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S.K. Ashok,a,b M. Billò,c E. Dell’Aquila,a,b M. Frau,c R.R. Johna,b and A. Lerdad

aInstitute of Mathematical Sciences,

C.I.T. Campus, Taramani, Chennai, 600113 India
bHomi Bhabha National Institute,

Training School Complex, Anushakti Nagar, Mumbai, 400085 India
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1 Introduction

The study of how a quantum field theory responds to the presence of defects is a very

important subject, which has received much attention in recent years especially in the

context of supersymmetric gauge theories. In this paper we study a class of two-dimensional

defects, also known as surface operators, on the Coulomb branch of the N = 2⋆ SU(N)

gauge theory in four dimensions.1 Such surface operators can be introduced and analyzed

in different ways. They can be defined by the transverse singularities they induce in the

four-dimensional fields [2, 3], or can be characterized by the two-dimensional theory they

support on their world-volume [4, 5].

A convenient way to describe four-dimensional gauge theories with N = 2 supersym-

metry is to consider M5 branes wrapped on a punctured Riemann surface [6, 7]. From the

point of view of the six-dimensional (2, 0) theory on the M5 branes, surface operators can be

realized by means of either M5′ or M2 branes giving rise, respectively, to codimension-2 and

codimension-4 defects. While a codimension-2 operator extends over the Riemann surface

wrapped by the M5 brane realizing the gauge theory, a codimension-4 operator intersects

the Riemann surface at a point. Codimension-2 surface operators were systematically

studied in [8] where, in the context of the of the 4d/2d correspondence [9], the instanton

partition functions of N = 2 SU(2) super-conformal quiver theories with surface operators

were mapped to the conformal blocks of a two-dimensional conformal field theory with an

affine sl(2) symmetry. These studies were later extended to SU(N) quiver theories whose

instanton partition functions in the presence of surface operators were related to confor-

mal field theories with an affine sl(N) symmetry [10]. The study of codimension-4 surface

operators was pioneered in [11] where the instanton partition function of the conformal

SU(2) theory with a surface operator was mapped to the Virasoro blocks of the Liouville

theory, augmented by the insertion of a degenerate primary field. Many generalizations

and extensions of this have been considered in the last few years [12–19].

Here we study N = 2⋆ theories in the presence of surface operators. The low-energy

effective dynamics of the bulk four-dimensional theory is completely encoded in the holo-

morphic prepotential which at the non-perturbative level can be very efficiently determined

using localization [20] along with the constraints that arise from S-duality. The latter turn

out to imply [21, 22] a modular anomaly equation [23] for the prepotential, which is inti-

mately related to the holomorphic anomaly equation occurring in topological string theories

on local Calabi-Yau manifolds [24–27].2 Working perturbatively in the mass of the adjoint

hypermultiplet, the modular anomaly equation allows one to resum all instanton correc-

tions to the prepotential into (quasi)-modular forms, and to write the dependence on the

Coulomb branch parameters in terms of particular sums over the roots of the gauge group,

thus making it possible to treat any semi-simple algebra [41, 42].

1For a review of surface operators see [1].
2Modular anomaly equations have been studied in various contexts, such as the Ω-background [21, 22, 28–

34], the 4d/2d correspondence [35–37], SQCD theories with fundamental matter [21, 22, 38–40] and in

N = 2⋆ theories [21, 22, 41–44].
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In this paper we apply the same approach to study the effective twisted superpotential

which governs the infrared dynamics on the world-volume of the two-dimensional surface

operator in the N = 2⋆ theory. For simplicity, we limit ourselves to SU(N) gauge groups

and consider half-BPS surface defects that, from the six-dimensional point of view, are

codimension-2 operators. These defects introduce singularities characterized by the pattern

of gauge symmetry breaking, i.e. by a Levi decomposition of SU(N), and also by a set of

continuous (complex) parameters. In [45] it has been shown that the effect of these surface

operators on the instanton moduli action is equivalent to a suitable orbifold projection

which produces structures known as ramified instantons [45–47]. Actually, the moduli

spaces of these ramified instantons were already studied in [48] from a mathematical point of

view in terms of representations of a quiver that can be obtained by performing an orbifold

projection of the usual ADHM moduli space of the standard instantons. In section 2 we

explicitly implement such an orbifold procedure on the non-perturbative sectors of the

theory realized by means of systems of D3 and D(−1) branes [49, 50]. In section 3 we

carry out the integration on the ramified instanton moduli via equivariant localization.

The logarithm of the resulting partition function exhibits both a 4d and a 2d singularity in

the limit of vanishing Ω deformations.3 The corresponding residues are regular in this limit

and encode, respectively, the prepotential F and the twisted superpotential W. The latter

depends, in addition to the Coulomb vacuum expectation values and the adjoint mass, on

the continuous parameters of the defect.

In section 4 we show that, as it happens for the prepotential, the constraints arising

from S-duality lead to a modular anomaly equation for W. In section 5, we solve this

equation explicitly for the SU(2) theory and prove that the resulting W agrees with the

twisted superpotential obtained in [35] in the framework of the 4d/2d correspondence with

the insertion of a degenerate field in the Liouville theory. Since this procedure is appropriate

for codimension-4 defects [11], the agreement we find supports the proposal of a duality

between the two classes of defects recently put forward in [52]. In section 6, we turn our

attention to generic surface operators in the SU(N) theory and again, order by order in

the adjoint mass, solve the modular anomaly equations in terms of quasi-modular elliptic

functions and sums over the root lattice.

We also consider the relation between our findings and what is known for surface

defects defined through the two-dimensional theory they support on their world-volume.

In [5] the coupling of the sigma-models defined on such defects to a large class of four-

dimensional gauge theories was investigated and the twisted superpotential governing their

dynamics was obtained. Simple examples for pure N = 2 SU(N) gauge theory include

the linear sigma-model on CP
N−1, that corresponds to the so-called simple defects with

Levi decomposition of type {1, N − 1}, and sigma-models on Grassmannian manifolds

corresponding to defects of type {p,N−p}. The main result of [5] is that the Seiberg-Witten

geometry of the four-dimensional theory can be recovered by analyzing how the vacuum

structure of these sigma-models is fibered over the Coulomb moduli space. Independent

3We actually calculate the effective superpotential in the Nekrasov-Shatashvili limit [51] in which only

one of the Ω-deformation parameters is turned on.
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analyses based on the 4d/2d correspondence also show that the twisted superpotential for

the simple surface operator is related to the line integral of the Seiberg-Witten differential

over the punctured Riemann surface [11]. In section 7, we test this claim in detail by

considering first the pure N = 2 gauge theory. Since this theory can be recovered upon

decoupling the massive adjoint hypermultiplet, we take the decoupling limit on our N = 2⋆

results for W and precisely reproduce those findings. Furthermore, we show that for simple

surface defects the relation between the twisted superpotential and the line integral of the

Seiberg-Witten differential holds prior to the decoupling limit, i.e. in the N = 2⋆ theory

itself. The agreement we find provides evidence for the proposed duality between the two

types of descriptions of the surface operators.

Finally, in section 8 we present our conclusions and discuss possible future perspectives.

Some useful technical details are provided in four appendices.

2 Instantons and surface operators in N = 2⋆ SU(N) gauge theories

The N = 2⋆ theory is a four-dimensional gauge theory with N = 2 supersymmetry that

describes the dynamics of a vector multiplet and a massive hypermultiplet in the adjoint

representation. It interpolates between the N = 4 super Yang-Mills theory, to which it

reduces in the massless limit, and the pure N = 2 theory, which is recovered by decoupling

the matter hypermultiplet. In this paper, we will consider for simplicity only special unitary

gauge groups SU(N). As is customary, we combine the Yang-Mills coupling constant g and

the vacuum angle θ into the complex coupling

τ =
θ

2π
+ i

4π

g2
, (2.1)

on which the modular group SL(2,Z) acts in the standard fashion:

τ → aτ + b

cτ + d
(2.2)

with a, b, c, d ∈ Z and ad− bc = 1. In particular under S-duality we have

S(τ) = −1

τ
. (2.3)

The Coulomb branch of the theory is parametrized by the vacuum expectation value

of the adjoint scalar field φ in the vector multiplet, which we take to be of the form

〈φ〉 = diag(a1, a2, · · · , aN ) with
N∑

u=1

au = 0 . (2.4)

The low-energy effective dynamics on the Coulomb branch is entirely described by a single

holomorphic function F , called the prepotential, which contains a classical term, a pertur-

bative 1-loop contribution and a tail of instanton corrections. The latter can be obtained

from the instanton partition function

Zinst =
∞∑

k=0

qk Zk (2.5)
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where

q = e2πiτ (2.6)

and Zk is the partition function in the k-instanton sector that can be explicitly computed

using localization methods.4 For later purposes, it is useful to recall that the weight qk

in (2.5) originates from the classical instanton action

Sinst = −2πiτ

(
1

8π2

∫

R4

TrF ∧ F

)
= −2πiτ k (2.7)

where in the last step we used the fact that the second Chern class of the gauge field

strength F equals the instanton charge k. Hence, the weight qk is simply e−Sinst .

Let us now introduce a surface operator which we view as a non-local defect D sup-

ported on a two-dimensional plane inside the four-dimensional (Euclidean) space-time (see

appendix B for more details). In particular, we parametrize R
4 ≃ C

2 by two complex

variables (z1, z2), and place D at z2 = 0, filling the z1-plane. The presence of the surface

operator induces a singular behavior in the gauge connection A, which has the following

generic form [8, 45]:

A = Aµ dx
µ ≃ − diag

(

︸ ︷︷ ︸
n1

γ1, · · · , γ1,
︸ ︷︷ ︸

n2

γ2, · · · , γ2, · · · ,
︸ ︷︷ ︸

nM

γM , · · · , γM
)
dθ (2.8)

as r → 0. Here (r, θ) denotes the set of polar coordinates in the z2-plane, and the γI ’s are

constant parameters, where I = 1, · · · ,M . The M integers nI satisfy

M∑

I=1

nI = N (2.9)

and define a vector ~n that identifies the type of the surface operator. This vector is

related to the breaking pattern of the gauge group (or Levi decomposition) felt on the

two-dimensional defect D, namely

SU(N) → S
[
U(n1)×U(n2)× · · · ×U(nM )

]
. (2.10)

The type ~n = {1, 1, · · · , 1} corresponds to what are called full surface operators, originally

considered in [8]. The type ~n = {1, N − 1} corresponds to simple surface operators, while

the type ~n = {N} corresponds to no surface operators and hence will not be considered.

