, g). More specifically, we will

e give a P-invariant decomposition of the space 20 := U ® (g/p) of intrinsic torsions;

e give P-invariant decompositions of the spaces of curvature tensors, in particular, tracefree Ricci tensors,
Cotton-York tensors and Weyl tensors;

e apply these decompositions to the study of almost null structures and pure spinor fields on complex
Riemannian manifolds.
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The methodology will be a synthesis of representation theory and a spinor calculus adapted to the P-
structure. Before we proceed, we first highlight the crucial differences between the odd- and even-dimensional
cases:

e there is only one irreducible spinor representation of G as opposed to two chiral ones — paradoxically,
this makes the spinor calculus more fiddly;

e the stabiliser p of [£] induces a |2|-grading on g, rather than a |1|-grading;

e the orthogonal complement J\/'gL of NV¢ is (m + 1)-dimensional and contains N, rather than N = A.

Consequently, one has to encode the properties of both N and /\/EL in terms of differential conditions on
(€], although there is some degree of interdependency between N and ./\/'gl. Making the move from even to
odd dimensions is therefore not always straightforward. A case in point is when A is integrable. In even
dimensions, N¢ would be automatically totally geodetic, but in odd dimensions, this condition is stronger.
In addition, one could have the extra requirement for N, EL to be also integrable, and or even totally geodetic.
This is particularly relevant to generalisations of the Robinson theorem, which can be strikingly different.

The present article can, if not should, be read in conjunction with [TC16] for comparison and ease of
understanding of the notions introduced in the latter. Indeed, these two papers are broadly ‘mirror images’
of each other: the overall structure is the same in both papers as far as the numbering of the sections is
concerned. For the sake of conciseness, we have not always deemed it necessary to re-establish notations and
conventions.

Structure of the paper: Our spinor calculus will first be developed in section New results include
Propositions 2.6land 2.9, and Corollary[2.10] which provide simpler alternatives to some of Cartan’s formulae
on pure spinors. Proposition in section Blis concerned with the decomposition of the space of intrinsic
torsions of a P-structure. In the same vein, in section Fl Propositions E1] and [£4] give P-invariant
decompositions of the spaces of tracefree Ricci tensors, Cotton-York tensors and Weyl tensors respectively.

Section [{] focuses on the geometric applications. Proposition [5.4] is the geometric articulation of Propo-
sition Proposition 5.7 Lemma [5.§ and Proposition [5.11] are concerned with geometric interpretations
of N¢ in terms of V[¢]. Three distinct generalisations of the Robinson theorems for three distinct types of
zero-rest-mass fields are given in Theorems [(5.19] and 5211 Applications to conformal Killing spinors are
given in Propositions [(.24] and Conjecture postulates a generalisation of the Goldberg—Sachs
theorem given in [TC12]. Integrability conditions for solutions of the field equations involved are also given
in Propositions 5.12] 5.13] B.14 5.17 and among others.

Appendix [A] contains useful formulae to characterise tracefree Ricci, Cotton—York and Weyl tensors in
the light of the decompositions given in section @l A brief discussion of spinor calculus in dimensions three
and five can be found in appendix [Bl In appendix[C] we describe conformal transformations of spinor fields.

2 Spinor calculus

Conventions follow those of [TCI6], based on [PR84,[PR86]. Further background on spinors can be found in
[Car81l[PRR6LBTSILHSISL[Kop97] and on representation theory in [BE89LICS09b).

2.1 Clifford algebras and spinor representations

Let U be an n-dimensional complex vector space equipped with a non-degenerate symmetric bilinear form
Gab = J(ab) € ®2?20*, by means of which we shall identify 0 with its dual 2*. We choose an orientation,
and denote the Hodge star operator by x. Denote the Clifford algebra of (2, g) by C4(U, g) and the Clifford
multiplication by a dot -. We recall that C£(0, g) = A* as vector spaces. Henceforth, we assume n = 2m+1.
The spin group G := Spin(2m + 1,C) has a single 2™-dimensional irreducible representation, the spinor
space & of (U, g). We can realise & as follows. We split U as U = N & N* @ i where N and IN* are two



totally null m-dimensional subspaces of 2, dual to each other 9%, and the one-dimensional complement 4l
is non-null. Then & can be identified with A®*91 as an C4(], g)-module: for any (v, w,u) € U, the action
of the Clifford algebra on & is given by (v,w,u) - & = v A & — wa€ + ieué where i2 = —1 and € = 1 if
EEANNOAT 2N A NG ...,ande=—1if EC A INS A SINS A NG .. ..

The Clifford algebra can be shown to be isomorphic to a direct sum of two inequivalent copies of the
algebra Mat(2™, C) of 2™ x 2™-matrices over C acting on &. Elements of & will carry upstairs upper-case
Roman indices, e.g. &4, and similarly for elements of its dual &*, with downstairs indices, e.g. 74. The
Clifford algebra C{(%0, g) is generated by the y-matrices v, 42 which satisfy

W(aAC%)cB = —gab5f . (2.1)

Thus, only skew-symmetrised products of y-matrices count, and we shall make use of the notational short
hand ”yala2mapAB = 'Y[alACl"Y@cl 2 ...”yap]ch for any p. These realise the linear isomorphism A*Y =
C0(%8, g) = Mat(2™, C) @ Mat (2™, C), and the two copies of Mat(2™, C) will be identified by Hodge duality.

The spinor space & and its dual &* are equipped with non-degenerate bilinear forms, denoted v4p,
with which one can in effect raise or lower spinor indices. In particular, we have bilinear maps Yai...apAB
from & x & to AP for any p. Depending on the values of m and p, these can be either symmetric or
skewsymmetric. Our treatment will be largely dimension independent, and we will in general dispense of
their use. Nonetheless, we shall make use of the following result:

Lemma 2.1 We have

’YaAB”Ybl,,,prD%cD =(=n" (”Yabl...bpcAc -+ 1)’7[ab1,,,bp,1Acgbp]c

=P Gafp, Vos...bpleac + PP+ 1)gap, ”Yb2...bp,1Acgbp]c) .
In particular, VQAB%I...bPBD%cD = (=1)™*P(2p - 2m — 1)%1...pr0-

2.2 Null structures and pure spinors

Definition 2.2 A null structure or vy-plane on U is an m-dimensional vector subspace Mt C U that is totally
null, ie g, X*Y? =0 for all X¢ Y € N.

Let €4 be a non-zero spinor in &, and consider the map 5(;4 = 53%3‘4 ;90 — &. By (2I), the kernel of
€A 0 — & is totally null.

Definition 2.3 A non-zero spinor ¢4 is said to be pure if the kernel of ¢ : % — & is m-dimensional, and
thus defines a null structure.

The projectivisation of the line (¢4) spanned by a pure spinor €4 will be referred to as a projective pure
spinor [€4] € PG.

Proposition 2.4 ([Car81]) There is a one-to-one correspondence between projective pure spinors and ~y-
planes on (B, g).

Henceforth, ¢4 will denote a fixed pure spinor. The crucial departure from the even-dimensional case is
that a null structure is contained in its orthogonal complement, that is, £ induces a filtration

=0 cy cy’cy?, (2.2)

where U1 := U, Y' := ker 5&4 : 0 — & and the orthogonal complement " of ! with respect to g, is
(m + 1)-dimensional. The map ¢4 allows us to identify elements of U with elements of &, notably

m—2
2

(vl/v) 06t 26", (V)T 0 6% 267 W) 06% 26" /6%,



where (¢4) =: 6% C 677 = im? : Y — &. Dually, we also have

Vrete(eF/e ), W/uizete (e t/e), vaete (e e ),
where =% = 6%, 6~ "7 :=ker{4 : C + &% and 6~ % :=ker{A : U* « &*. Using (2., we can check

that &~ C & "2 C &~ %. More concretely, we have

Lemma 2.5 Let V¢ be a non-zero vector in 0. Then

_m-—4

o V@ is an element of VO if and only if V¢ = {‘IAUA for some non-zero vy € 6% /&7 ;

e V% is an element of V' if and only if V¢ = %%, for some non-zero v € 6_%4/6_m;4.

As a direct consequence, a pure spinor £4 must satisfy £24¢8 = X\ ¢A¢PB for some A. Contracting each side

by ¢“y_,P and a little algebra then leads to A = —1.

Proposition 2.6 A non-zero spinor &4 is pure if and only if it satisfies

€06 = —£°¢P. (2.3)
By Lemma 2] we can express ([23]) equivalently as the following more familiar algebraic characterisation.
Proposition 2.7 ([Car81]) A non-zero spinor £ is pure if and only if it satisfies

'Yal...apABfAﬁB =0, forallp<m,p=m,m+1 (mod4),
'yABfAfB =0, when m = 0,3 (mod 4), (2.4)
/Yal...amABgAgB 7& 0.

We shall refer to both equations @3) and (Z4) as the purity conditions of a spinor €. These are vacuous
when m < 2, i.e. all spinors are pure when m < 2.
The only non-vanishing irreducible component of the tensor product £4¢5 is thus the m-form ¢, L =

R o
val___amABﬁAfB, which can be seen to annihilate 0°. It is null (or simple or decomposable) in the sense that

m—2 m—4

bay.ay, = 53411 e QTEAL..AM e A" for somee, 4 €A™ (6* z /G 2 ) Similarly, its Hodge dual

(¥0)ay..am,, € N™TUY annihilates ' and is represented by some €4, . € A" (6*75 /6*"?4).

Proposition 2.8 ([Car81]) Let o and B4 be two spinors not proportional to each other. Then the y-planes

associated to o and B4 intersect in a totally null (m — k)-plane if and only if
”Yal...apABaAﬁB =0, forallp<m—Ek,
YAB aAﬁB 3& 0 )

,7(11...am,kABaAﬁB # O °
fork=1,...m.

As a consequence of Lemma[2Z.]] we have, in the special case when k = 1,2, the equivalent characterisations.

Proposition 2.9 Let a® and B* be two spinors not proportional to each other. Then

e the y-planes associated to a® and B? intersect in a totally null (m — 1)-plane if and only if

ozaAﬁf =a?pP — 28408 = —aBP) 43414881, (2.5)



e the y-planes associated to o and B4 intersect in a totally null (m — k)-plane where k = 1 or 2, if and
only if

a¥4pB) — _(AgB) (2.6)

Finally, in the context of our present notation, we conclude

m—2

Corollary 2.10 Let €4 be a pure spinor in (,g) and let Gz :=im&2 : W — & as before. Then

. . m-2 .
o Any non-zero spinor in &~z is pure.

o The vy-planes associated to any two pure spinors in S T intersect in a totally null (m — k)-plane
where k can be either 0 or 1 or 2.

We omit the proof which is essentially the same as in the even-dimensional case and consists in checking the
veracity of the algebraic conditions (Z3)), [2.5) and (2.6])

Splitting It is convenient to choose a splitting of the filtration (2.2)) as
B=0V_10Yy DYV, (27)

where 01 := U~!, and U, are subspaces such that ¢ = U; @ YL, each linearly isomorphic to U? /U1,
Now, 9_; is a y-plane dual to %' to which we associate a pure spinor 74 dual to &4, i.e. U_; := ker NaA -
0 — &*, where 1, 4 := npY,4 7. Conversely, any choice of spinor dual to &4 induces a splitting (Z.7).