In the presence of a surface operator, one can turn on magnetic fluxes for each factor

of the gauge group (2.10) and thus the instanton action can receive contributions also from

the corresponding first Chern classes. This means that (2.7) is replaced by [2, 8, 11, 45]

Sinst[~n] = −2πiτ

(
1

8π2

∫

R4

TrF ∧ F

)
− 2πi

M∑

I=1

ηI

(
1

2π

∫

D

TrFU(nI)

)
(2.11)

4Our conventions are such that Z0 = 1.
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where ηI are constant parameters. As shown in detail in appendix B, given the behav-

ior (2.8) of the gauge connection near the surface operator, one has

1

8π2

∫

R4

TrF ∧ F = k +
M∑

I=1

γI mI ,

1

2π

∫

D

TrFU(nI) = mI

(2.12)

with mI ∈ Z. As is clear from the second line in the above equation, each mI represents

the flux of the U(1) factor in each subgroup U(nI) in the Levi decomposition (2.10);

furthermore, these fluxes satisfy the constraint

M∑

I=1

mI = 0 . (2.13)

Using (2.12), we easily find

Sinst[~n] = −2πiτ k − 2πi
M∑

I=1

(
ηI + τ γI

)
mI = −2πiτ k − 2πi~t · ~m (2.14)

where in the last step we have combined the electric and magnetic parameters (ηI , γI) to

form the M -dimensional vector

~t = {tI} = {ηI + τ γI} . (2.15)

This combination has simple duality transformation properties under SL(2,Z). Indeed, as

shown in [2], given an element M of the modular group the electro-magnetic parameters

transform as (
γI , ηI

)
→

(
γI , ηI

)
M−1 =

(
d γI − c ηI , a ηI − b γI

)
. (2.16)

Combining this with the modular transformation (2.2) of the coupling constant, it is easy

to show that

tI → tI
cτ + d

. (2.17)

In particular under S-duality we have

S(tI) = − tI
τ
. (2.18)

Using (2.14), we deduce that the weight of an instanton configuration in the presence

of a surface operator of type ~n is

e−Sinst[~n] = qk e2πi
~t·~m , (2.19)

so that the instanton partition function can be written as

Zinst[~n] =
∑

k,~m

qk e2πi
~t·~m Zk,~m[~n] . (2.20)

In the next section, we will describe the computation of Zk,~m[~n] using equivariant localiza-

tion.

– 6 –
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3 Partition functions for ramified instantons

As discussed in [45], the N = 2∗ theory with a surface defect of type ~n = {n1, · · · , nM},
which has a six-dimensional representation as a codimension-2 surface operator, can be

realized with a system of D3-branes in the orbifold background

C× C
2/ZM × C× C (3.1)

with coordinates (z1, z2, z3, z4, v) on which the ZM -orbifold acts as

(z2, z3) → (ω z2, ω
−1 z3) , where ω = e

2πi
M . (3.2)

Like in the previous section, the complex coordinates z1 and z2 span the four-dimensional

space-time where the gauge theory is defined (namely the world-volume of the D3-branes),

while the z1-plane is the world-sheet of the surface operator D that sits at the orbifold fixed

point z2 = 0. The (massive) deformation which leads from the N = 4 to the N = 2∗ theory

takes place in the (z3, z4)-directions. Finally, the v-plane corresponds to the Coulomb

moduli space of the gauge theory.

Without the ZM -orbifold projection, the isometry group of the ten-dimensional back-

ground is SO(4)×SO(4)×U(1), since the D3-branes are extended in the first four directions

and are moved in the last two when the vacuum expectation values (2.4) are turned on. In

the presence of the surface operator and hence of the ZM -orbifold in the (z2, z3)-directions,

this group is broken to

U(1)×U(1)×U(1)×U(1)×U(1) . (3.3)

In the following we will focus only on the first four U(1) factors, since it is in the first four

complex directions that we will introduce equivariant deformations to apply localization

methods. We parameterize a transformation of this U(1)4 group by the vector

~ǫ =

{
ǫ1,

ǫ2
M

,
ǫ3
M

, ǫ4

}
= {ǫ1, ǫ̂2, ǫ̂3, ǫ4} (3.4)

where the 1/M rescalings in the second and third entry, suggested by the orbifold projec-

tion, are made for later convenience. If we denote by

~l = {l1, l2, l3, l4} (3.5)

the weight vector of a given state of the theory, then under U(1)4 such a state transforms

with a phase given by e2πi
~l·~ǫ, while the ZM -action produces a phase ωl2−l3 .

On top of this, we also have to consider the action of the orbifold group on the Chan-

Paton factors carried by the open string states stretching between the D-branes. There are

different types of D-branes depending on the irreducible representation of ZM in which this

action takes place. Since there are M such representations, we have M types of D-branes,

which we label with the index I already used before. On a D-brane of type I, the generator

of ZM acts as ωI , and thus the Chan-Paton factor of a string stretching between a D-brane

– 7 –
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of type I and a D-brane of type J transforms with a phase ωI−J under the action of the

orbifold generator.

In order to realize the split of the gauge group in (2.10), we consider M stacks of nI

D3-branes of type I, and in order to introduce non-perturbative effects we add on top of

the D3’s M stacks of dI D-instantons of type I. The latter support an auxiliary ADHM

group which is

U(d1)×U(d2)× · · · ×U(dM ) . (3.6)

In the resulting D3/D(−1)-brane systems there are many different sectors of open strings

depending on the different types of branes to which they are attached. Here we focus only

on the states of open strings with at least one end-point on the D-instantons, because they

represent the instanton moduli [49, 50] on which one eventually has to integrate in order

to obtain the instanton partition function.

Let us first consider the neutral states, corresponding to strings stretched between

two D-instantons. In the bosonic Neveu-Schwarz sector one finds states with U(1)4 weight

vectors

{±1, 0, 0, 0}0 , {0,±1, 0, 0}0 , {0, 0± 1, 0}0 , {0, 0, 0± 1}0 , {0, 0, 0, 0}±1 , (3.7)

where the subscripts denote the charge under the last U(1) factor of (3.3). They correspond

to space-time vectors along the directions z1, z2, z3, z4 and v, respectively. In the fermionic

Ramond sector one finds states with weight vectors
{
± 1

2
,±1

2
,±1

2
,±1

2

}

± 1
2

(3.8)

with a total odd number of minus signs due to the GSO projection. They correspond to

anti-chiral space-time spinors.5

It is clear from (3.7) and (3.8) that the orbifold phase ωl2−l3 takes the values ω0, ω+1 or

ω−1 and can be compensated only if one considers strings of type I-I, I-(I+1) or (I+1)-I,

respectively. Therefore, the ZM -invariant neutral moduli carry Chan-Paton factors that

transform in the (dI , d̄I), (dI , d̄I+1) or (dI+1, d̄I) representations of the ADHM group (3.6).

Let us now consider the colored states, corresponding to strings stretched between a

D-instanton and a D3-brane or vice versa. Due to the twisted boundary conditions in the

first two complex space-time directions, the weight vectors of the bosonic states in the

Neveu-Schwarz sector are {
± 1

2
,±1

2
, 0, 0

}

0

(3.9)

while those of the fermionic states in the Ramond sector are
{
0, 0,±1

2
,±1

2

}

± 1
2

. (3.10)

Assigning a negative intrinsic parity to the twisted vacuum, both in (3.9) and in (3.10) the

GSO-projection selects only those vectors with an even number of minus signs. Moreover,

5Of course one could have chosen a GSO projection leading to chiral spinors, and the final results would

have been the same.
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since the orbifold acts on two of the twisted directions, the vacuum carries also an intrinsic

ZM -weight. We take this to be ω− 1
2 when the strings are stretched between a D3-brane

and a D-instanton, and ω+ 1
2 for strings with opposite orientation. Then, with this choice

we find ZM -invariant bosonic and fermionic states either from the 3/(−1) strings of type

I-I, whose Chan-Paton factors transform in the (nI , d̄I) representation of the gauge and

ADHM groups, or from the (−1)/3 strings of type I-(I + 1), whose Chan-Paton factors

transform in the (dI , n̄I+1) representation, plus of course the corresponding states arising

from the strings with opposite orientation.

In appendix C we provide a detailed account of all moduli, both neutral and colored,

and of their properties in the various sectors. It turns out that the moduli action, which

can be derived from the interactions of the moduli on disks with at least a part of their

boundary attached to the D-instantons [50], is exact with respect to the supersymmetry

charge Q of weight {
+
1

2
,+

1

2
,+

1

2
,+

1

2

}

− 1
2

. (3.11)

Therefore Q can be used as the equivariant BRST-charge to localize the integral over the

moduli space provided one considers U(1)4 transformations under which it is invariant.

This corresponds to requiring that

ǫ1 + ǫ̂2 + ǫ̂3 + ǫ4 = 0 . (3.12)

Thus we are left with three equivariant parameters, say ǫ1, ǫ̂2 and ǫ4; as we will see, the

latter is related to the (equivariant) mass m of the adjoint hypermultiplet of N = 2∗ theory.

As shown in appendix C, all instanton moduli can be paired in Q-doublets of the type

(ϕα, ψα) such that

Qϕα = ψα , Qψα = Q2ϕα = λα ϕα (3.13)

where λα are the eigenvalues of Q2, determined by the action of the Cartan subgroup of the

full symmetry group of the theory, namely the gauge group (2.10), the ADHM group (3.6),

and the residual isometry group U(1)4 with parameters satisfying (3.12) in such a way that

the invariant points in the moduli space are finite and isolated. The only exception to this

structure of Q-doublets is represented by the neutral bosonic moduli with weight

{0, 0, 0, 0}−1 (3.14)

transforming in the adjoint representation (dI , d̄I) of the ADHM group U(dI), which re-

main unpaired. We denote them as χI , and in order to obtain the instanton partition func-

tion we must integrate over them. In doing so, we can exploit the U(dI) symmetry to rotate

χI into the maximal torus and write it in terms of the eigenvalues χI,σ, with σ = 1, · · · , dI ,
which represent the positions of the D-instantons of type I in the v-plane. In this way we

are left with the integration over all the χI,σ’s and a Cauchy-Vandermonde determinant

V =
M∏

I=1

dI∏

σ,τ=1

(χI,σ − χI,τ + δστ ) . (3.15)

– 9 –
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More precisely, the instanton partition function in the presence of a surface operator of

type ~n is defined by

Zinst[~n] =
∑

{dI}

M∏

I=1

qdII Z{dI}[~n] with Z{dI}[~n] =
1

dI !

∫ dI∏

σ=1

dχI,σ

2πi
z{dI} (3.16)

where z{dI} is the result of the integration over all Q-doublets which localizes on the fixed

points of Q2, and qI is the counting parameter associated to the D-instantons of type I.

With the convention that z{dI=0} = 1, we find

z{dI} = V
∏

α

[
λα

](−)Fα+1

, (3.17)

where the index α labels the Q-doublets and λα denotes the corresponding eigenvalue of Q2.

This contribution goes to the denominator or to the numerator depending upon the bosonic

or fermionic statistics (Fα = 0 or 1, respectively) of the first component of the doublet.

Explicitly, using the data in table 1 of appendix C and the determinant (3.15), we find

z{dI} =
M∏

I=1

dI∏

σ,τ=1

(χI,σ − χI,τ + δσ,τ ) (χI,σ − χI,τ + ǫ1 + ǫ4)

(χI,σ − χI,τ + ǫ4) (χI,σ − χI,τ + ǫ1)

×
M∏

I=1

dI∏

σ=1

dI+1∏

ρ=1

(χI,σ − χI+1,ρ + ǫ1 + ǫ̂2) (χI,σ − χI+1,ρ + ǫ̂2 + ǫ4)

(χI,σ − χI+1,ρ − ǫ̂3) (χI,σ − χI+1,ρ + ǫ̂2)

×
M∏

I=1

dI∏

σ=1

nI∏

s=1

(
aI,s − χI,σ + 1

2(ǫ1 + ǫ̂2) + ǫ4
)

(
aI,s − χI,σ + 1

2(ǫ1 + ǫ̂2)
)

×
M∏

I=1

dI∏

σ=1

nI+1∏

t=1

(
χI,σ − aI+1,t +

1
2(ǫ1 + ǫ̂2) + ǫ4

)
(
χI,σ − aI+1,t +

1
2(ǫ1 + ǫ̂2)

)

(3.18)

where dM+1 = d1, nM+1 = n1 and aM+1,t = a1,t. The integrations in (3.16) must be

suitably defined and regularized. The standard prescription [41, 42, 53] is to consider aI,s
to be real and close the contours in the upper-half χI,σ -planes with the choice

Im ǫ4 ≫ Im ǫ̂3 ≫ Im ǫ̂2 ≫ Im ǫ1 > 0 , (3.19)

and enforce (3.12) at the very end of the calculations.

In this way one finds that these integrals receive contributions from the poles of z{dI},

which are in fact the critical points of Q2. Such poles can be put in one-to-one correspon-

dence with a set of N Young tableaux Y = {YI,s}, with I = 1, · · · ,M and s = 1, · · ·nI , in

the sense that the box in the i-th row and j-th column of the tableau YI,s represents one

component of the critical value:

χI+(j−1)modM,σ = aI,s +

(
(i− 1) +

1

2

)
ǫ1 +

(
(j − 1) +

1

2

)
ǫ̂2 . (3.20)

Note that in this correspondence, a single tableau accounts for dI ! equivalent ways of

relabeling χI,σ.
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3.1 Summing over fixed points and characters

Summing over the Young tableaux collections Y we get all the non-trivial critical points

corresponding to all possible values of {dI}. Eq. (3.20) tells us that we get a distinct χI,σ

for each box in the j-th column of the tableau YI+1−jmodM,s. Relabeling the index j as

j → J + j M , (3.21)

with J = 1, . . .M , we have

dI(Y ) =

M∑

J=1

nI+1−J∑

s=1

∑

j

Y
(J+jM)
I+1−J,s , (3.22)

where Y
(j)
I,s denotes the height of the j-th column of the tableau YI,s, and the subscript

index I + 1− J is understood modulo M .

The instanton partition function (3.16) can thus be rewritten as a sum over Young

tableaux as follows

Zinst[~n] =
∑

Y

M∏

I=1

q
dI(Y )
I Z(Y ) (3.23)

where Z(Y ) is the residue of z{dI} at the critical point Y . This is obtained by deleting

in (3.18) the denominator factors that yield the identifications (3.20), and performing these

identifications in the other factors. In other terms,

Z(Y ) = V(Y )
∏

α :λα(Y ) 6=0

[λα(Y )](−)Fα+1

, (3.24)

where V(Y ) and λα(Y ) are the Vandermonde determinant and the eigenvalues of Q2 eval-

uated on (3.20).

A more efficient way to encode the eigenvalues λα(Y ) is to employ the character of the

action of Q2, which is defined as follows

X{dI} =
∑

α

(−)Fαeiλα . (3.25)

If we introduce

VI =

dI∑

σ=1

eiχI,σ−
i
2
(ǫ1+ǫ̂2) , WI =

nI∑

s=1

eiaI,s (3.26)

and

T1 = eiǫ1 , T2 = eiǫ̂2 , T4 = eiǫ4 , (3.27)

we can write the contributions to the character from the various Q-doublets as in the last

column of table 1 in appendix C. Then, by summing over all doublets and adding also the

contribution of the Vandermonde determinant, we obtain

X{dI} = (1− T4)

M∑

I=1

[
−(1− T1)V

∗
I VI + (1− T1)V

∗
I+1VIT2 + V ∗

I WI +W ∗
I+1VIT1T2

]
.

(3.28)
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As we have seen before, through (3.22) and (3.20) each set Y determines both the dimen-

sions dI(Y ) and the eigenvalues λα(Y ). Thus, the character X(Y ) associated to a set of

Young tableaux is obtained from X{dI} by substituting (3.20) into the definitions of VI ,

namely

VI =

M∑

J=1

nI+1−J∑

s=1

eiaI+1−J,sT J
2

∑

(i,J+jM)∈YI+1−J,s

T i−1
1 T jM−1

2 . (3.29)

By analyzingX(Y ) obtained in this way we can extract the explicit expression for the eigen-

values λs(Y ) and finally write the instanton partition function. This procedure is easily im-

plemented in a computer program, and yields the results we will use in the next sections. In

appendix (C.1), as an example, we illustrate these computations for the SU(2) gauge theory.

In our analysis we worked with the moduli action that describes D-branes probing

the orbifold geometry. An alternative approach works with the resolution of the orbifold

geometry [54, 55]. This involves analyzing a gauged linear sigma-model that describes a

system of D1 and D5-branes in the background C × C/ZM × T ⋆S2 × R
2. One then uses

the localization formulas for supersymmetric field theories defined on the 2-sphere [56, 57]

to obtain exact results. This is a very powerful approach since it also includes inherently

stringy corrections to the partition function arising from world-sheet instantons [54]. The

results for the instanton partition function of the N = 2⋆ theory in the presence of surface

operators obtained in [55] are equivalent to our results in (3.18).

3.2 Map between parameters

One of the key points that needs to be clarified is the map between the microscopic counting

parameters qI which appear in (3.23), and the parameters (q, tI) which were introduced in

section 2 in discussing SU(N) gauge theories with surface operators. To describe this map,

we start by rewriting the partition function (3.16) in terms of the total instanton number k

and the magnetic fluxes mI of the gauge groups on the surface operator which are related

to the parameters dI as follows [8, 45]:

d1 = k , dI+1 = dI +mI+1 . (3.30)

Therefore, instead of summing over {dI} we can sum over k and ~m and find

Zinst[~n] =
∑

k,~m

(q1 · · · qM )k (q2 · · · qM )m2 (q3 · · · qM )m3 · · · (qM )mM Zk,~m[~n] (3.31)

Furthermore, if we set

qI = e2πi(tI−tI+1) for I ∈ {2, . . .M − 1} ,

qM = e2πi(tM−t1) and q =
M∏

I=1

qI ,
(3.32)

we easily get

Zinst[~n] =
∑

k,~m

qke2πi
∑M

I=2 mI(tI−t1) Zk,~m =
∑

k,~m

qk e2πi
~t·~m Zk,~m[~n] (3.33)
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where in the last step we introduced m1 such that
∑

I mI = 0 (see (2.13)) in order to write

the result in a symmetric form. This is precisely the expected expression of the partition

function in the presence of a surface operator as shown in (2.20) and justifies the map (3.32)

between the parameters of the two descriptions. From (3.33) we see that only differences

of the parameters tI appear in the partition function so that it may be convenient to use

as independent parameters q and the (M − 1) variables

zJ = tJ − t1 for J ∈ {2, . . .M} . (3.34)

This is indeed what we are going to see in the next sections where we will show how to

extract relevant information from the instanton partition functions described above.

3.3 Extracting the prepotential and the twisted superpotential

The effective dynamics on the Coulomb branch of the four-dimensional N = 2⋆ gauge the-

ory is described by the prepotential F , while the infrared physics of the two-dimensional

theory defined on the world-sheet of the surface operator is governed by the twisted su-

perpotential W. The non-perturbative terms of both F and W can be derived from the

instanton partition function previously discussed, by considering its behavior for small de-

formation parameters ǫ1 and ǫ2 and, in particular, in the so-called Nekrasov-Shatashvili

(NS) limit [51].

To make precise contact with the gauge theory quantities, we set

ǫ4 = −m− ǫ1
2

(3.35)

where m is the mass of the adjoint hypermultiplet, and then take the limit for small ǫ1 and

ǫ2. In this way we find [8]:

logZinst[~n] ≃ − Finst(ǫ1)

ǫ1ǫ2
+

Winst(ǫ1)

ǫ1
+O(ǫ2) . (3.36)

The two leading singular contributions arise, respectively, from the (regularized) equiv-

ariant volume parts coming from the four-dimensional gauge theory and from the two-

dimensional degrees of freedom supported on the surface defect D. This can be understood

from the fact that, in the Ω-deformed theory, the respective super-volumes are finite and

given by [1, 58]:

∫

R4
ǫ1,ǫ2

d4x d4θ −→ 1

ǫ1ǫ2
and

∫

R2
ǫ1

d2x d2θ −→ 1

ǫ1
. (3.37)

The non-trivial result is that the functions Finst and Winst defined in this way are analytic

in the neighborhood of ǫ1 = 0. As an illustrative example, we now describe in some detail

the SU(2) theory.