For convenience, we choose £ and n4 to satisfy €49y = —%, and define
u® = 20464, Bap = Gap + gty - (2.8)
Then, u® spans Yy, and satisfies utu, = —1, u®¢A = ¢4 and u®n,4 = na. Further, hqp is a non-degenerate

symmetric bilinear form on Uy & V_1, i.e. hypput =0, h,°hLl = h,’, and h,* =n — 1.
Next, define G_m_2 := {imn,, : YV — &} N{keré? : C + &*}. This is the dual of Gm_z, the

complement of &% = (¢4) in &™7". Elements of ¥; and V_; must be of the form €44, and n4uw?
respectively, for some v4 in 67%72 and w? in 6%, ie. va¢4 =0 and winy = 0.
Finally, we introduce the map

17 = 1,67 + 1,67, (2.9)
which can be seen to be the identity element on & -2, or dually, on &_ m—2. In particular §AI£” = 773[1{43 =0.
2 2

2.3 The stabiliser of a projective pure spinor in so(2m + 1,C) for m > 1

In what follows, the Lie algebra g := s0(2m + 1, C) will be freely identified with A0 or A20*. At this stage,
we also assume m > 1, the case m = 1 being treated briefly in section [B.1l

Filtration The filtration (2:2]) induces a filtration of vector subspaces there is a filtration

{0}=2g°cg’co'cg’cgtCg =04, (2.10)
on g, where
07" = {0w € 9: 61 ¢"P0,,67 = 0} 0" = {a € 9: €160y, = 0},
gl = {(bab €g: ga[A (babé. Bl = 0}7 92 = {(bab €g: gllAd)ab = 0} :



The Lie bracket [-,-] : g x g — g on g is compatible with this filtration, i.e. [g,¢/] C g**/, with the convention
that g* = {0} for i > 3, and g’ = g for all i < —2, i.e. g is a filtered Lie algebra.
Using the useful identities

Gur€ P4 Yep” =~y (£70€0 + A€M EP) | 6,y OEP = — g, (€O€P + 4£°0¢P)
(2.11)

or otherwise, one can show ¢ab§“‘4§b3 = 0 if and only if ¢ab§“b[A§B] = 0, and conclude:

Proposition 2.11 The Lie subalgebra p := g° is the stabilizer of [€4], i.e. ¢, %4 ox €4,
The stabiliser p of [¢4] is a parabolic Lie subalgebra of g [FH91,ICS09b).

Splitting Splitting (Z10) yields a |2|-grading g = g—2® g—1 B go ® g1 S g2 with [gs, g;] C gi4;, for all 4, 7,
with the convention that g; = {0} for all |i| > 2. In relation to ([2.7)), we have gyo = A?Uy1, g41 = Vo0V
and go = U_1 ®Y;. The Lie subalgebra g is isomorphic to gl(m, C), and thus splits further as go = 30 P slo
where 3o is the center go and sly = sl(m, C) is the simple part of gg. The center is spanned by the grading
element E, = —2 §f2nb]A, with image in C¢(T, g) given by E, B = —%EabvabAB. For consistency with

[TC16], we also set
Wap = Egp = —2§f277b],4 : (2.12)

An element ¢gp of sly can then be written as ¢ = 25[12771313(15,43 for some tracefree (bAB EGC m2QR@Cm2
2 2
in the sense that ¢ ,ZI4 = 0 where I3 is defined by ([2.3).

Parabolic Lie subgroups At the group level, we denote by P the stabiliser of [¢4] in G. This is a
parabolic Lie subgroup of G with Lie algebra p. Its Levy decomposition is given by P = Gy X P4, where
the image Gy in G — SO(2m + 1, C) under the covering map is the complex general linear group GL(m, C),
and Py is the nilpotent Lie group generated by g1 @ go. All our p- and go-modules will also be P- and
Go-modules. The spinor calculus developed here is then manifestly P-invariant.

Associated graded vector space We now introduce the associated graded p-module gr(g) = @5272 gr;(g)
where gr;(g) = g°/g""!. Each gr;(g) is linear isomorphic to the go-module g;, and we have a direct sum
decomposition gr,(g) = g ® g}, where g) := (g' +30) /g" and g¢ := (g' +slo) /g*. Writing £} := By, 5" :
A2 — & and &7 = im &4 A28 — &, we can define

EN5(9) = & s 5 (¢) 1= " g 7 + ﬁgac%acm Hehl.

Then g' + 30 = {¢ap € §: {Il5(¢) = 0} and g" + slp = {Pap € g : {II(¢) = 0}. For convenience, we also set
g) := gr,(g) for i = £1,+2.

2.4 Generalisation

As explained in [TCT16], the parabolic subalgebra p induces a filtration {9’} of indecomposable p-modules on
any finite g-module 9. We can split the filtration as a direct sum of gg-modules 9; isomorphic to 9¢ /M1,
on which the grading element E acts diagonalisably with eigenvalue i. Each 9t /9t+! respectively 90;, splits
into a direct sum of irreducible p-submodules sm{ , respectively go-submodules Sfftf , with Sﬁf = 93?5 as vector
spaces. We record the action of g; C p on each 9/ by an arrow as in [TCI0].

To deal with the spinor representation &, we define the maps {g‘lmak = §B*ya1makBA : AFO — & for
k=1,...,2m+ 1. Then the spinor module & = &* admits a P-invariant filtration

m—2

GFCcE" T C..cE& T CEF =6,




m—2

where &% = (€4), 6 = = im¢ o APMO = 6, 6" = keré? i C + 6 and 6
ker{“g‘lmak : AF* < &* for k = 1,...m. Further, we can choose subspaces &; C &' such that &' =
&; @ 6™t such that

m—2k—2
2 =

(‘5:6% PCma2®D...D6 m_2 @6_%.

2 2

The grading element F_, in 39 and the spanning element u, of Uy have eigenvalues mg% and (—1)% re-

specively on G m-2r. This description is consistent with the identification of & with A®91.
2

2.5 Null Grassmanians

The space of all null structures or ~-planes in (2, g) is the null (or isotropic) Grassmanian Gr,, (3, g).
Proposition 24 allows us to identify Gr,,(,g) as the space of projective pure spinors of (U, g). This is
a compact complex subvariety of P& defined by the purity conditions (24]), and it is isomorphic to the

Lm(m 4+ 1)-dimensional homogeneous space G/P. When m = 1,2, this space is isomorphic to the complex

2
projective space Ccpim(m+1),

2.6 Real pure spinors

When U is a real (2m + 1)-dimensional vector space equipped with a definite or indefinite non-degenerate
symmetric bilinear form of signature (p, q), the spinor representation is complex and equipped with a real
or quaternionic structure, by means of which a (complex) pure spinor £ is sent to its complex conjugate &,
and correspondingly, its associated (complex) null structure Mg to its complex conjugate ﬁg. In contrast

to even dimensions, the real index r of £, being the dimension of ¢ N ﬁg, can take any integer value from
0 to min(p, ¢) — see [KT92]. When ¢ is positive definite, r is always 0, and D¢ defines a metric-compatible
CR structure, also referred to, rather inappropriately, as a contact Riemannian structure. When g is of
Lorentzian signature, i.e. (1,2m) or (2m,1), » may be 0 or 1. In the latter case, one obtains a Robinson
structure [NT02L[Tra02l[TCTILTCI4]. When g has signature (m,m+1) or (m+1,m), and r = m, we obtain
a totally real analogue of the above discussion, i.e. £, 9 and the stabiliser P of [£] in the connected identity
component of Spin(m,m + 1) are all real.

3 Decomposition of the intrinsic torsion

Define the p-module 2 := U ® (g/p), where as before g := so(2m + 1,C), U its standard representation,
and p C g stabilises a projective pure spinor [¢4]. We assume m > 1, leaving the case m = 1 to appendix Bl

Remark 3.1 In what follows, ® denotes the Cartan product, and gg-modules and p-modules are abbreviated
to go-mod and p-mod respectively.

Proposition 3.2 The p-module DJ admits a filtration

WeCcWwcw?cw3,

where
W3 —ygle (9—2/90) : W2 .— (%—1 ® (9—1/90)) @ (%0 ® (9—2/90)) 7
W= (Ve (e /)o@ e), W= /).

The associated graded p-module

gr(W) = gr_5(W) & gr_o(W) @ gr_, (W) © gry (W)



decomposes into a direct sum

gr (W) =W, oW, gr_,(W) =w’, oW, oWw?,,
gr_ (W) =W, oW, &2, gro(2) = g & W,
of irreducible p-modules as described below
p-mod go-mod Dimension p-mod | go-mod Dimension
20, A3y sm(m —1)(m —2) W, | oYy m
W, | V109 im(m? - 1) Wy |slh©@V_1 | tm(m+1)(m—2)
Qﬂo,g Vo ® g—2 % (m—1) 2172_1 Vo @ g1 m
W, | A2U_ ®DVo im(m —1) W) | 30 9Yo 1
an_g @2%71 ® Yy %m(m + 1) QH}J slyp ® Yo m2 —1
with the proviso that WL |, WO 5 occur only when m > 2.
Further,
= {Tape"P¢C € W' FIULT) =0, for all k # 5} /2, i=-3,-2,-1,0,
where
QﬂHO 3(F) — F a[Aé-bBé-cCé-D] ,
QITHI 3(F) _ F [Aé-aB]é-b[Cé-D]gc[Eé-F] + Fg})Qé-[CgaD]é-b[AgB]gc[EgF] ,
‘mHO 2(I) = Pabcﬁ“‘& Beecel!
1 Q(F) _ F a[Aé-ché-C] ,
2(I\) — I\ [AgaB]gb[C&-D]gCE + I\abcg[Cé-aD]é-b[Aé-B]ch ,
%, (T) = 29" p T £ P€PET — T 24601,
C 1 B C C
fmnl (1) 1= TP 0P b s, 7 (29 T 610 = 17610 €71
gﬂngl(r) = PabcgaAgbC[Bgc] )
?Hg (F) - ’YaCAFabcgbcch - gaAPabcgbCB )
?H})(I‘) = Fabcfbc[ch] + om (VdA[BlrdbcbeAftlzC] - fd[B‘decbeA%A‘C]) )

where L', € Y®g. For m =2, we have made use of the Spin(5, C)-invariant skewsymmetric bilinear forms
AB
Yap and vy



Finally, the p-module gr(2) can be expressed by means of the directed graph

2, —=W?,

W

with the proviso that 20* |, W 5 occur only when m > 2. Here, an arrow from Qﬁf to Wk | for some i, j, k
implies that Qi]f Co -Qvﬂi-il for any choice of irreducible go-modules ‘,Zvﬁz and QvlTﬁl isomorphic to 7 and
% | respectively.