SU(2). When the gauge group is SU(2), the only surface operators are of type ~n = {1, 1},
the Coulomb branch is parameterized by

〈φ〉 = diag(a,−a) , (3.38)
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and the map (3.32) can be written as

q1 =
q

x
, q2 = x = e2πi z (3.39)

where, for later convenience, we have defined z = (t2 − t1). Using the results presented in

appendix C.1 and their extension to higher orders, it is possible to check that the instanton

prepotential arising from (3.36), namely

Finst = − lim
ǫ2→0

(
ǫ1ǫ2 logZinst[1, 1]

)
(3.40)

is, as expected, a function only of the instanton counting parameter q and not of x. Ex-

panding in inverse powers of a, we have

Finst =
∞∑

ℓ=1

f inst
ℓ (3.41)

where fℓ ∼ a2−ℓ. The first few coefficients of this expansion are

f inst
2ℓ+1 = 0 for ℓ = 0, 1, · · · ,

f inst
2 = −

(
m2 − ǫ21

4

)(
2q + 3q2 +

8

3
q3 + · · ·

)
,

f inst
4 =

1

2a2

(
m2 − ǫ21

4

)2(
q + 3q2 + 4q3 + · · ·

)
,

f inst
6 =

1

16a4

(
m2 − ǫ21

4

)2(
2ǫ21 q − 3

(
4m2 − 7ǫ21

)
q2 − 8

(
8m2 − 9ǫ21

)
q3 + · · ·

)
.

(3.42)

One can check that this precisely agrees with the NS limit of the prepotential derived

for example in [21, 22]. This complete match is a strong and non-trivial check on the

correctness and consistency of the whole construction.

Let us now consider the non-perturbative superpotential, which according to (3.36) is

Winst = lim
ǫ2→0

(
ǫ1 logZinst[1, 1] +

Finst

ǫ2

)
. (3.43)

Differently from the prepotential, Winst is, as expected, a function both of q and x. If we

expand it as

Winst =
∞∑

ℓ=1

winst
ℓ (3.44)

with winst
ℓ ∼ a1−ℓ, using the results of appendix C.1 we find

winst
1 = −

(
m− ǫ1

2

)[(
x+

x2

2
+

x3

3
+

x4

4
+ · · ·

)
+

(
1

x
+ 2 + x+ · · ·

)
q

+

(
1

2x2
+

1

x
+ 3 + · · ·

)
q2 + · · ·

]
, (3.45a)
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winst
2 = −1

a

(
m2 − ǫ21

4

)[(
x

2
+

x2

2
+

x3

2
+

x4

2
+ · · ·

)
+

(
x

2
− 1

2x
+ · · ·

)
q

−
(

1

2x2
+

1

2x
+ · · ·

)
q2 + · · ·

]
, (3.45b)

winst
3 = − ǫ1

a2

(
m2 − ǫ21

4

)[(
x

4
+

x2

2
+

3x3

4
+ x4 + · · ·

)
+

(
1

4x
+

x

4
+ · · ·

)
q

+

(
1

2x2
+

1

4x
+ · · ·

)
q2 + · · ·

]
, (3.45c)

and so on. For later convenience we explicitly write down the logarithmic derivatives with

respect to x, namely

w′
1 = −

(
m− ǫ1

2

)[(
x+ x2 + x3 + x4 + · · ·

)
−
(
1

x
− x+ · · ·

)
q

−
(

1

x2
+

1

x
+ · · ·

)
q2 + · · ·

]
, (3.46a)

w′
2 = −1

a

(
m2 − ǫ21

4

)[(
x

2
+ x2 +

3x3

2
+ 2x4 + · · ·

)
+

(
x

2
+

1

2x
+ · · ·

)
q

+

(
1

x2
+

1

2x
+ · · ·

)
q2 + · · ·

]
, (3.46b)

w′
3 = − ǫ1

a2

(
m2 − ǫ21

4

)[(
x

4
+ x2 +

9x3

4
+ 4x4 + · · ·

)
−
(

1

4x
− x

4
+ · · ·

)
q

−
(

1

x2
+

1

4x
+ · · ·

)
q2 + · · ·

]
(3.46c)

where w′
ℓ := x ∂

∂x

(
winst
ℓ

)
. In the coming sections we will show that these expressions are

the weak-coupling expansions of combinations of elliptic and quasi-modular forms of the

modular group SL(2,Z).

4 Modular anomaly equation for the twisted superpotential

In [21, 22] it has been shown for the N = 2⋆ SU(2) theory that the instanton expansions of

the prepotential coefficients (3.42) can be resummed in terms of (quasi-) modular forms of

the duality group SL(2,Z) and that the behavior under S-duality severely constrains the

prepotential F which must satisfy a modular anomaly equation. This analysis has been

later extended to N = 2⋆ theories with arbitrary classical or exceptional gauge groups [34,

41, 42], and also to N = 2 SQCD theories with fundamental matter [38, 39]. In this

section we use a similar approach to study how S-duality constrains the form of the twisted

superpotential W.

For simplicity and without loss of generality, in the following we consider a full surface

operator of type ~n = {1, 1, · · · , 1} with electro-magnetic parameters ~t = {t1, t2, · · · , tN}.
Indeed, surface operators of other type correspond to the case in which these parameters

are not all different from each other and form M distinct sets, namely

~t =
{

︸ ︷︷ ︸
n1

t1, . . . , t1,
︸ ︷︷ ︸

n2

t2, . . . , t2, · · · ,
︸ ︷︷ ︸

nM

tM , . . . , tM

}
. (4.1)
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Thus they can be simply recovered from the full ones with suitable identifications.

Before analyzing the S-duality constraints it is necessary to take into account the clas-

sical and the perturbative 1-loop contributions to the prepotential and the superpotential.

The classical contribution. Introducing the notation ~a = {a1, a2, · · · , aN} for the

vacuum expectation values, the classical contributions to the prepotential and the super-

potential are given respectively by

Fclass = πiτ ~a · ~a (4.2)

and

Wclass = 2πi~t · ~a . (4.3)

Note that if we use the tracelessness condition (2.4), Wclass can be rewritten as

Wclass = 2πi
N∑

I=2

zI aI (4.4)

where zI is as defined in (3.34).

These classical contributions have very simple behavior under S-duality. Indeed

S
(
Fclass

)
= −Fclass , (4.5a)

S
(
Wclass

)
= −Wclass . (4.5b)

To show these relations one has to use the S-duality rules (2.3) and (2.18), and recall that

S
(
~a
)
= ~aD :=

1

2πi

∂F
∂~a

and S
(
~aD

)
= −~a , (4.6)

which for the classical prepotential simply yield S(~a) = τ ~a.

The 1-loop contribution. The 1-loop contribution to the partition function of the Ω-

deformed gauge theory in the presence of a full surface operator of type {1, 1, · · · , 1} can

be written in terms of the function

γ(x) := log Γ2(x|ǫ1, ǫ2) =
d

ds

(
Λs

Γ(s)

∫ ∞

0
dt

ts−1e−tx

(e−ǫ1t − 1)(e−ǫ2t − 1)

)∣∣∣∣
s=0

, (4.7)

where Γ2 is the Barnes double Γ-function and Λ an arbitrary scale. Indeed, as shown for

example in [55], the perturbative contribution is

logZpert[1, 1, · · · , 1] =
N∑

u,v=1

u 6=v

[
γ

(
auv+

⌈
v − u

N

⌉
ǫ2

)
−γ

(
auv+m+

ǫ1
2
+

⌈
v − u

N

⌉
ǫ2

)]
(4.8)

where auv = au−av, and the ceiling function ⌈y⌉ denotes the smallest integer greater than

or equal to y. The first term in (4.8) represents the contribution of the vector multiplet,

while the second term is the contribution of the massive hypermultiplet. Expanding (4.8)
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for small ǫ1,2 and using the same definitions (3.36) used for the instanton part, we obtain

the perturbative contributions to the prepotential and the superpotential in the NS limit:

Fpert = − lim
ǫ2→0

(
ǫ1ǫ2 logZpert[1, 1, · · · , 1]

)
,

Wpert = lim
ǫ2→0

(
ǫ1 logZpert[1, 1, · · · , 1] +

Fpert

ǫ2

)
.

(4.9)

Exploiting the series expansion of the γ-function, one can explicitly compute these expres-

sions and show that Fpert precisely matches the perturbative prepotential in the NS limit

obtained in [34, 41], while the contribution to the superpotential is novel. For example, in

the case of the SU(2) theory we obtain

Fpert =
1

2

(
m2 − ǫ21

4

)
log

4a2

Λ2
− 1

48a2

(
m2 − ǫ21

4

)2

− 1

960a4

(
m2 − ǫ21

4

)2(
m2 − 3ǫ21

4

)
+ · · · ,

(4.10a)

Wpert = − 1

4a

(
m2 − ǫ21

4

)
− 1

96a3

(
m2 − ǫ21

4

)2

− 1

960a5

(
m2 − ǫ21

4

)2(
m2 − 3ǫ21

4

)
+ · · · .

(4.10b)

Note that, unlike the prepotential, the twisted superpotential has no logarithmic term.6

Furthermore, it is interesting to observe that

Wpert = −1

4

∂Fpert

∂a
. (4.11)

4.1 S-duality constraints

We are now in a position to discuss the constraints on the twisted superpotential arising

from S-duality. Adding the classical, the perturbative and the instanton terms described

in the previous sections, we write the complete prepotential and superpotential in the NS

limit as

F = Fclass + Fpert + Finst = πiτ ~a · ~a+
∞∑

ℓ=1

fℓ(τ,~a) ,

W = Wclass +Wpert +Winst = 2πi
N∑

I=2

zI aI +
∞∑

ℓ=1

wℓ(τ, zI ,~a)

(4.12)

where for later convenience, we have kept the classical terms separate. The quantum coef-

ficients fℓ and wℓ scale as a
2−ℓ and a1−ℓ, respectively, and account for the perturbative and

instanton contributions. While fℓ depend on the coupling constant τ , the superpotential

coefficients wℓ are also functions of the surface operator variables zI , as we have explicitly

seen in the SU(2) theory considered in the previous section.

6This fact is due to the superconformal invariance, and is no longer true in the pure N = 2 SU(2) gauge

theory, for which we find

Wpert = −

(

2− 2 log
2a

Λ

)

a+
ǫ21
24a

−
ǫ41

2880a3
+

ǫ61
40320a5

+ · · · .
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The coefficients fℓ have been explicitly calculated in terms of quasi-modular forms

in [34, 41] and we list the first few of them in appendix D. Their relevant properties can

be summarized as follows:

• All fℓ with ℓ odd vanish, while those with ℓ even are homogeneous functions of ~a and

satisfy the scaling relation7

f2ℓ(τ, λ~a) = λ2−2ℓ f2ℓ(τ,~a) . (4.13)

Since the prepotential has mass-dimension two, the f2ℓ are homogeneous polynomials

of degree 2ℓ, in m and ǫ1.

• The coefficients f2ℓ depend on the coupling constant τ only through the Eisenstein

series E2(τ), E4(τ) and E6(τ), and are quasi-modular forms of SL(2,Z) of weight

2ℓ− 2, such that

f2ℓ

(
−1

τ
,~a

)
= τ2ℓ−2 f2ℓ(τ,~a)

∣∣∣∣
E2→E2+δ

(4.14)

where δ = 6
πiτ . The shift δ in E2 is due to the fact that the second Eisenstein series

is a quasi-modular form with an anomalous modular transformation (see (A.4)).

• The coefficients f2ℓ satisfy a modular anomaly equation

∂f2ℓ
∂E2

+
1

24

ℓ−1∑

n=1

∂f2n
∂~a

· ∂f2ℓ−2n

∂~a
= 0 (4.15)

which can be solved iteratively.

Using the above properties, it is possible to show that S-duality acts on the prepotential

F in the NS limit as a Legendre transform [41, 42].

Let us now turn to the twisted superpotential W. As we have seen in (4.5), S-duality

acts very simply at the classical level but some subtleties arise in the quantum theory. We

now make a few important points, anticipating some results of the next sections. It turns

out that W receives contributions so that the coefficients wℓ do not have a well-defined

modular weight. However, these anomalous terms depend only on the coupling constant τ

and the vacuum expectation values ~a. In particular, they are independent of the continuous

parameters zI that characterize the surface operator. For this reason it is convenient to

consider the zI derivatives of the superpotential:

W(I) :=
1

2πi

∂W
∂zI

= aI +
∞∑

ℓ=1

w
(I)
ℓ (τ, zI ,~a) (4.16)

where, of course, w
(I)
ℓ := 1

2πi
∂wℓ

∂zI
.

Combining intuition from the classical S-duality transformation (4.5b) with the fact

that the zI -derivative increases the modular weight by one, and introduces an extra factor

of (−τ) under S-duality, we are naturally led to propose that

S
(
W(I)

)
= τ W(I) . (4.17)

7To be precise, one should also scale Λ → λΛ in the logarithmic term of f2.
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This constraint can be solved if we assume that the coefficients w
(I)
ℓ satisfy the following

properties (which are simple generalizations of those satisfied by fℓ):

• They are homogeneous functions of ~a and satisfy the scaling relation

w
(I)
ℓ (τ, zI , λ~a) = λ1−ℓw

(I)
ℓ (τ, zI ,~a) . (4.18)

Given that the twisted superpotential has mass-dimension one, it follows that w
(I)
ℓ

must be homogeneous polynomials of degree ℓ in m and ǫ1.

• The dependence of w
(I)
ℓ on τ and zI is only through linear combinations of quasi-

modular forms made up with the Eisenstein series and elliptic functions with total

weight ℓ, such that

w
(I)
ℓ

(
−1

τ
,−zI

τ
,~a

)
= τ ℓw

(I)
ℓ (τ, zI ,~a)

∣∣∣
E2→E2+δ

. (4.19)

We are now ready to discuss how S-duality acts on the superpotential coefficients w
(I)
ℓ .

Recalling that

S(~a) = ~aD :=
1

2πi

∂F
∂~a

= τ ~a+
1

2πi

∂f

∂~a
= τ

(
~a+

δ

12

∂f

∂~a

)
(4.20)

where f = Fpert + Finst, we have

S
(
w

(I)
ℓ

)
= w

(I)
ℓ

(
−1

τ
,−zI

τ
,~aD

)
= τ ℓw

(I)
ℓ (τ, zI ,~aD)

∣∣∣∣
E2→E2+δ

= τ w
(I)
ℓ

(
τ, zI ,~a+

δ

12

∂f

∂~a

)∣∣∣∣
E2→E2+δ

(4.21)

where in the last step we exploited the scaling behavior (4.18) together with (4.20). Using

this result in (4.16) and formally expanding in δ, we obtain

1

τ
S
(
W(I)

)
= W(I)

(
τ, zI ,~a+

δ

12

∂f

∂~a

)∣∣∣∣
E2→E2+δ

= W(I) + δ

(
∂W(I)

∂E2
+

1

12

∂W(I)

∂~a
· ∂f
∂~a

)
+O(δ2) .

(4.22)

The constraint (4.17) is satisfied if

∂W(I)

∂E2
+

1

12

∂W(I)

∂~a
· ∂f
∂~a

= 0 , (4.23)

which also implies the vanishing of all terms of higher order in δ. This modular anomaly

equation can be equivalently written as

∂w
(I)
ℓ

∂E2
+

1

12

ℓ−1∑

n=0

∂fℓ−n

∂~a
· ∂w

(I)
n

∂~a
= 0 (4.24)

where we have defined w
(I)
0 = aI .
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In the next sections we will solve this modular anomaly equation and determine the

superpotential coefficients w
(I)
ℓ in terms of Eisenstein series and elliptic functions; we will

also show that by considering the expansion of these quasi-modular functions we recover

precisely all instanton contributions computed using localization, thus providing a very

strong and highly non-trivial consistency check on our proposal (4.17) and on our entire

construction. Since the explicit results are quite involved in the general case, we will start

by discussing the SU(2) theory.

5 Surface operators in N = 2⋆ SU(2) theory

We now consider the simplest N = 2⋆ theory with gauge group SU(2) and solve in this case

the modular anomaly equation (4.24). A slight modification from the earlier discussion is

needed since for SU(2) the Coulomb vacuum expectation value of the adjoint scalar field

takes the form 〈φ〉 = diag(a,−a) and the index I used in the previous section only takes

one value, namely I = 2. Thus we have a single z-parameter, corresponding to the unique

surface operator we can have in the theory, and (4.16) becomes

W ′ :=
1

2πi

∂W
∂z

= −a+
∞∑

ℓ=1

w′
ℓ (5.1)

with w′
ℓ :=

1
2πi

∂wℓ

∂z
, while the recurrence relation (4.24) becomes

∂w′
ℓ

∂E2
+

1

24

ℓ−1∑

n=0

∂fℓ−n

∂a

∂w′
n

∂a
= 0 (5.2)

with the initial condition w′
0 = −a. The coefficient w1 and its z-derivative w′

1 do not depend

on a and are therefore irrelevant for the IR dynamics on the surface operator. Moreover,

w′
1 drops out of the anomaly equation and plays no role in determining w′

ℓ for higher values

of ℓ. Nevertheless, for completeness, we observe that if we use the elliptic function

h1(z|τ) =
1

2πi

∂

∂z
log θ1(z|τ) (5.3)

where θ1(z|τ) is the first Jacobi θ-function, and exploit the expansion reported in (A.16),

comparing with the instanton expansion (3.46a) obtained from localization, we are imme-

diately led to,

w′
1 =

(
m− ǫ1

2

)(
h1 +

1

2

)
. (5.4)

By expanding h1 to higher orders one can “predict” all higher instanton contributions to

w′
1. We have checked that these predictions perfectly match the explicit results obtained

from localization methods involving Young tableaux with up to six boxes.

The first case in which the modular anomaly equation (5.2) shows its power is the case

ℓ = 2. Recalling that the prepotential coefficients fn with n odd vanish, we have

∂w′
2

∂E2
+

1

24

∂f2
∂a

∂w′
0

∂a
= 0 . (5.5)
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Using the initial condition w′
0 = −a, substituting the exact expression for f2 given in (D.1)

and then integrating, we get

w′
2 =

1

24a

(
m2 − ǫ21

4

)(
E2 +modular term

)
. (5.6)

At this juncture, it is important to observe that the elliptic and modular forms of SL(2,Z),

which are allowed to appear in the superpotential coefficients, are polynomials in the ring

generated by the Weierstraß function ℘(z|τ) and its z-derivative ℘′(z|τ), and by the Eisen-

stein series E4 and E6. These basis elements have weights 2, 3, 4 and 6 respectively. We

refer to appendix A for a collection of useful formulas for these elliptic and modular forms

and for their perturbative expansions. Since w′
2 must have weight 2, the modular term

in (5.6) is restricted to be proportional to the Weierstraß function, namely

w′
2 =

1

24a

(
m2 − ǫ21

4

)(
E2 + α

℘

4π2

)
(5.7)

where α is a constant. Therefore our proposal works only if by fixing a single parameter α

we can match all the microscopic contributions to w′
2 computed in the previous sections.

Given the many constraints that this requirement puts, it is not at all obvious that it

works. But actually it does! Indeed, using the expansions of E2 and ℘̃ = ℘
4π2 given in (A.2)

and (A.17) respectively, and comparing with (3.46b), one finds a perfect match if α = 12.

Thus, the exact expression of w′
2 is

w′
2 =

1

24a

(
m2 − ǫ21

4

)(
E2 + 12 ℘̃

)
. (5.8)

We have checked up to order six that the all instanton corrections predicted by this formula

completely agree with the microscopic results obtained from localization.