Proof. The idea of the proof is to choose a splitting [27])) for U, and thus for the filtration on 25. We can
then decompose an element I, € U ® A?Y, in the obvious notation,

gbBé-cC §A1—\ BC _ ual—\BC + naAl—\ABC + 25&41—\14:[350] _ 2ua1—\[B§C] +9 naAFA:[ng 7
¢ = (T ,PC —u,TFC + n ,TAP) oy p” — 2 (60T 0P — u, TP + 1, , T4P)
+2 (60T 45" —u T p” + 1, aT457) €7,
§bCD 4FC:C§A + 4FCCA _ 2FA 4 naBFYaCA (FBC _ FB:C 4 FC:B) + annCCFDBC,chDA
—2T5B¢A + 214,58,
(3.1)

abc

abc

abc

Here, TABC =T, nA¢bBeeC TBC = I‘abcuaﬁbecc and [ ,BC := T, n4¢PB¢°C are skew-symmetric in
their last two indices, and the colon : in I', ¢ = T, n4u’¢C and r4c .= r, §aA bgeC separates the
1-form index from the Lie algebra indices. Then, elements of the go-modules ‘,ZU] hnearly isomorphic to ‘,ZU]
are given by

rABCT ¢ gpf | rABC c ot
Bew,, rlA:Bl e qpt rAB) ¢ qp?, |
rpt4 ean?,, r,Be - %ILB‘PDD'C] ew rem?,,
r," e, r,? —if C et
Details are analogous to the even-dimensional case, and are left to reader. g



4 Decomposition of the curvature

Assume m > 1, and consider the following g-modules

g-mod Dimension Description
T m(2m + 3) {(I)ab € R*U* : D, = (I)(ab) ,(I)Cc = 0}
A %(2m — 1)(2m + 1)(2m + 3) {Aabc S ®3% : Aabc = Aa[bc] aA[abc] =0, Aaac = 0}

¢ %(m —D(m+1)2m+1)2m+3) | {Cabed € @Y : Cuped = C[ab][cd] aO[abc]d =0,0%,q4 =0}

The tracefree Ricci tensor, Cotton-York tensor and the Weyl tensor of a Levi-Civita connection at a point
belong to §, 2 and € respectively. We now give p-invariant decompositions of these modules, where p
stabilises a projective pure spinor [¢4] as described in section
4.1 Decomposition of the space of tracefree Ricci tensors
Proposition 4.1 The space § of tracefree symmetric 2-tensors admits a filtration

{0} =3 cFcF cFcg'cyg =3,
of p-modules

F = {P,, €F: I} (®) =0, for all K}, i=-1,0,1,2,

where the maps gHZ are defined in appendiz[A2

The associated graded p-module gr(F) = @?:72 er;(F), where gr, () := F/F T, splits into a direct sum

grio(%) :Siza griq (%) :Sgl:lv gro(F) :3:8@3(1),

of irreducible p-modules SZ as described below:

p-mod go-mod Dimension p-mod go-mod Dimension
3% | Vi1©Ps | gm(m+1) § | Voo Yo 1
55 | Yo © Vi m Fo | V10TV | m?-1

Further,
§b = {®u €3 : FIE(®) = 0, for k # 5}/

Finally, the p-module gr(§) can be expressed by means of the directed graph

where an arrow from S’f to §k | for some i,j,k implies that {?i C o ~§f_1 for any choice of irreducible
go-modules é{ and {?f_l isomorphic to §! and J¥ | respectively, or equivalently that ker gﬂf C kergﬂf_l.
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4.2 Decomposition of the space of Cotton-York tensors
Proposition 4.2 The space 2 of tensors with Cotton-York symmetries admits a filtration
o=t cwWcAcA cA®cA T cA A =,
of p-modules
A = {Aape € A: 1Y 1 (A) =0, for all k}, i=-2,-1,0,1,2,3,

where the maps gHZ are defined in appendiz[A.2
The associated graded p-module gr(2A) = @?:73 gr; (A), where gr;(A) := A /AL splits into a direct sum

grig(A) = Ay, grio(A) = AL, @ AL,
gro, () =2}, 0}, 0%, 0%, , gro(A) =AY A & AT,

of irreducible p-modules Qlj as described below:

p-mod | go-mod Dimension

Al | Vi1 ©gao | gm(m+1)(m —1)

A%, | Vo © gao sm(m — 1) p-mod | go-mod Dimension
Ay | Vi1 ©ga im(m+1) A9 | Vo @ 30 1

A%, | V11 @30 m 24 Yoosl | (m—1)(m+1)
Ay | Vo © g m Ay | BVrog-1 | (m—1)(m+1)

AL, | V51 © 042 | m(m —2)(m+1)

1
2
A3, | Vi1 @5l | im(m+2)(m—1)

with the proviso that when m = 2, A%, does not occur. Further,
A = {Agpe € A" FTIF(A) = 0, for all k # j}/ATT, for |i| < 2.
Finally, the p-module gr(2A) can be expressed by means of the directed graph

ml/m?\ /mil\w
210/ | A2 \
\X 1

S —~—\

A & A
A% oA A0, e AL,

2
\

A2, A2,
/

29 AL,

where an arrow from Qli to A¥ | for some i,j,k implies that Qvlf Co -Qulf_l for any choice of irreducible

go-modules Qvlz and Qulf_l isomorphic to le and Qlf_l respectively.

Remark 4.3 The presence of the isotopic pairs of p-modules {29, 2%, } and {3, A2} in the decomposition
of gr(2) allows us to define further p-submodules whereby there are algebraic relations among them. For
instance, one distinguish {Agpe € A ® A : FTIY(A) = 0} and {Agpe € A AT : F113(A) = 0}. In particular,
it is certainly not true that ker ?H% - ker?l‘[&J or ker ?H% - ker?l‘[%, and so on. It thus makes it difficult to
characterise the arrows of the diagram in terms of inclusions of kernels of kergﬂé as we did in [TC16].
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4.3 Decomposition of the space of Weyl tensors
Proposition 4.4 The space € of tensors with Weyl symmetries admits a filtration
o)== celce3ce?celce’celtce?ce?ce?t=¢,
of p-modules
¢ = {Cupea € €: E1IF(C) =0, for all k}, i=-3,-2,-1,0,1,2,3,4,
where the maps ng are defined in appendiz [A.2
The associated graded p-module gr(€) = @?:_4 gr;(€), where gr,(€) := €'/&L splits into a direct sum

griy(€) = ¢4, gris(€) = ¢4, grio(€) =¢l, del, ®ed,,
gr (@) =¢, o, o, gro(@)=aciodacac,

of irreducible p-modules €7 as described below:
p-mod | go-mod Dimension
€l | 92 @ gio 75m?(m? — 1) ) )
p-mod | go-mod Dimension

Chs | 941 @ gt zm(m? —1) .

o 1 < 30 @30 1
e e A ¢ | sho 24

0 © 30 m- —

¢, |g+1 @941 %m(m +1) (2) )

2 1,2/, 2 % |91@0 m® =1
Q::EQ 5[0 © g+2 gm (m — 4) 3 19
0 ° & | 92092 | ym*(m+1)(m—3)

30 © 941 m

o 1 ¢ | slh@sly | 1m2(m—1)(m+3)
¢ | 951 @gx2 | sm(m —2)(m +1)
¢t | slh@gsr | sm(m+2)(m—1)

with the proviso that when m = 2, the modules €2,, €1,, €} and €3 do not occur, and when m = 3, the
module €3 does not occur. Further,

¢ = {Capea € €' : ETF(C) = 0, for all k # j}/€T, for |i] < 3.
Finally, the p-module gr(€) can be expressed by means of the directed graph
<

2 2
1 0:72

/
¢ \et
/>< Qg >< \
¢) —=¢) ——=¢} et}\ ¢, ¢, —¢t,——=¢ey,
\ >< ca@ea/ >< /
Cg_)@/f \

0
1
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where an arrow from Cg to €F | for some i,j, k implies that éz C g - éf_l for any choice of irreducible
go-modules éf and éf_l isomorphic to & and €¥_ respectively.

Remark 4.5 Analogous to Remark 3] one can define additional p-submodules from the isotopic pair of p-
modules {€4, €7}. For instance, one has {Capea € € EF : §119(C) = 0} and {Capea € C{OEF : 111 (C) = 0},
and so on. Again, it is not true that ker EH% C kergH(l) or kergH% C kergH%. This is why we have

not characterise the arrows of the diagram in terms of inclusions of kernels of ker%Hé unlike in [TCI6].
Proposition B.13] in section [l will illustrate the issue.

5 Differential geometry of pure spinor fields

As before, conventions are taken from [T'C16] and references therein. Throughout, (M, g) will denote an
n-dimensional oriented complex Riemannian manifold, where n = 2m+ 1, with holomorphic tangent denoted
by TM and so on. The holomorphic Levi-Civita connection will be denoted V,, the Riemann tensor R,
the Weyl tensor Cgpeq, the Ricci tensor Ry, with tracefree part @, and the Ricci scalar R, their relation
being given by

4 2
Ropea = Capea + 5 Paicap) + nga[cgd]b' (5.1)

In dimension n = 3, the Weyl tensor vanishes identically, i.e. R ., = 4 <I>[a|[cgd”b] + %Rga[cgd]b.

We assume (M, g) to be spin so that the structure group of the frame bundle F M of M is Spin(2m+1, C).
The connection on the spinor bundle § will also be denoted V,, and preserves the Clifford module structure
of 8, i.e. Vo, =0, and recall that 2 v[avb}g“ = —%RabchCdBAﬁB for any holomorphic spinor field £4,
and similarly for dual spinor fields.

Remark 5.1 (Notation) As in the previous sections, we shall make use of the short-hand notation 11141 ay =
§B*ya1___akBA for any holomorphic spinor field ¢4 and any k > 0.

Assumptions 5.2 We work in the holomorphic category throughout, and I'(-) denotes the space of holo-

morphic sections of a holomorphic fiber bundle. See section for extensions to real manifolds.
Henceforth, we assume n > 3 for definiteness, relegating the case n = 3 to appendix [B.Il Nonetheless,

many of the statements made in this section still apply by setting C' ., = 0.

Finally, we stress that the results presented herein are local in nature.

5.1 Projective pure spinor fields

Definition 5.3 An almost null structure N' on (M,g) is a rank-m distribution that is totally null, i.e.
g(v,w) = 0 for all sections v, w of A.

An almost null structure A will also be referred to as a y-plane distribution. The orthogonal complement
N+ of NV is a rank-(m + 1) subbundle of TM that contains . The bundle of all almost null structures on
(M, g) will be denoted Gr,,,(TM,g). We can use the spin structure on (M, g) to identify an almost null
structure as a projective pure spinor field, i.e. a spinor field defined up to scale and which is pure at every
point.