Let us now consider the modular anomaly equation (5.2) for ℓ = 3. In this case since

w′
1 is a-independent and the coefficients fn with n odd vanish, we simply have

∂w′
3

∂E2
= 0 (5.9)

According to our proposal, w′
3 must be an elliptic function with modular weight 3, and

in view of (5.9), the only candidate is the derivative of the Weierstraß function ℘′. By

comparing the expansion (A.18) with the semi-classical results (3.46c) we find a perfect

match and obtain

w′
3 =

ǫ1
4a2

(
m2 − ǫ21

4

)
℘̃ ′ . (5.10)

Again we have checked that the higher order instanton corrections predicted by this formula

agree with the localization results up to order six.

A similar analysis can done for higher values of ℓ without difficulty. Obtaining the

anomalous behavior by integrating the modular anomaly equation, and fixing the coef-

ficients of the modular terms by comparing with the localization results, after a bit of
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elementary algebra, we get

w′
4 =

1

1152a3

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)(
2E2

2 − E4 + 24E2 ℘̃+ 144℘̃2
)
+ 6 ǫ21

(
E4 − 144℘̃2

)]
,

w′
5 =

ǫ1
48a4

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)(
E2 + 12℘̃

)
℘̃ ′ − 36 ǫ21 ℘̃ ℘̃ ′

]
, (5.11)

w′
6 =

1

138240a5

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)2(
20E3

2 − 11E2E4 − 4E6 + 240E2
2 ℘̃− 60E4 ℘̃

+ 2160E2 ℘̃
2 + 8640℘̃3

)
+ 2

(
m2 − ǫ21

4

)
ǫ21

(
39E2E4 + 56E6 + 1440E4 ℘̃

− 6480E2 ℘̃
2 − 120960℘̃3

)
− 240 ǫ41

(
E6 + 27E4 ℘̃− 2160℘̃3

)]
,

and so on. The complete agreement with the microscopic localization results of the above

expressions provides very strong and highly non-trivial evidence for the validity of the

modular anomaly equation and the S-duality properties of the superpotential, and hence

of our entire construction.

Exploiting the properties of the function h1 defined in (5.3) and its relation with the

Weierstraß function (see appendix A), it is possible to rewrite the above expressions as

total z-derivatives. Indeed, we find

w′
2 =

1

2a

(
m2 − ǫ21

4

)
h′1 , w′

3 =
ǫ1
4a2

(
m2 − ǫ21

4

)
h′′1 ,

w′
4 =

1

48a3

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)(
E2 h1 − h′′1

)
+ 6 ǫ21 h

′′
1

]′
, (5.12)

w′
5 =

ǫ1
8a4

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)
(h′1)

2 +
ǫ21
2

(
E2 − 6h′1

)
h′1

]′
.

We have checked that the same is also true for w′
6 (and for a few higher coefficients as well),

which however we do not write explicitly for brevity. Of course this is to be expected since

they are the coefficients of the expansion of the derivative of the superpotential. The latter

can then be simply obtained by integrating with respect to z and fixing the integration

constants by comparing with the explicit localization results. In this way we obtain8

W = −2πiz a+
∑

n

wn (5.13)

with

w2 =
1

2a

(
m2 − ǫ21

4

)
h1 , w3 =

ǫ1
4a2

(
m2 − ǫ21

4

)
h′1 , (5.14)

w4 =
1

48a3

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)(
E2 h1 − h′′1

)
+ 6 ǫ21 h

′′
1 +

1

2

(
m2 − ǫ21

4

)(
E2 − 1)

]
,

w5 =
ǫ1
8a4

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)
(h′1)

2 +
ǫ21
2

(
E2 − 6h′1

)
h′1 +

1

96

(
m2 − 9ǫ21

4

)(
E2

2 − E4

)]
,

8We neglect the a-independent terms originating from (5.4) since they are irrelevant for the infrared

dynamics on the defect.
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and so on. Note that, as anticipated in the previous section, the coefficients wn do not

have a homogeneous modular weight.

5.1 Relation to CFT results

So far we have studied the twisted superpotential and its z-derivative as semi-classical

expansions for large a. However, we can also arrange these expansions in terms of the de-

formation parameter ǫ1. For example, using the results in (5.8), (5.10) and (5.11), we obtain

W ′ = −a+

∞∑

n=0

ǫn1 W ′
n (5.15)

where

W ′
0 =

m2

24a

(
E2 + 12℘̃

)
+

m4

1152a3
(
2E2

2 − E4 + 24E2 ℘̃+ 144℘̃2
)
+

m6

138240a5
(
20E3

2

− 11E2E4 − 4E6 + 240E2
2 ℘̃− 60E4 ℘̃+ 2160E2 ℘̃

2 + 8640℘̃3
)
+O

(
a−7

)
,

W ′
1 =

m2

4a2
℘̃ ′ +

m4

48a4
(
E2 + 12℘̃

)
℘̃ ′ +O

(
a−6

)
,

W ′
2 = − 1

96a

(
E2 + 12℘

)
− m2

2304a3
(
2E2

2 − 13E4 + 24E2 ℘̃+ 1872℘̃2
)

(5.16)

− m4

110592a5
(
12E3

2 − 69E2E4 − 92E6 + 144E2
2 ℘̃− 2340E4 ℘̃

+ 11664E2 ℘̃
2 + 198720℘̃3

)
+O

(
a−7

)
,

W ′
3 = − 1

16a2
℘̃ ′ − m2

96a4
(
E2 + 84℘̃

)
℘̃ ′ +O

(
a−6

)
,

and so on. Quite remarkably, up to a sign flip a → −a, these expressions precisely coincide

with the results obtained in [35] from the null-vector decoupling equation for the toroidal

1-point conformal block in the Liouville theory.

We would like to elaborate a bit on this match. Let us first recall that in the so-called

AGT correspondence [9] the toroidal 1-point conformal block of a Virasoro primary field V

in the Liouville theory is related to the Nekrasov partition function of the N = 2⋆ SU(2)

gauge theory. In [11] it was shown that the insertion of the degenerate null-vector V2,1 in

the Liouville conformal block corresponds to the partition function of the SU(2) theory in

the presence of a surface operator. In the semi-classical limit of the Liouville theory (which

corresponds to the NS limit ǫ2 → 0), one has [11, 35]

〈V (0)V2,1(z)〉torus ≃ N exp

(
− F

ǫ1ǫ2
+

W(z)

ǫ1
+ · · ·

)
, (5.17)

where N is a suitable normalization factor. In [35] the null-vector decoupling equation

satisfied by the degenerate conformal block was used to explicitly calculate the prepotential

F and the z-derivative of the twisted effective superpotential W ′ for the N = 2⋆ SU(2)
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theory, which fully agrees with the one we have obtained using the modular anomaly

equation and localization methods. It is important to keep in mind that the insertion of

the degenerate field V2,1 in the Liouville theory corresponds to the insertion of a surface

operator of codimension-4 in the six-dimensional (2, 0) theory. In the brane picture, this

defect corresponds to an M2 brane ending on the M5 branes that wrap a Riemann surface

and support the gauge theory in four dimensions. On the other hand, as explained in the

introduction, the results we have obtained using the orbifold construction and localization

pertain to a surface operator of codimension-2 in the six dimensional theory, corresponding

to an M5′ intersecting the original M5 branes. The equality between our results and those

of [35] supports the proposal of a duality between the two types of surface operators

in [52]. This also supports the conjecture of [59], based on [10, 60, 61], that in the presence

of simple surface operators the instanton partition function is insensitive to whether they

are realized as codimension-2 or codimension-4 operators. In section 7.1 we will comment

on such relations in the case of higher rank gauge groups and will also make contact with

the results for the twisted chiral rings when the surface defect is realized by coupling

two-dimensional sigma-models to pure N = 2 SU(N) gauge theory.

6 Surface operators in N = 2⋆ SU(N) theories

We now generalize the previous analysis to SU(N) gauge groups. As discussed in section 2,

in the higher rank cases there are many types of surface operators corresponding to the

different partitions of N . We start our discussion from simple surface operators of type

{1, (N − 1)}.

6.1 Simple surface operators

In the case of the simple partition {1, (N − 1)}, the vector ~t of the electro-magnetic pa-

rameters characterizing the surface operator takes the form

~t =
{
t1,

︸ ︷︷ ︸
N − 1

t2, . . . , t2

}
. (6.1)

Correspondingly, the classical contribution to the twisted effective superpotential becomes

Wclass = 2πi~t · ~a = 2πi

(
a1 t1 + t2

N∑

i=2

ai

)
= −2πi z a1 (6.2)

where we have used the tracelessness condition on the vacuum expectation values and,

according to (3.34), have defined z = t2 − t1.

When quantum corrections are included, one finds that the coefficients w′
ℓ of the z-

derivative of the superpotential satisfy the modular anomaly equation (4.24). The solution

of this equation proceeds along the same lines as in the SU(2) case, although new structures,

involving the differences aij = ai − aj , appear. We omit details of the calculations and

merely present the results. As for the SU(2) theory, the coefficients can be compactly writ-

ten in terms of modular and elliptic functions, particularly the second Eisenstein series and

– 24 –



J
H
E
P
0
7
(
2
0
1
7
)
0
6
8

the function h1 defined in (5.3). For clarity, and also for later convenience, we indicate the

dependence on z but understand the dependence on τ in h1. The first few coefficients w′
ℓ are

w′
2 =

(
m2 − ǫ21

4

) N∑

j=2

h′1(z)

a1j
, (6.3a)

w′
3 = ǫ1

(
m2 − ǫ21

4

) N∑

j=2

h′′1(z)

a21j
+

1

2

(
m2 − ǫ21

4

)(
m+

ǫ1
2

) N∑

j 6=k=2

h′′1(z)

a1j a1k
, (6.3b)

w′
4 =

1

6

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)(
E2 h

′
1(z)− h′′′1 (z)

)
+ 6 ǫ21 h

′′′
1 (z)

] N∑

j=2

1

a31j

+ ǫ1

(
m2 − ǫ21

4

)(
m+

ǫ1
2

) N∑

j 6=k=2

h′′′1 (z)

a21j a1k
(6.3c)

+
1

6

(
m2 − ǫ21

4

)(
m+

ǫ1
2

)2 N∑

j 6=k 6=ℓ=2

h′′′1 (z)

a1j a1k a1ℓ
,

and so on. We have explicitly checked the above formulas against localization results up

to SU(7) finding complete agreement. It is easy to realize that for N = 2 only the high-

est order poles contribute and the corresponding expressions precisely coincide with the

results in the previous section. In the higher rank cases, there are also contributions from

structures with lesser order poles that are made possible because of the larger number of

Coulomb parameters. Furthermore, we observe that there is no pole when aj approaches

ak with j, k = 2, · · ·, N .

It is interesting to observe that the above expressions can be rewritten in a suggestive

form using the root system Φ of SU(N). The key observation is that using the vector ~t

defined in (6.1) we can select a subset of roots Ψ ⊂ Φ such that their scalar products with

the vector ~a of the vacuum expectation values produce exactly all the factors of a1j in the

denominators of (6.3). Defining

Ψ =
{
~α ∈ Φ

∣∣ ~α · ~t+ z = 0
}
, (6.4)

one can verify that for any ~α ∈ Ψ, the scalar product ~α · ~a is of the form a1j . Therefore,

w′
2 in (6.3a) can be written as

w′
2 =

(
m2 − ǫ21

4

) ∑

~α∈Ψ

h′1(−~α · ~t)
~α · ~a =

(
m2 − ǫ21

4

) ∑

~α∈Ψ

h′1(~α · ~t)
~α · ~a (6.5)

where in the last step we used the fact that h′1 is an even function. Similarly the other

coefficients in (6.3) can also be rewritten using the roots of SU(N). Indeed, introducing

the subsets of Ψ defined as9

Ψ(~α) =
{
~β ∈ Ψ

∣∣ ~α · ~β = 1
}
,

Ψ(~α, ~β) =
{
~γ ∈ Ψ

∣∣ ~α · ~γ = ~β · ~γ = 1
}
,

(6.6)

9These definitions are analogous to the ones used in [41, 42] to define the root lattice sums appearing in

the prepotential; see also (D.7).
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we find that w′
3 in (6.3b) becomes

w′
3 = −ǫ1

(
m2 − ǫ21

4

) ∑

~α∈Ψ

h′′1(~α · ~t )
(~α · ~a )2

− 1

2

(
m2 − ǫ21

4

)(
m+

ǫ1
2

) ∑

~α∈Ψ

∑

~β∈Ψ(~α)

h′′1(~α · ~t )
(~α · ~a ) (~β · ~a )

,

(6.7)

while w′
4 in (6.3c) is

w′
4 =

1

6

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

) ∑

~α∈Ψ

E2 h
′
1(~α · ~t )− h′′′1 (~α · ~t )

(~α · ~a )3
+ 6 ǫ21

∑

~α∈Ψ

h′′′1 (~α · ~t )
(~α · ~a )3

]

+ ǫ1

(
m2 − ǫ21

4

)(
m+

ǫ1
2

) ∑

~α∈Ψ

∑

~β∈Ψ(~α)

h′′′1 (~α · ~t )
(~α · ~a )2 (~β · ~a )

+
1

4

(
m2 − ǫ21

4

)(
m+

ǫ1
2

)2[ ∑

~α∈Ψ

∑

~β 6=~γ∈Ψ(~α)

h′′′1 (~α · ~t )
(~α · ~a ) (~β · ~a ) (~γ · ~a )

− 1

3

∑

~α∈Ψ

∑

~β∈Ψ(~α)

∑

~γ∈Ψ(~α,~β)

h′′′1 (~α · ~t )
(~α · ~a ) (~β · ~a ) (~γ · ~a )

]
.

(6.8)

We observe that the two sums in the last two lines of (6.8) are actually equal to each other

and exactly reproduce the last line of (6.3c). However, for different sets of roots the two

sums are different and lead to different structures. Thus, for reasons that will soon become

clear, we have kept them separate even in this case.

6.2 Surface operators of type {p,N − p}

We now discuss a generalization of the simple surface operator in which we still have a

single complex variable z as before, but the type is given by the following vector

~t =
{

︸ ︷︷ ︸
p

t1, . . . , t1,
︸ ︷︷ ︸

N − p

t2, . . . , t2

}
. (6.9)

In this case, using the tracelessness condition on the vacuum expectation values, the clas-

sical contribution to the superpotential is

Wclass = 2πi

(
t1

p∑

i=1

ai + t2

N∑

j=p+1

aj

)
= −2πi z

p∑

i=1

ai (6.10)

where again we have defined z = t2 − t1.

It turns out that the quantum corrections to the z-derivatives of the superpotential

are given exactly by the same formulas (6.5), (6.7) and (6.8) in which the only difference is

in the subsets of the root system Φ that have to be considered in the lattice sums. These

subsets are still defined as in (6.4) and (6.6) but with the vector ~t given by (6.9). We

observe that in this case the two last sums in (6.8) are different. We have verified these
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formulas against the localization results up to SU(7) finding perfect agreement. The fact

that the superpotential coefficients can be formally written in the same way for all unitary

groups and for all types with two entries, suggests that probably universal formulas should

exist for surface operators with more than two distinct entries in the ~t-vector. This is

indeed what happens as we will show in the next subsection.

6.3 Surface operators of general type

A surface operator of general type corresponds to splitting the SU(N) gauge group as

in (2.10) which leads to the following partition of the Coulomb parameters

~a =
{

︸ ︷︷ ︸
n1

a1, · · · an1
,
︸ ︷︷ ︸

n2

an1+1, · · · an1+n2
, · · · ,

︸ ︷︷ ︸
nM

aN−nM+1, . . . aN

}
, (6.11)

and to the following ~t-vector

~t =
{

︸ ︷︷ ︸
n1

t1, · · · , t1,
︸ ︷︷ ︸

n2

t2, · · · , t2, · · · ,
︸ ︷︷ ︸

nM

tM , · · · , tM
}

(6.12)

with
M∑

I=1

nI = N . (6.13)

In this case we therefore have several variables zI defined as in (3.34), and several combina-

tions of elliptic functions evaluated at different points. However, if we use the root system

Φ of SU(N) the structure of the superpotential coefficients is very similar to what we have

seen before in the simplest cases. To see this, let us first define the following subsets10 of Φ:

ΨIJ =
{
~α ∈ Φ

∣∣ ~α · ~t+ zI − zJ = 0
}
,

ΨIJ(~α) =
{
~β ∈ ΨIJ

∣∣ ~α · ~β = 1
}
,

ΨIJ(~α, ~β) =
{
~γ ∈ ΨIJ

∣∣ ~α · ~γ = ~β · ~γ = 1
}

(6.14)

which are obvious generalizations of the definitions (6.4) and (6.6). Then, writing

W(I) =
1

2πi

∂W
∂zI

= aI1 + · · · aInI
+
∑

ℓ

w
(I)
ℓ , (6.15)

for I = 2, · · · ,M , we find that the first few coefficients w
(I)
ℓ are given by

w
(I)
2 =

(
m2 − ǫ21

4

)∑

J 6=I

∑

~α∈ΨIJ

h′1(~α · ~t )
~α · ~a , (6.16)

w
(I)
3 = −ǫ1

(
m2 − ǫ21

4

)∑

J 6=I

∑

~α∈ΨIJ

h′′1(~α · ~t )
(~α · ~a )2

− 1

2

(
m2 − ǫ21

4

)(
m+

ǫ1
2

)∑

J 6=I

∑

~α∈ΨIJ

∑

~β∈ΨIJ (~α)

h′′1(~α · ~t )
(~α · ~a ) (~β · ~a )

, (6.17)

10When J = 1 one must take z1 = 0.
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w
(I)
4 =

1

6

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)∑

J 6=I

∑

~α∈ΨIJ

E2 h
′
1(~α · ~t )− h′′′1 (~α · ~t )

(~α · ~a )3

+ 6 ǫ21
∑

J 6=I

∑

~α∈ΨIJ

h′′′1 (~α · ~t )
(~α · ~a )3

]

+ ǫ1

(
m2 − ǫ21

4

)(
m+

ǫ1
2

)∑

J 6=I

∑

~α∈ΨIJ

∑

~β∈ΨIJ (~α)

h′′′1 (~α · ~t )
(~α · ~a )2 (~β · ~a )

+
1

4

(
m2 − ǫ21

4

)(
m+

ǫ1
2

)2[∑

J 6=I

∑

~α∈ΨIJ

∑

~β 6=~γ∈ΨIJ (~α)

h′′′1 (~α · ~t )
(~α · ~a ) (~β · ~a ) (~γ · ~a )

(6.18)

− 1

3

∑

J 6=I

∑

~α∈ΨIJ

∑

~β∈ΨIJ (~α)

∑

~γ∈ΨIJ (~α,~β)

h′′′1 (~α · ~t )
(~α · ~a ) (~β · ~a ) (~γ · ~a )

]

+

(
m2 − ǫ21

4

)2 ∑

J 6=K 6=I

∑

~α∈ΨIJ

∑

~β∈ΨIK(~α)

h′1(~α · ~t )h′1(~α · ~t− ~β · ~t )
(~α · ~a ) (~β · ~a ) (~α · ~a− ~β · ~a )

where the summation indices J,K, · · · , take integer values from 1 to M . One can explic-

itly check that these formulas reduce to those of the previous subsections if M = 2 and

that no singularity arises when two a’s belonging to the same subgroup in (6.11) approach

each other. We have verified these expressions in many cases up to SU(7), always finding

agreement with the explicit localization results. Of course it is possible to write down

similar expressions for the higher coefficients w
(I)
ℓ , which however become more and more

cumbersome as ℓ increases. Given the group theoretic structure of these formulas, it is

tempting to speculate that they may be valid for the other simply laced groups of the ADE

series as well, similarly to what happens for the analogous expressions of the prepotential

coefficients [41]. It would be interesting to verify whether this happens or not.

7 Duality between surface operators

In this section we establish a relation between our localization results and those obtained

when the surface defect is realized by coupling two-dimensional sigma-models to the four

dimensional gauge theory. When the surface operators are realized in this way, the twisted

chiral ring has been independently obtained by studying the two-dimensional (2, 2) the-

ories [62, 63] and related to the Seiberg-Witten geometry of the four dimensional gauge

theory [4, 5]. Building on these general results, we extract the semi-classical limit and

compare it with the localization answer, finding agreement.

In order to be explicit, we will consider only gauge theories without Ω-deformation,

and begin our analysis by first discussing the pure N = 2 theory with gauge group SU(N);

in the end we will return to the N = 2⋆ theory.