Now, let [¢€4] be a holomorphic projective pure spinor field on M, i.e. a (global) holomorphic section of
Grj(TM, g), with associated holomorphic almost null structure N and orthogonal complement ./\/'gl. This
geometric data is equivalent to a reduction of the structure group of FM to the stabiliser P of [¢4]. The
representation theory of P, or of its Lie algebra p, which we have described in sections 2 4 and [3 gives
rise to holomorphic vector bundles in the standard way as already explicated in [TCI16]. In particular, the
pointwise algebraic degeneracy of the curvature tensors will be expressed in terms of the maps gHg, ?Hf

and gHZ given in Appendix [A2l
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5.1.1 Intrinsic torsion

For simplicity, we choose a holomorphic connection 1-form I' ;¢ for V, such that

1
vaé.A = _Z achYbCBAgB . (52)

We can identify the notion of intrinsic torsion [Che53,Ber60,[Sal89] of the P-structure defined by [¢4] with

m

—2
2
3

Fabcgngcc € wil ® /\26

which, at a point, we identify as an element of the p-module 27 := U ® g/p defined in section [l When the
intrinsic torsion vanishes, the Levi-Civita connection preserves [¢4], i.e.

v, 4 =0, ie. V4 = a4, (5.3)

for some 1-form «,. If the intrinsic torsion does not vanish, we can nevertheless investigate the differential
and geometric properties of [€4], V¢ and J\/'gL in terms of the decomposition of 20 given in Proposition 3.2l
Before we proceed, we compute, from (£.2) and (21II]), the formula

(V") & = = (Vag?) €7 4 Doy P65
from which we deduce
(Vas?) & = = (vas®) €2, (Vag") &7 = = (Va€?) €7+ 0P
(Vae"P) &7€P) =T €1PeCeP) (V,€114) €P1gl76P) = T, M AePleelCgP)

The first of these identities is trivially satisfied by virtue of the purity condition. These formulae together
with Proposition prove the following result.

Proposition 5.4 Let [¢2] be a holomorphic projective pure spinor field on (M, g), and let T qp£2P¢°C € 0
be its associated intrinsic torsion. Then, pointwise,

o ?JHQ3(F) =0 if and only if (m > 2 only)

(¢4v,8) &¢” = o (5.4)

. ?Hig(l") =0 if and only if
€14 (£2B1V,£10) €PIEPer 4 €O (£0P1y 014) ePIgPer) = o, (5.5)

. ?JHQ2(F) =0 if and only if
(gaAvagb[B) €CePl — 0, (5.6)

. ?H1_2(l") =0 if and only if
(¢11v,67) €9 =0, (5.7)

. ?HgQ(F) =0 if and only if
€ (£PIV, 68 ) €196 1 €l (¢oPIV ¢ ) €A = o (5.8)
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o ¥ (T) = 0 if and only if
(10 V.E"P) €7 + 2 (6249 ,£17) £ = 0; (5.9)
o ¥ (T) = 0 if and only if (m > 2 only)

(7.6") 067 + L, (570,67 6 42 (£59,6) )P =0 (510)

?Hz_l(F) =0 if and only if

(5““‘%5[3) ¢ =o0; (5.11)

o FIH(T) = 0 if and only if
(Vg ) €% —¢4v,6P = 0; (5.12)

o TIY(T) = 0 if and only if
(7.6 €1 = 2 ((v,£%) €71 - £15v,687) = 0. (513)

These statements are independent of the scale of £4.

Remark 5.5 The case m = 2, i.e. n = b, is also dealt separately in Appendix[B.2] where the spinor calculus
simplifies the formulae above.

5.1.2 Geometric properties

Definition 5.6 An almost null structure N is said to be integrable if [[(N),T'(N)] C T'(N), totally geodetic
if VxY € T(N) for all X,Y € ['(N), co-integrable if [[(N+),T(N1)] € T(N1), and totally co-geodetic if
VY € DV for all X,Y e [(NL).

The geometric properties of N¢ and J\/'gL can be encoded in terms of differential conditions on [¢4].

Proposition 5.7 Let N¢ be an almost null structure with associated projective pure spinor field [€4] on
(M, g). Then

o [[(Ng),T(Ng)] € T(NE) if and only if
€ (£P1v, ") &P e = 0; (5.14)
o N is integrable if and only if (51) holds, i.e.
(¢11v,e7) €9 =0
o N¢ is totally geodetic if and only if

(g[AgaB]vag[B) €l =0, (5.15)
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o N¢ is co-integrable if and only if
(e11v,87) P =0 (5.16)
o N¢ is integrable and co-integrable if and only if
(e4v,£17) £0¢P) = o; g (e71v,£9) eP = 0. (5.17)
o N¢ is totally co-geodetic if and only if (BI)) holds, i.e.

(¢1v,67) ¢ = 0.

Proof. We compute each of the conditions in turn using (5:2)) and B1) in terms of the connection components.
It then suffices to interpret the vanishing of these components in terms of the Lie bracket relations (since
V., is torsionfree). More explicitly, these are given by

° FABC — 07

° FABC — F[A:B] — O,

° FABC — FA:B — O,
o T4BC — 0 and I'*E = T4B | (in particular, T(4:5) = ),
° FABC — FAB — FA:B — O,

° FABC — FAB — FA:B — FA — 0,

respectively. |
In contrast to the even-dimensional case, a (co-)integrable almost null structure is not necessarily totally
(co-)geodetic. However, it is straightforward to show, as an consequence of Proposition 5.7, or otherwise:

Lemma 5.8 Let [¢4] be a projective pure spinor. Then (B11) = (G17) = (G15) = G1) . Equivalently,

for any almost null structure N,
o if N is totally co-geodetic, then it is integrable and co-integrable;
o if N is integrable and co-integrable, then it is totally geodetic;

o if N is totally geodetic, then it is integrable.

Definition 5.9 Let [¢4] be a holomorphic projective pure spinor field on (M, g) with almost null structure
Ne. We say that &4 is geodetic, respectively co-geodetic, if N is totally geodetic, respectively co-geodetic.

Remark 5.10 Proposition [5.4] can also be used to characterise the properties given in Proposition (.7 in

terms of the intrinsic torsion T'yp.£*BE°C € 2T of the P-structure. In particular, (5.14) holds if and only if
TapePBEeC € 9072, Similarly, (5.17) holds if and only if Ty £°B€°C € 9071,
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Conformal invariance With reference to appendix [C] we prove

Proposition 5.11 Conditions (5.4), (5.0), (&06), G1), E8), GI0) and @I6), (and thus G14), I7))
are conformally invariant.
Suppose that [¢4] satisfies (5.10) and
(15" Va€") 676 + 2 (49,617 ) €7 = (n - 3) 26PNV, f
for some holomorphic function f. Then there exists a conformal rescaling for which [¢4] satisfies
(Vag"7) 5™ =0, (5.18)

i.e. VX € T(NgY) for all X € T(Ng), where N is the almost null structure associated to [€4].

Curvature conditions The integrability conditions for these equations can easily be computed by differ-
entiation a second time and commuting the covariant derivatives.

Proposition 5.12 Let &4 be a geodetic spinor on (M, g), i.e. £ satisfies (515). Then
€M12,(C) =0, i.e. Mg P IEPEE Copeq = 0.
Suppose further that £ is co-geodetic, i.c. £ satisfies (G11)). Then £4A¢PBECEIPR peq = 0 and
I2,(2) =0 = 1L,(C) =0,
ie. EA¢BIP , lOEP) = 0 if and only if £*AEPPECEP Copea = 0.
For a parallel projective pure spinor, we have the following — see also [Gall3] in more generality.

Proposition 5.13 Let [¢4] be a parallel projective pure spinor on (M, g), i.e. €4 satisfies [5.3). Then

§ 4P Rapea = 0, (5.19)
§EP Ry, =0, (5.20)
APy, =0, i.e. o, (@) =0, (5.21)
£aAePBeclC e Plo i =0 ie. §1°,(C) = £11L,(C) = €112, (C) = 0, (5.22)

and in addition, when m > 2,
f11(C) =0 (5.23)

Further,

R=0 = SIg(e) =0 = fI9(C) =0, (5.24)
Sg(@) =0, = fI5(C) =0 = fII3(C) =0, (5.25)
Smj(e) =0 = f9(C) =0. (5.26)

Proof. Equations (5.19) and (5.20)) are is a direct consequence of (B.3]). Equation (.21) follows from relating
Rap and @y as @, 04¢08 = LREACP | from which we also conclude the first part of (5.24). Next, (5.1
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yields (522)). To conclude the remaining conditions, we use the definitions of gHg and gHg together with
the computations

2

cC dD _ [C dD 1 C¢D
£ Capal”™ = mf[a UAPS l4+ me[afb] )
2(n —4) 2 2(n —2) 2
beBgdD B ¢dD . D +dB . D¢B B¢D
Cbcad§ 5 - n—9 5 5 (I)ad n_2§ 5 (I)ad n(n_l)R€a§ +7’L(7’L—1)(7’L—2)R§a§ )
. 2(n—3 1
Chnat e = 203 (5D, 1 LoD
n—2 n
Obcadé.adAgbCB = _2n - 3R§A§B )
n—2
2 2
bB¢cCedD _ _ B¢[C dD] B ¢[C ¢D]
Cabcdé- 5 5 TL—2§ 5 (badg + TL(TL— 1)(77,—2)R§ 5 ga *

In particular, we note that the dimensions of the irreducible p-invariant parts of the Weyl tensor must match
those of the tracefree Ricci tensor. From the invariant diagram of Proposition [44] one sees that condition
(5:23) imposes algebraic conditions on elements of the isotopic modules €} and €3, which, by dimension
counting must match 3. More explicitly, on referring to the maps gHg , we have

n—>5 A(BC 1 C)A
——6PI(@), N, (0N, = P (@), 7" (mod €P¢a).

STH(C)PC, 61 = 22— —

where we have rewritten gﬂé (@) := PP, — L-¢24¢C D, 7, P (mod £4¢Pay,). Condition (5.25) now
follows. ' O
5.2 Spinorial differential equations

5.2.1 Scale-dependent geodetic and co-geodetic spinors

A scale-dependent variation of (5.I5) is given by ¢[4¢2BIV ¢B = 0, with integrability condition gHQ2(C’) =
glAgaBebClecdD oy, o = 0. This is conformally invariant provided €4 has conformal weight —1.

Similarly, a scale-dependent variation of (BI1]) is given by §“AVQ§B = 0, with integrability condi-
tions given by {*4PPEAC R0y = 0. Further, T, (@) = ¢ ¢ Pl ,¢C = 0 if and only if {II°,(C) =
gaAgbBC de§CdC =0

a

5.2.2 Parallel pure spinors

The next proposition follows from Proposition 513

Proposition 5.14 Let £* be a parallel pure spinor field on (M, g), i.e. V64 = 0. Then R, ,£°P =0,
SI9(®) = @, =0, R=0, and {1I§(C) = C,,,,£°P = 0.

5.2.3 Null zero-rest-mass fields
The smaller irreducible part of the covariant derivative of a spinor field ¢4 leads to the (Weyl-)Dirac equation
74P Vaet =0, (5.27)

In contrast to even dimensions, this equation admits not one, but two generalisations to irreducible spinor
fields of higher valence.
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Definition 5.15 Let ¢A142-Ar = ¢(A142.-4%) he a holomorphic spinor field on (M, g) irreducible in the
sense that W“AICWGA2D¢A1A2A3“'A’C = —¢OPAs-Ar We say that ¢p14* is a zero-rest-mass (zrm) field if
it satisfies

75\ Vgt P — g, (5.28)
and a co-zero-rest-mass (co-zrm) field if it satisfies

FyaB[Al ¥, 2 4s - ArB _ (5.29)

Remark 5.16 When k& = 2, an irreducible spinor field as above is simply an m-form, or by Hodge duality,
an (m + 1)-form. Equation (5.28]), respectively, (5.29) are then equivalent to this m-form to be closed,

respectively, co-closed, hence the use of terminology. This follows from the fact that matrices 74, 4., AP

and Yo, o, AB are symmetric and skewsymmetric respectively.
. . . . A ”.A . . k
Equations (5.28) and (5.29) are conformally invariant provided that ¢~*~“* is of conformal weight —m—3
and —m — k respectively. In particular, a solution of both (528) and (529), i.e.
Vg Vgt B =0, (5.30)

is not conformally invariant. In the case k = 2, such a solution corresponds to a closed and co-closed m-form.
The integrability condition for the existence of solutions to equations (5.28) and (5.29)) of valence greater
than two is given by the following lemma.

Proposition 5.17 For k > 2, let ¢pA142-4% be a solution of [B:28) or (B:29) on (M,g). Then
a cd (C
e 7’0, P Capeay (@ pCaCReiCel — g (5.31)
If pA142--A% s g solution of (5.30), then we have in addition
bo[A d (C
ol CQ[ “I’baﬂ D( 80 Cr)C2DIBl = (5.32)

Proof. Equations (5:28), (5:29) and (530) can be rewritten as 7%54 V,¢A2 4B = yArdzAk  where
PpArAaAr) — o qplArA2]As. Ak — 0 and ¢pA142--Ar = ( respectively. Taking a second covariant derivative
and commuting lead to

(k _ 2) ,yaCIA,ybc2BCade/ycdD(03¢C4.~.Ck)C1CzD _ 4(k i 2) '7bC2 [A|Pbd'7dD(03¢C4”'Ck)CQDIB]
_ Q’YaD[AV B1C3Ca...Ci D

By the conformal invariance of (5.28) and (5.29)), the first term on the LHS must vanish identically, while the
second term on the LHS cancels the RHS, hence (31]). When (530) holds, conformal invariance is broken,
and one has the additional constraint (5.32)). O
A spinor field ¢pA142:+A% is referred to as null if it takes the form ¢A142Ar = e¥¢A1eA2  ¢Ar for some
holomorphic pure spinor field €4, and holomorphic function 1. Specialising Proposition [5.17 yields

Corollary 5.18 For k > 2, suppose that ¢pA142+-Ak .= e¥¢AigAz ¢4k s q solution of (528) or (5.29) on
(M,g). Then

EHQI(C) = 0 ) i.e. gaAgaBOabcdé.Cdc = 07 (533)
Further, if 1424 js a solution of ([5.30), then we have in addition

o, (@) =o, ie. gAghBe €l = 0. (5.34)
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The relation between null solutions of the zrm-field equation and the existence of foliating spinors is
known as the Robinson theorem [Rob61] in four dimensions, and was later generalised to even dimensions
in [HMS8S]. Here, we give odd-dimensional versions of the theorem.

Theorem 5.19 (Robinson theorem for zrm fields) Let é4 be a holomorphic pure spinor field on (M, g)
with almost null structure Ne. Let 1 be a holomorphic function and suppose that pArAz Ak = VAL | A
satisfies the zrm field equation (5.28)). Then locally, €4 satisfies

€ (£PIV,€7) €7 4 €l (¢PIv,g14) €7 =, (5.35)
aldg B\ ([CeD] _ K =2 (1[4 (saBlg bC) ¢D o ¢[A (caBlg O\ (DY _
(11, e7) g7 — = (1 (£719,87) &P + € (£719,67) €7) = 0. (5.36)
In particular, [T(Ng), D(Ne)] C T(Ng"). When k = 2, €4 locally satisfies (5.16), i.e. Ne is co-integrable.
Suppose that €4 satisfies (G.10), i.e. N is co-integrable. Then locally there exists a holomorphic func-

tion v such that the spinor field ¢pAB = e¥€AEE satisfies (5.28). There is the freedom of adding to v a
holomorphic function constant along the leaves of ./\/'gl.

Proof. For any ¢A142--Ar .= e¥¢Ar1¢A2 | €Ak we have, in regions where ¢4142-+4% does not vanish,

YT AE = o (g Mgt gt (k= 1) (0 W, ) e gt 4 (Vg et e )
(5.37)

If 414k satisfies (5:28), then we have
0= ¢Maghs | gArgad)y o 4 (k1) (gamlvagfh) gAs M) 4 (vagaMl) ghaghs | cA) | (5.38)

Tensoring with ¢8¢¢ and skewing over A1 B and A,C lead to (5.35). Working in the splitting 2.7 with a
choice of spinor 14 dual to &4, and using ([B]), this implies T'(B:¢) = TABC = ), i.e. ¢4 satisfies (5.14).
Expanding (5.38) now yields

1 : a
0— <_Z (kFBC _ 2FB.C) Nap C(Al _|_1/}(A1) §A2§A3 _ ”§Ak),

for some 4 € G™7". Since the first term on the RHS lies in 6%, we must have kI'B¢ = 2T5:C e,
(536) holds. When k = 2, (5.30]) reduces to (E.14).

For the converse when k = 2, we follow the geometrical proof given in [Eas95,[MHK95]. Suppose that ¢4
satisfies (5.I0)), i.e. Ng is co-integrable. Then, locally, M is fibered over the leaf space £ of /\/,EL Choose a
holomorphic section ¢ of the tautological line bundle A™T*L of £. Then, ¢ is clearly closed. Its pull-back to
M must be orthogonal to each leaf of the foliation, i.e. it must be of the form ¢pAP := ¢, , Hor-emAB =
eV €4¢PB for some holomorphic function . Further, since the exterior derivative commutes with the pull-back,
¢ is also closed, i.e. $P satisty (5.28).

Finally, in both cases, adding any holomorphic function constant along the leaves of NEJ‘ to ¥, i.e.
annihilated by €24V, leaves the relevant field equations unchanged. 0

Theorem 5.20 (Robinson theorem for co-zrm fields) Let ¢4 be a holomorphic pure spinor field on
(M, g) with almost null structure Ne¢. Let ¢ be a holomorphic function and suppose that pArAz - An =
eVeAigAs A satisfies the co-zrm field equation (529). Then locally ¢4 satisfies (5.1, i.e. N is integrable.
Further, when k > 2, 4 satisfies (5.10), i.e. N¢ is totally geodetic.

Suppose that €4 satisfies [5.1), i.e. Ne is integrable. Then locally there exists a holomorphic function
Y such that the pure spinor field p4B = eV¢AEE satisfies (B.29). Further, if £ satisfies (GIH), i.e. N is
totally geodetic, and the curvature condition (533)), then locally, for every k > 2, there exists a holomorphic
function b such that the spinor field ¢pArA2Ar = e¥¢ArgAz | ¢Ar satisfies (5.29). In both cases, there is
the freedom of adding to 1 a holomorphic function constant along the leaves of Ne.
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Proof. For k > 2, if ¢p41--4% satisfies (5.29), then equation (5.37) becomes

0 =gt ghrglhagrhly 4 (gilhiy et o gt
+ (k—2) (§[A2§“A1]Va§(‘43) §A4 - 'gAk) + (Vaga[Al) €A2]§A3 B .gAk . (5.39)

Then, tensoring with ¢¥ and skewing over A; A2 B yield (5.7, i.e. A is integrable. When k& > 2, one can
also tensor with 8 and skew over A3 B, and conclude (B8], i.e. N is totally geodetic.

For the converse, the case k = 2 is similar to the proof of Theorem except that one obtains a closed
(m + 1)-form, which is Hodge dual to a co-closed m-form. So we focus on the case k > 2 and assume that
condition (G.I5]) holds. This is equivalent to

AV, E8 = ¢MAP + ¢ABP + 0P + DA, VA = BN+ FA-BA+ AP 1 0t + DY, (5.40)

for some functions C, E, spinors B4, DA, F4 in 6" =im €4, and A4 in S im{lﬁ). We want to show
that locally there exists a holomorphic function ¢ such that (E39) holds, i.e.

glAgaBly y = caldy ¢Bl 4 (Vaé-a[A) €8l _ (k —2) DB = ¢lA (2 BBl _ 1.pBl _ FB]) — glAyBl
(5.41)
Differentiating the above equation with respect to £[4¢*BlV,, i.e. along N, yields the integrability condition
gUDByl = (heeBy gl (5.42)
We expand the RHS of (5.42)) using the expression (5.41]) for ¢4:
glgeBy 4Ol = _galdy (§B¢C]> + (ga[AvagB) el
_ _ga[Ava (§bBVb§C]) _ ga[Ava ((vbgbB) 50]) + (k- 2)£11[Ava (gBDC]) + (ga[AvagB) ¢C] '
We compute each term in turn using the assumption (533). For the third term, we find
galdy (gBDC]) ¢D = galdy (gBDC]gD) _ (ga[A\vagD) ¢lBpCl = galdy, (ngbc]vbgD)

= (£147,67) (£17,67) — 4 (£257,8) v,6P — W .

For the second term, we have
ga[Ava ((ngbB) 50]) _ (é-a[AvavbgbB> 5()] _ (ga[AvagB) vbgbc]

1
_ (ga[Avbvaé-bB) é-C] + Zé-a[A\RabcdgcdD,YbD\Bé-C] _ (ga[Avaé-B) ngbC]

= 4 (£147,6") ) — (Vg A HFae P T - Je MRt e — (747,67 vigte)
-V, ((gb[AvbgaB) 50]) _ (ga[AvagbB) v, — (ga[Ava§B> v,£0C)
while the first term simply becomes
£V, (£79,69) = (£17,6%7) V46 - Lot e el

The last step is to use (5.40) and (541) to express the covariant derivative of €4 in all these expressions

in terms of ¢4, A4, BA, C, DA, E and FA. Thus, we get £&94V, (¢8DC) = —¢ADE (49 + BY) and

similarly for the other terms. Applying (541]) to the LHS of (542) reveals that (542) is indeed satisfied.
Finally, in both cases, adding any holomorphic function constant along the leaves of NV¢ to v, i.e. anni-

hilated by £4€4BIV, | leaves the relevant field equations unchanged. O
We omit the proof of the following theorem, which follows roughly the one given in [HMSS].
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Theorem 5.21 (Non-conformally invariant Robinson theorem) Let (4 be a holomorphic pure spinor
field on (M, g) with almost null structure Ne. Let 1) be a holomorphic function and suppose that pAr Az Ak =
eV A s both a zrm field and a co-zrm field, i.e. pA1A2 A% satisfies (5.30). Then locally €4 satisfies
(GEI0), d.e. Ne is totally co-geodetic.

Suppose that €4 satisfies (B.11)), i.e. N is totally co-geodetic. Then locally there exists a holomor-
phic function ¢ such that A8 = eV¢A¢(P satisfies (530). Suppose further that €4 satisfies the curvature
conditions [33) and @34). Then, for every k > 2, there exists a holomorphic function v such that
pAr Az Ak = oV eAreAe Ak satisfies (5.30). In both cases, there is the freedom of adding to ¢ a holomor-
phic function constant along the leaves of ./\/'gl.

Remark 5.22 In flat even-dimensional space, the Robinson theorem is often used in conjunction with the
Kerr theorem [KS09,[Pen67,[HMS8], by means of which one (locally) generates null structures in terms
of geometric data in a ‘twistor space’. It is interesting to note that one can also distinguish three odd-
dimensional counterparts of the Kerr theorem as presented in [TC17] depending the various ‘degrees’ of
integrability of an almost null structure.

5.2.4 Conformal Killing spinor
Complementary to (5:27)), one defines the twistor equation

1
Vo€t + E%BACB =0, (5.43)

for any holomorphic spinor field ¢4. Here, (5.43) determines ¢(? = %7“ A BV.E4. A solution ¢4 will be

referred to as a conformal Killing spinor or twistor-spinor. The spinor field ¢4 can be shown to satisfy

1
Val” + 5P "¢ =0, (5.44)

where P, := ﬁ@ab — ng“b is the Rho or Schouten tensor (see Appendix [C]). Equations (5.43) and

(544) are conformally invariant provided that ¢4 and ¢4 transform as

A A _ ¢A A ia_o-1(a L L can
e =87, (C= =0 (C +\/§Ta§ ) (5.45)

The equivalence class of pairs of spinors (€4, ¢4) ~ (€4, (4) related by (5.45) can be thought of as a section
(€4, ¢4) of the local twistor bundle [PRSGLBEG4] or spin tractor bundle [HS11], and we shall refer to such
a section as a tractor-spinor. These are spinors for the group Spin(2m + 3, C). Tracing (5.44]) yields

1
2v/2(n — 1)

The integrability condition for the existence of a conformal Killing spinor is well-known, see e.g. [BJ10].
Here, we restate it in the context of pure spinor fields.

Vv, (B =~ R¢B. (5.46)

Proposition 5.23 Let ¢4 be a pure conformal Killing spinor on (M, g) with (B := ‘/TiwaABVaﬁA. Then
CpeaP =0, ie.  §I3(C) =0,
Cabcdcbcc - 2\/§Acab€CE = Oa (547)
AP =0, de  PY(A) =0,

where A, = 2V,P, is the Cotton-York tensor (see appendiz[C).

22



Proposition 5.24 Let €4 be a pure conformal Killing spinor on (M, g) with almost null structure Ne. Set
(B = VT%GABVagA. Then &4 satisfies (5.8), i.e.
€ (€PIV ) €1CEP 1 €l (¢oPIv ) A .
Further, €4 satisfies (5.17), i.e. N is integrable and co-integrable, if and only if
¢ = —¢¢”, AT = ¢l —264¢P, (5.48)

i.e. 4, if non-zero, is pure and its almost null structure N intersects Ne in a totally null plane of dimension
m — 1 or m at every point.

Suppose that ¢4 satisfies (G.IT) so that (4 satisfies (5.48). Then
(¢4v,¢") ¢ ¢ = 0. (5.49)

Proof. To prove that ¢4 satisfies (5.8), it suffices to contract equation (5.43) with €24 and v°, ¢, We find
1
V2

The second term is skew-symmetric in AC. Therefore, symmetrising over AC' yields (5.8)).
Next, suppose that ¢4 satisfies (5.17), which is equivalent to

(€4V,8"7) & + — (€140 E" +¢Pete) =0,

L
V2

at every point — here &% = (¢4) and G = im¢2. By (5.43), the LHS is —%5“*“4‘5 and must lie in the

same module as the RHS. This in particular means that €4 and ¢# must satisfy (E48) — checking that indeed
a®t = —184 = (4 can be done by aplying ([ZJ). The converse, that (5.48) implies (517), is immediate.
Finally, assume &4 satisfies (5.17) so that (5.48) holds. Contracting equation (5.44) with ¢*4 and v°,“¢A

leads to

£ 4V,eF = ——= (%0 + pP) e (6% 0677 ) 0 (67 &Y )

1
(Va7 G = S50 P 0T 4 2V2C PP = 0,
and the result (5:49) follows by symmetry considerations. a

Remark 5.25 Using (B.43]), one checks that the statements of Proposition [5.24] are conformally invariant.
Further, the condition that the conformal Killing spinor ¢4 be pure and (4 satisfy (5.48) is equivalent

to the corresponding tractor-spinor (¢4, ¢4) being a pure section of the local twistor bundle, i.e. it is a pure
spinor for Spin(2m + 3,C). See [HMS8|[TCTT].

Example 5.26 Using the method of equivalence, Cartan [Carl(0] showed how to encode the invariance
properties of certain ODEs of Monge type in terms of a (2,3, 5)-distribution, i.e. a rank-2 distribution N
on a five-dimensional smooth manifold, that bracket-generates the tangent bundle. This is more invariantly
expressed as a Go-principal bundle equipped with a Cartan connection. In [Nur05], Nurowski associates to
this (2, 3, 5)-distribution a five-dimensional split-signature conformal structure, with respect to which A is
totally null, with orthogonal complement [N, A/]. The general theory, expounded in the language of parabolic
geometries, is given in [CS09,[HS09], more particularly, in [HSI1], where it is shown how such manifolds are
characterised by the existence of a real conformal Killing spinor, generic in the sense that £¢4¢4 # 0. In
five dimensions, this is consistent since (5.8)) implies (G.14]). This example works equally in the holomorphic
category.
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Killing spinors A holomorphic spinor field £€# that is both a solution to the twistor equation (5.43) and
an eigenspinor of the Dirac operator, i.e. W“BCV(@B = M\¢C for some holomorphic function A on M, is
known as a Killing spinor. Otherwise put, £4 satisfies the Killing equation

V4 + /\%55;‘ =0. (5.50)

That this equation is not conformally invariant is reflected in the geometric properties of its solutions. In

particular, as a special case of (5.43), (5.44), (5.46) and (5.47) with ¢4 = A ¢4, we prove:

Proposition 5.27 Let ¢4 be a pure Killing spinor on (M, g) with almost null structure Ne. Then

ey(C) =0, ice. Capea ™ =0,
ATIY(A) = I3 (4) = 0 i.e. €4 4. =0,
STIg(®) = 0.

Further, its eigenfunction \ satisfies €44V \ = — ()\2 + ﬁR) ¢4, and is thus constant along Ng.

The following proposition is straightforward.

Proposition 5.28 Let ¢4 be a pure conformal Killing spinor on (M, g) with almost null structure Ne. Set
A= %Vaﬁ‘m. Then &4 satisfies (510)), i.e. N is totally co-geodetic, if and only if EACBl =0, i.e. €4 is
a Killing spinor. This being the case, we have further (Vaﬁb[A) 515350] =0.

m—2 m—4

Remark 5.29 The gist of Propositions [5.24] and [5.28 is the filtration of p-modules &% C &7 C & 2
The spinor ¢4 belonging to one of these submodules determines the geometric property of Ne.

The following result is analogous to the one given in even dimensions in [HSST16].

Proposition 5.30 Let &4 be a pure conformal Killing spinor whose associated null structure Ne is integrable
and co-integrable. Then, locally, there exists a conformal rescaling such that £ is parallel, up to the freedom
of adding to such a conformal rescaling any holomorphic function constant along the leaves of ./\/'gl.

Proof. We assume that A is integrable and co-integrable so that by Proposition[5.24] ¢and ¢4 = %Vaf‘”‘
satisfy (5.48). In particular, (4 € im&4. We must apply the transformation (5.45)) to find a holomorphic

conformal factor 2 such that CA A = 0. First, we show that locally one can always find a holomorphic function
¢ such that 4¢P = —%5[’45“3] Va¢, which follows from the integrability of N, the twistor equation (5.43))

and its prolongation (5.44). This yields a conformal factor such that ¢4 is a solution of the Killing spinor

equation (5.50). One can then find a holomorphic function 1 such that A4 := ¢34V 4, which yields a

conformal factor that turns our Killing spinor into a parallel spinor. There is the freedom of adding to the

scale a smooth function constant along N, EL O
A similar result is given in [Lis13].

5.2.5 Relation to the Goldberg-Sachs theorem

In four dimensions, the Goldberg-Sachs theorem [GS09| gives a relation between the existence of integrable
null structures and degeneracy conditions on the Weyl curvature — for generalisations, see [GHN10]. A
‘coarse’ higher-dimensional generalisation is given in [TCI12], which can be formulated in the following way
in odd dimensions.
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Theorem 5.31 ([TCLITCI2]) Assume m > 2. Let [€4] be a holomorphic projective pure spinor field on
a (2m + 1)-dimensional complex Riemannian manifold (M, g) with associated almost null structure Ng.
Suppose the Weyl tensor and the Cotton-York tensor satisfies the algebraic degeneracy conditions

€112,(0) = £11L,(C) = £112,(O) ie. AP0, 6P =0,

= O B
‘ Y . (5.51)
ST05(A) = JThy(A) =0,  de  {AgPIPYP A, =0,
Suppose further that the Weyl tensor is otherwise generic. Then [£4] satisfies (G.1T), i.e. N is integrable
and co-integrable.

In the light of Proposition5.24]and Example[5.26] there are pure spinor fields with non-integrable and non-
co-integrable almost null structures, whose integrability condition satisfies (F.51), but violates the genericity
assumption by virtue of Proposition [5.23l This motivates the following conjecture improving [TC12]:

Conjecture 5.32 Suppose that [€4] is a projective pure spinor field on a (2m4-1)-dimensional non-conformally
flat Einstein spin complex Riemannian manifold (M, g) such that the Weyl tensor satisfies §“A§bB§C[CCabcd§D] =

0. Then &4 satisfies (5.8).

Weaker conditions such as (5.5) may well be possible too, but an investigation of the veracity of the above
conjecture is beyond the scope of this article.

Remark 5.33 A non-conformally invariant Goldberg-Sachs theorem in dimension three is given in [NTCI5].

5.3 Application to real pseudo-Riemannian manifolds

Almost null structures on odd-dimensional real pseudo-Riemannian manifolds are subject to considerations
regarding reality conditions and analyticity similar to the even-dimensional case — see [TC16] for details. It
suffices to say here that the real index of a pure spinor — see section[2.6]— allows for a wider range of geometric
interpretations. For positive definite metric, the intrinsic torsion of an almost contact metric structure, i.e.
an odd-dimensional analogue of an almost Hermitian structure, was investigated in [AG86L/(CG90]. Finally,
we emphasise that all the results obtained in the present article can be translated into the smooth category
in the case of a spin oriented and time-oriented smooth peudo-Riemannian manifold of signature (m,m + 1)
equipped with a real projective pure spinor or a real almost null structure.
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A Spinorial description of curvature tensors

We follow the notation of section [ throughout, i.e. U is a (2m + 1)-dimensional complex vector space
equipped with a non-degenerate symmetric bilinear form g,; and a pure spinor £4.
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A.1 Elements of the gy-modules of §, 2 and €

We choose a pure spinor 74 such that £4n, = —% to split U as [27)). We shall use the elements u,, hqp and
Wap given by ([2.8) and @12). Upstairs and downstairs spinor indices will refer to & m—> = im £ Nkerna and
2

67%72 = imn,4 Nker A respectively. A spinor will be referred to as (totally) tracefree, if the contraction

BIA

of any pair of indices with I3, as given by ([23), vanishes, e.g. 0,513 = 0. We now describe elements of
the go-modules given in Propositions [4.1], and 4.4

The tracefree

Ricci tensor Let ®,, € §. Then

o &, c @6 if and only if &gy = 5{; nb)B@AB for some tracefree ® ,7;

o &, €3 if and only if B,y = @ (uaub + ﬁhub) for some complex ®;

o & , ¢ é(l) if and only if &4, = 5(31(1),4%) for some ® 4;

e & € @8 if and only if @, = 53455@,43 for some ®4p = ®(4p).

Using the duality (@0_1)* = @?, spinorial decompositions of elements of 0 ; for ¢ = 1,2 can be obtained by
interchanging ¢4 and n4, and making appropriate changes of index structures.

The Cotton-York tensor Let Ay € A. Then

L4 Aabc S ﬁlg
L4 Aabc S Qv[(l)
5(2

L d Aabc € Ql0
5(0

L4 Aabc S Qll
L4 Aabc S qu
5(2

L d Aabc € Qll
e A A3
abe € 1

5(0

(] Aabc (S 912
L d Aabc € Qvl%

° Aabc S Q[g

if and only if A ,. = a (uawbc - u[bwc]a) for some complex a;

if and only if A, = u Ay, —up A 4, where Agp = §f277b]BAAB for some tracefree A ,5;
if and only if A, = A, u where Ay = §énb)BAAB for some tracefree A ,7;

if and only if A,,, = A,w,. — Apw,, + %ha[bwc]dAd where A. = £ A for some Ag;

if and only if 4 ,. = uau[bAC] +-Ln [bAC] where A, = ;;‘AA for some A4;

n—2"a

if and only if Agpe = nacﬁjfngABc — 5345[?776]014,430 for some tracefree A ,5¢ = A[AB]C;

if and only if Agpe = §f§[€nc]CAABC for some tracefree A 5 = A(AB)C;
if and only if A ;. = u,4;,. — u[bAc]a where Ay = §f§f‘AAB fo some A, 5 = A[AB];
if and only if A, = A, u where Ay = EAEB A 4 for some A 45 = A gy

if and only if Agpe = §f§f§EAABC for some Aapc = Aapc) satistying Ajapc) = 0.

Using the duality (Qvlj_ = ﬁf, spinorial decompositions of elements of A ; for i = 1,2,3 can be obtained
by interchanging ¢* and 74, and making appropriate changes of index structures.
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The Weyl tensor Let Cypeq € €. Then

Cabed € 628 if and only if C,, ., = ¢ (2 WapWed = 2WaeWapp T % ha[chd]b) for some complex c;

Cabed € é(l) if and only if

6 € e
Caped = WapCoa + CopWea — 2Wig e Cd]|b] T h_3 (h[a“cwd] C\ ble T h[c|[awb] C| d]e) )

where C,; = 2§gnd]DCCD for some tracefree C(,”;

Cubed € ég if and only if Cypeq = Up, Cb] e Uq — %73 h[aHCCde] where C_; := 2§(C;nd)DCCD for some

D.
tracefree Cn ™
Cabed € ég if and only if

Cabed = fffl?nccﬁdDCABCD + ffﬁfﬁacancABCD - 25{3\§€nd]\Dnb]BOACDB

for some tracefree C 4 P8 = C[Ac] [DB];

Cabea € €4 if and only if Cupeq = §£|§End]|Dnb]BCACDB for some tracefree C 4 P8 = C(AC)(DB);

Cabed € é‘f if and only if

Cabea = Wap Ol U g) + WeqgCla Uy = Wpa e Cajuyn) = Vel Cy g
3

+n—2

(h{anc“d]%b]ece + h[cna“b]%d]ece) )
where C, = ¢2C, for some C4;

Cabed € é} if and only if Cypeq = u, Cb]cd + uy, Cd]ab where C,,, = n.06268C , 5 — §f§£nb]CCABC
for some tracefree C 4 z¢ = C'[AB}C;

Clubed € é% if and only if Cypeq = uy, Cb]cd +u[c Cd]ab, where C_,, = fffﬁnb]CCABc for some tracefree
Cap® = C(AB)C;

Cabea € €3 if and only if C, ;= w,,C.y + Cpwoy — 2w, 11c €y Where Cqp = EAEBCap for some
Cap = Clapy;

Cabed € @ if and only if Cypeq = g, Cb][cud] -

L
Cas = Ciap);

n Cd”b] where Ccd = gccgl?CCD for some

alle
Cabea € €3 if and only if Cupea = EAEPEEN 1 Cape® + ELEFEE N, pCape® for some Cyp? =
C[AB]CD satisfying C[ABC]D =0;

Cabed € éfg if and only if Cypeq = uy, C’b]cd + g, Cd]ab, where C ;. = 5{?{5{56’1430 for some Cypc =
C[AB]C satisfying O[ABC] =0;

Cabea € €5 if and only if Capea = &6 ECEP Capep for some Capep = Clapcop) satistying Clapc)p =
0.

Using the duality (é{ D= éf , spinorial decompositions of elements of ¢l ; for ¢ =1,2,3 can be obtained by
interchanging ¢4 and n4, and making appropriate changes of index structures.
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A.2 Maps describing elements of p-modules of §, 2 and €

The kernels of the following maps ng , ?Hi and ng are p-submodules of the spaces §, 2l and €, and are
related to irreducible p-modules §, 2/ and €/ as described in Propositions B and .41

The tracefree Ricci tensor For ® , € §, define
gHg2(‘b) = g[A & B]¢ab§b[C§D] ) Eﬂgl(@) = g[A & B](I)abgbc )

@ a 1 A ¢
gﬂg(@) =¢ AgbB(I)abv gH(l)(q)) = f[Af B](I)ab + —Vbc[ 3 B]gdc@cda

n—1
EH(IJ((I)) = gaA(I)ab ’

The Cotton-York tensor For A, € A, define

abe

S0 5(A) = e Pl P Pl A

ST10,(A) = MAgaBebCleeP 4 SIIL,(A) o= A BIPCePIecE g+ ([AB] < [CD)),

abc »

1
?Hgl(A) = é‘[A ga B]gbccAabc _ mganbAchAabC, ?Hj;l(A) = é-aAé-ngcCAabc7
1

aD¢b[AgdB » C]
2(7’L — 3)5 g g abdVeD ’

a C
gAgeBIhaD A iy )1 —

A2 . ¢[AgaB ¢bC]
£H—1(A) . g 5 g Aabc + 2(”—3)

3
A3 - [A raB] ¢£b[C ¢D] [A raB] ¢bdE [C D] aFE +bC ¢dD [AsB]
£H—1(A) . 5 6 6 6 Aabc + 2(7’L—|— 1)5 5 6 Aabd’ch 5 + 2(7’L—|— 1)5 5 5 Aabd’ch 6
+ ([AB] < [CD]) ,
1
?Hg(A) = gaAgbCBAabc ) ?Hé (A) = gaAgb[BAabcé-C] + mgaAgbdDAabdch[B§C] )

1 1
BI(4) = €A PP A, — S AWE MNP — = O Ay, P

2
?H?(A) = gbccAabch + mgngbcAbca ) ?H% (A) = gaAgbBAabcv
C 1 C Ci 1 C D
SR (A) = Ay, L1967 + mV[aE[ eP Ay 6°F + mﬁ Eﬁd[CAcd[a”Yb}E h
3 1
2A ,7 c[C¢D [C¢D cdE ¢E ¢d[C D]
ST} (A) = A4y L7177 - 1 1) @B 1Ay a6 — n—+1§ ¢l AcitaMyE
?Hg(A) = gccA[ab]c ’ ?H%(‘A) = gccA(ab)c :
The Weyl tensor For C,, , € €, define
E12,4(C) = €A PE A0 g €P €17 E25(C) 1= g1 e*Pe A0, 6P,
E2,(C) = 1P A0, 0P €L, (0) = € EPPC g 6°C€P
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FI12,(C) i= €62 C g €107 + —— (€946 Cype P = €1C1EMAIC P71 )

1 a €
B mﬂydE[A‘f BEPIC, 10, £99¢°P (mod §[AadBHC§D])’

n—i—l

gngl (O) = gaAgbB Cabcd§Cdc )

a a 1 a e
gnl—l(c) = 5 AgbBCabcdng - g[Ag bBl Cabcdng + n—_3§ bDCabed§ Egd[A/YCEB] )
S, (C) = €9 4EPBC g€ — €00 C g €MAEB + e7blAC,  €0P1EP

1 a e a e
- (5 bEOabed§ AgdB’YcED _§ b[AOabedf B]deFYcED)
n+1
1

-— (ﬁabE Copae £, PP — €PE €99 %E{AﬁB]) (mod £P€Ma, B,

gng (C) = gabACabcdé-CdB

1

1 n—
gﬂé(C) = fab(ACabcdde)fc - mfabEfde(ACabde%EB)fc - 2f3§acfb(ACabcdde) (mod fAfBadc)a

gng (C) — gaAgbBCadegcC ,

a 1 A ae a e C
gHg(C) ::f {Aca[bc]dgngcq + n—_5 (V[bE[ gdBé-C]Cc]daeg E +§ [Ag B‘Cae[b|f€fE'yc]E| ]>

b (aem df[A B¢Cl _ caeE df[A B O]
2(n — 3)(n —5) (5 Cacar € Mpr € = € Cacar €7 Mer ™€ ) ,
EI5(C) = €46 10, ()16 + —— (s A6 Cortac €106 + €0y, 57 Oy 1767107
+2 g[A/Y(bEB] Cc)daegd C§D gaeE - g[A B]C daengé-acgeD)

1
 (n+D(n+3)

+E8, 5 CEPIEITEEC =y g A PIE € IPIETEC, )
+ ([AB] <+ [CD]) ,

(f Yo" T Con g €T+ S EIC gy €117

gng (C) = gabBCabcdgdc )

a Al pae A rae
gH}(C) ::f ACa[bc]dng—i_ (V[b‘E[ |§ Ecae\c]dgdu)] +’7[b\E[ 5 D]Cae|c]d§dE)

_ 1
2(n—1)(n —3)

2(n —3)
ae D
(5 ECaefd gfd[A/chE ]> )

3
¢ . ¢caA dD (Al raeE d|D (A raeD dE
€M(C) =€ Coat™ + 5077 (Y€ Carterat™ + 715 € Coira”™)
; aeF fdF A D A¢D
D) (& Corat ™ 0r ) (mod €467C10),
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?HS(C) = §abACabcd ) ?H%(C) = faACa(bc)dde )

a I (e Dl¢eE _ ga D] e
E15(C) == e P10, g — —3 (5 A Cabiete Ve leeP — ¢ U CtelbeVarm e E)

1 ael [A D ael [A D
- n+1 (5 anchYbE g ]_5 Caeb[cpyd]E 5 ])

3 aeE fF [A D] aeE fF [A D]
T2+ 1)(n—3) (5 Cacos & Vep” Yar — 8 Caelels & Nap Vor )
1

[ gaelA fE D] cae[A] fE | D]
+ 35y N Coans €™ = € € )

ae D ae D
(5 ECaebfgf[A'chE ]_5 Ecae[cljff[A7|d]bE ])

2
+ n+1)(n—-1

C (n+1)(n—23)

aeE F [A D] [A D]
)(n_3)§ Caergt’ (%E Tedr = = Ver Vapr )’

gng (C) = gaACabcd )

B Spinor calculus in three and five dimensions

In this appendix, we give a brief description of spinor calculus in dimensions three and five.

B.1 Three dimensions

Let (M, g) be a three-dimensional complex Riemannian manifold equipped with a holomorphic volume form
and a holomorphic spin structure. The spin group is the complex special linear group SL(2,C) acting on
two-dimensional spinor space & and its dual &*, which we shall identify by means of volume forms € 45 and
4B All spinors are pure. By and large, this is analogous to the two-spinor calculus of [PR86], except that
there is no ‘primed’ spinor space. We can convert tensorial quantities into spinorial ones by means of the
normalised y-matrices %%AB , which are symmetric in their spinor indices, and satisfy the identity

B.a D DB BD .
Yaa V'cT = 0400 +EpcE”T Le. YaaBV'cD = —2€40c€D)B -
The standard representation % of SO(3, C) is isomorphic to ®2&, and, by Hodge duality, to A?%. There is no
Weyl tensor in dimension three, while the tracefree Ricci tensor and the Cotton-York tensor are represented
by totally symmmetric spinors ® 4apcp and Aapcp respectively.

B.1.1 Projective spinor fields

Let [¢4] be a holomorphic projective pure spinor field. Then, unlike in in higher odd dimensions, its stabiliser
P, with Lie algebra p, at a point induces a |1|-grading on the Lie algebra g = A2 of Spin(3,C). As in

dimension four, the spinor &4 defines a P-invariant filtration G: CcG:lc...c6:tl c &% on
k—20+2

6% = OGS, where 62 = {¢A1...Ak €eG :¢A1...AgAH1...Ak§A1 ...§A@}, and &4 is said to be a

principal spinor of ¢, 4, if it lies in G5+,

Intrinsic torsion The projective spinor field [¢4] induces a P-invariant filtration 20° ¢ 20~ € 2072 on
the p-module 2J := U ® (g/p) of intrinsic torsions. From a geometric point of view, the associated almost
null structure NV¢ of [€4] is of rank-1 and thus always integrable. The relation between 20 and the geometric
properties of N¢ and /\/EL is given below.
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Proposition B.1 Let [€4] be a holomorphic projective spinor field on (M, g) with associated null structure
Ne. Denote by V ap the Levi-Civita connection of g. Then, pointwise, the intrinsic torsion of [€4]

o lies in Q1 if and only if EA¢BECV 4p€o = 0 if and only if N is co-integrable if and only if N is
(totally) geodetic;

o lies in 2° if and only if EBECV 45€- = 0 if and only if Ng is (totally) co-geodetic;
e vanishes if and only if fCVAch =0.
Remark B.2 The above conditions are equivalent to the null vector field k48 := ¢4¢B being geodetic,

dilation free and recurrent respectively. The properties of null structures in dimension three were also
studied in [NTCIH] in the context of a Goldberg—Sachs-type theorem.

B.2 Five dimensions

Let (M, g) be a five-dimensional complex Riemannian manifold equipped equipped with holomorphic volume
form and a holomorphic spin structure. We first work at a point. The spin group is isomorphic to the complex
symplectic group Sp(4,C), so that the spinor space & is a four-dimensional complex vector space equipped
with non-degenerate skew-symmetric bilinear form y4p with inverse y48, i.e. yacyB¢ = 6%, by means of
which we shall lower and raise indices. All spinors are pure. Tensor indices are converted into spinorial ones
by means of the normalised skewsymmetric y-matrices %”yaAB , tracefree with respect to v, 5, which satisfy

”YaABWGCD = 5553 -2 5253 - QVACWBD ) Le. YaaBY'cD =YaBYCD t 4%4[0 YD)B - (B.1)

In particular, we have U = (A%2G), and AU = ©?& where U is the standard representation of SO(5,C).
The tracefree Ricci tensor, the Weyl tensor and the Cotton tensor admit the spinorial expressions

®sp5cp = PaBjcD) Cuapep = Casep) Aapep = Aap)cp) -

respectively, all of which are completely tracefree, and where ®4pcip =0, Ajapc)p = 0.

B.2.1 Projective spinor fields

Let [¢4] be a projective spinor field on (M, g) with stabiliser P C Spin(5,C) at a point. Following section
2 we have the induced P-invariant filtrations &' € &% ¢ &~ and U' € V° ¢ Y~ where

6 t=6, 6% :={a? € &: ast” =0}, &= <§A>:{aA€6:a[A§B]:O},
yl.=9, 20 .= {VAB €W VO] :o} , gl={VAP e ¥ V9l =0} .

Equivalently, ' = {VAB €U : {aVpe) = O}. Similarly, we can express the various P-invariant submodules
of g2 26 in terms of the maps

10y (¢) == 1P pap, M () =19,
HMIG(9) := 49,7, MIG(¢) = Eu b pcén » MY (¢) == papécy
where ¢ 45 = ¢(AB).

The explicit expressions for the maps gHg, ?Hz and gHg defined in section [ can be significantly simplified.
For ® ypop € §, we have

§I05(®) = {r @ a1pep €7¢%¢ R . S0, (®) := Pupcip P9 g,
§H8(<I>) = @ABCDgBﬁc ) ?Hé(‘b) = §[A(I’B]ECD§E + 5[A\[C‘I)D]EF\B]§E§F )
S9(®@) := ®apept”.
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For A pep € 2, we have

?H%(A) =& AapopEPelel

f15(A) = Ay pepgeCe” S5 (A) == EuAp pric€ " Ep) + §cAp AT e
§T2 1 (A) :=4€u AR ppetPe” — AupprtPePec, S (A) i= Aupep £P¢°¢ g,
SI1% | (A) = Ao pEEmé b + Sc ApiciE a9 r + e ARcactCEné B
STIQ(A) == ApapepEPEC, §T05(A) := &7 Ay pimipéméir
S5 (A) = §A§ Apreicp) +§[A§ Apericép)
?H? (A4) = 5,45 Apipep — &7 Aupectp) ?Hi(A) = §EAAEB[C§D]
?Hzl),(A) Aapice§mé p) + Acpieaé B F) + AEFacED)§ B >
?Hg(A) ¢° Auppe ?H2(A) = Aupcpée + Apecian) -
Finally, for Cygop € €, we have
§11°,(C) == Capept™ePeCel, §1°5(C) := Capop £1€P¢%¢ gy
€119 ,(C) := Capcp€?€PeC, QHQ 2(C) = ErCapop §PEE R,
§11°,(C) == CupepPEEn, Y (C) = &r Cappio 0 £ EBE ) »
§15(C) := Capept?EC, fI5(C) == Er Capep E7¢ Fy
f105(C) = &a & C ay BliC 1D EBIG 7Y »
§0(C) = §r Cajpen” fI1(C) == &7 Capic D RS Y »
§115(C) == Capept” §15(C) == &7 Cajpepén »
§N3(C) == Capcipé gy

Intrinsic torsion Denote by V 4p the Levi-Civita connection of g. Then the differential characterisations
of the intrinsic torsion of [€4] can be re-expressed as

[ A A A

EEEREER:R:):

a (°V petP) ép =0, (B.2)

(£°VaBt) e =0, (B.3)

(gDvD[AfB) 5()] =0, (B.4)

&a (E8V pipéic) Ep) + &c (E8V pipéa) €5 =0, (B.5)
(Vapt©)c =0, (B.6)

(£PVapép) &) =0, (B.7)

(Vac€9)eP = (€9Vact?) = 0, (B-8)

(Vagéic) Ep) + &cemaVmes” +ec)aé”Vapép = 0. (B.9)

Finally, denote by A the almost null structure associated to [€“]. Then condition (5.I4) for N¢ to satisfy

[C(Ne),

§la (5EVB]E5[C) Epy +&icEpya (ﬁEVB]E&) e =o.

['(Ne)] € T(Ng) reduces to (B:2). Condition (5.I6) for N¢ to be co-integrable can be expressed as

(B.10)

Condition (5.I7) for Ng to be integrable and co-integrable can be expressed as

(£PVapg©) éc =0,

a (EPV ppéc) €p = 0. (B.11)
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As an example, one can check that a solution ¢4 of the twistor equation
Vv l é =0 A VAB
aBSc + 5EAB<C + 5({,4 €pic =0, = B

satisfies equations (B.I1) if and only if £4¢4 = 0 as claimed in Proposition [5.24]

C Conformal structures

Background information on (holomorphic) conformal structures is already given [TC16] to which the reader
should refer. Here, we merely collect useful formulae concerning spinor transformations under a conformal
change of holomorphic metrics g,, = Q%g,, for some non-vanishing holomorphic function 2 on M. Corre-
spondingly, the y-matrices can be chosen to transform as v, , & — 4,42 = Qy, 4P where 4, ,Z denote the
~y-matrices for metric gqp. In addition, we can choose the spin invariant bilinear forms y4p on S to rescale
with a conformal weight of 1, and their dual with a conformal weight of —1. This means in particular that
the quantities vy,4? and v* 4p have conformal weight 0. Then the spin connection V, is related to Vg, by

A 1 1 1
VagB = VagB - ETb’Ybachc + gTafB = VagB - §Tb7bcD”YaDBgcv (C.1)
for any holomorphic spinor field & Al, and similarly for dual spinors. This connection preserves the hatted

~v-matrices and the hatted bilinear forms on &, in agreement with the convention of [PR&4].
If we now assume that ¢4 is a pure spinor field, we then obtain from (C.1])

(9a€) & = (V,€2) & + 21,87, %6C + 21,6456,
(3255 ) 4 = 07! ((v“BAvaé’B) & + ”T_Q (27,6"¢" ~ Tbgb/*sc)> ,
49,67 =071 (£149,67 - JTEPEN 1 T8 )
(E49,67) 6 =071 ((€49.67) 6 - § 17646 - am @iaedler )

(@aéaB) € éaB@agc Q! <(Va€aB) € §aBVa§C 4 nT_Qbengc T %TbﬁbcﬁB) :

where we have set éaA = A“BAfB. In particular, from the first three expressions, we get
(Vo€18) 967 = (V,618) €C6P) + 27,€MPeC¢P),
(/}\/G‘BA@aébB) éb[cé-D] — Qfl ((,yaBAvagbB) é—l[)cé-D] + (n _ 2) é—A’rbgb[Cé-D]) )

(§4v,£7) 9 = 0! ((&“Avas[B) £ - %5Afbsb[3501> ,

from which the conformal invariance of (5I0) follows.
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