7.1 The pure N = 2 SU(N) theory

The pure N = 2 theory can be obtained by decoupling the adjoint hypermultiplet of the

N = 2⋆ model. More precisely, this decoupling is carried out by taking the following limit
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(see for example [34])

m → ∞ and q → 0 such that q m2N = (−1)NΛ2N is finite, (7.1)

where Λ is the strong coupling scale of the pure N = 2 theory. In presence of a surface

operator, this limit must be combined with a scaling prescription for the continuous vari-

ables that characterize the defect. For surface operators of type {p,N − p}, which possess

only one parameter x = e2πi z, this scaling is

m → ∞ and x → 0 such that xmN = (−1)p−1x0 Λ
N is finite. (7.2)

Here x0 = e2πi z0 is the parameter that labels the surface operator in the pure theory à la

Gukov-Witten [2–5].

Performing the limits (7.1) and (7.2) on the localization results described in the pre-

vious sections, we obtain

W ′ =

p∑

i=1

W ′
i (7.3)

where

W ′
i = −ai − ΛN

(
x0 +

1

x0

) N∏

j 6=i

1

aij
− Λ2N

2

(
x20 +

1

x20

)
∂

∂ai

( N∏

j 6=i

1

a2ij

)
+O

(
Λ3N

)
. (7.4)

We have explicitly verified this expression in all cases up to SU(7), and for the low rank

groups we have also computed the higher instanton corrections.11 With some simple algebra

one can check that, up to the order we have worked, W ′ is not singular for ai → aj when

both i and j are ≤ p or > p. Furthermore, one can verify that

N∑

i=1

W ′
i = 0 (7.5)

as a consequence of the tracelessness condition on the vacuum expectation values.

We now show that this result is completely consistent with the exact twisted chiral

ring relation obtained in [5]. For the pure N = 2 SU(N) theory with a surface operator

parameterized by x0, the twisted chiral ring relation takes the form [5]

PN (y)− ΛN

(
x0 +

1

x0

)
= 0 (7.6)

with

PN (y) =
N∏

i=1

(
y − ei

)
(7.7)

11For example, for SU(2) and p = 1 we find

W ′

1 = −a−
Λ2

2a

(

x0+
1

x0

)

+
Λ4

8a3

(

x
2
0+

1

x2
0

)

−
Λ6

16a5

(

x
3
0+x0+

1

x0

+
1

x3
0

)

+
Λ8

128a7

(

5x4
0+8x2

0+
8

x2
0

+
5

x4
0

)

+O
(

Λ10
)

where a = a1.
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where ei are the quantum corrected expectation values of the adjoint scalar. They reduce

to ai in the classical limit Λ → 0 and parameterize the quantum moduli space of the theory.

The ei, which satisfy the tracelessness condition

N∑

i=1

ei = 0 , (7.8)

were explicitly computed long ago in the 1-instanton approximation in [64, 65] by evaluating

the period integrals of the Seiberg-Witten differential and read

ei = ai − Λ2N ∂

∂ai

(∏

j 6=i

1

a2ij

)
+O

(
Λ4N

)
. (7.9)

The higher instanton corrections can be efficiently computed using localization meth-

ods [66–69], but their expressions will not be needed in the following.

Inserting (7.9) into (7.7) and systematically working order by order in ΛN , it is possible

to show that the N roots of the chiral ring equation (7.6) are

yi = ai + ΛN

(
x0 +

1

x0

) N∏

j 6=i

1

aij
+

Λ2N

2

(
x20 +

1

x20

)
∂

∂ai

( N∏

j 6=i

1

a2ij

)
+O

(
Λ3N

)
(7.10)

for i = 1, · · · , N . Comparing with (7.4), we see that, up to an overall sign, yi coincide with

the derivatives of the superpotential W ′
i we obtained from localization. Therefore, we can

rewrite the left hand side of (7.6) in a factorized form and get

N∏

i=1

(
y +W ′

i )− PN (y) + ΛN

(
x0 +

1

x0

)
= 0 (7.11)

This shows a perfect match between our localization results and the semi-classical expansion

of the chiral ring relation of [5], and provides further non-trivial evidence for the equivalence

of the two descriptions. Let us elaborate a bit more on this. According to [5], a surface oper-

ator of type {p,N−p} has a dual description as a Grassmannian sigma-model coupled to the

SU(N) gauge theory, and all information about the twisted chiral ring of the sigma-model is

contained in two monic polynomials, Q and Q̃ of degree p and (N−p) respectively, given by

Q(y) =

p∑

ℓ=0

yℓXp−ℓ , Q̃(y) =

N−p∑

k=0

yk X̃N−p−k . (7.12)

with X0 = X̃0 = 1. Here, Xℓ are the twisted chiral ring elements of the Grassmannian

sigma-model, and in particular

X1 =
1

2πi

∂W
∂z0

(7.13)

where W is the superpotential of the surface operator of type {p,N − p}. The polyno-

mial Q̃ encodes the auxiliary information about the “dual” surface operator obtained by
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sending p → (N − p). The crucial point is that, according to the proposal of [5], the two

polynomials Q and Q̃ satisfy the relation

Q(y) Q̃(y)− PN (y) + ΛN

(
x0 +

1

x0

)
= 0 . (7.14)

Comparing with (7.11), we are immediately led to the following identifications12

Q(y) =

p∏

i=1

(
y +W ′

i

)
, Q̃(y) =

N∏

j=p+1

(
y +W ′

j

)
. (7.15)

Thus, using (7.13) and (7.3), we find

1

2πi

∂W
∂z0

=

p∑

i=1

W ′
i = W ′ . (7.16)

This equality shows that our localization results for the superpotential of the surface op-

erator of type {p,N − p} in the pure SU(N) theory perfectly consistent with the proposal

of [5], thus proving the duality between the two descriptions. All this is also a remarkable

consistency check of the way in which we have extracted the semi-classical results for the

twisted chiral ring of the Grassmannian sigma-model and of the twisted superpotential we

have computed.

7.2 The N = 2⋆ SU(N) theory

Inspired by the previous outcome, we now analyze the twisted chiral ring relation for simple

operators in N = 2⋆ theories using the Seiberg-Witten curve and compare it with our

localization results for the undeformed theory. To this aim, let us first recall from section 6.1

(see in particular (6.3) with ǫ1 = 0) that for a simple surface operator corresponding to

the following partition of the Coulomb parameters

{
ai,

︸ ︷︷ ︸
N − 1

{aj with j 6= i}
}
, (7.17)

the z-derivative of the superpotential is

W ′
i = −ai +m2

∑

j 6=i

h′1
aij

+
m3

2

∑

j 6=k 6=i

h′′1
aij aik

+
m4

6

(∑

j 6=i

E2 h
′
1 − h′′′1
a3ij

+
∑

j 6=k 6=ℓ6=i

h′′′1
aij aik aiℓ

)
+O

(
m5

)
.

(7.18)

Let us now see how this information can be retrieved from the Seiberg-Witten curve of

the N = 2⋆ theories. As is well known, in this case there are two possible descriptions

(see [44] for a review). The first one, which we call the Donagi-Witten curve [70], is written

12We have chosen a specific ordering in which the first p factors correspond to the first p vacuum expec-

tation values ai; of course one could as well choose a different ordering by permuting the factors.
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naturally in terms of the modular covariant coordinates on moduli space, while the second,

which we call the d’Hoker-Phong curve [71], is written naturally in terms of the quantum

corrected coordinates on moduli space. As shown in [44], these two descriptions are linearly

related to each other with coefficients depending on the second Eisenstein series E2.

Since our semi-classical results have been resummed into elliptic and quasi-modular

forms, we use the Donagi-Witten curve, which for the SU(N) gauge theory is an N -fold

cover of an elliptic curve. It is described by the pair of equations:

Y 2 = X3 − E4

48
X +

E6

864
, FN (y,X, Y ) = 0 . (7.19)

The first equation describes an elliptic curve and thus we can identify (X,Y ) with the

Weierstraß function and its derivative (see (A.11)). More precisely we have

X = −℘̃ = −h′1 +
1

12
E2 ,

Y =
1

2
℘̃ ′ =

1

2
h′′1

(7.20)

The second equation in (7.19) contains a polynomial in y of degree N which encodes the

modular covariant coordinates Ak on the Coulomb moduli space of the gauge theory:

FN (y,X, Y ) =
N∑

k=0

(−1)kAk PN−k(y,X, Y ) (7.21)

where Pk are the modified Donagi-Witten polynomials introduced in [44]. The first few of

them are:13

P0 = 1 , P1 = y ,

P2 = y2 −m2X , P3 = y3 − 3 ym2X + 2m3 Y ,

P4 = y4 − 6m2 y2X + 8 ym3 Y −m4

(
3X2 − 1

24
E4

)
.

(7.22)

On the other hand, the first few modular covariant coordinates Ak are (see [44]):

A2 =
∑

i<j

aiaj +
m2

12

(
N

2

)
E2 +

m4

288

(
E2

2 − E4

)∑

i 6=j

1

a2ij
+O(m6) ,

A3 =
∑

i<j<k

aiajak −
m4

144

(
E2

2 − E4

)∑

i

∑

j 6=i

ai

a2ij
+O(m6) ,

A4 =
∑

i<j<k<ℓ

aiajakaℓ +
m2

12

(
N − 2

2

)
E2

∑

i<j

aiaj +
m4

48
E2

2

+
m4

288

(
E2

2 − E4

)[∑

i<j

∑

k 6=ℓ

aiaj

a2kℓ
+ 3

∑

i

∑

j 6=i

a2i
a2ij

−
(
N

2

)]
+O(m6) ,

(7.23)

and so on.

13The E4 term in P4 is one of the modifications which in [44] were found to be necessary and is crucial

also here.
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We now have all the necessary ingredients to proceed. First of all, using the above

expressions and performing the decoupling limits (7.1) and (7.2), one can check that the

Donagi-Witten equation FN = 0 reduces to the twisted chiral ring relation (7.6) of the pure

theory. Of course this is not a mere coincidence; on the contrary it supports the idea that

the Donagi-Witten equation actually encodes also the twisted chiral ring relation of the

simple codimension-4 surface operators of the N = 2⋆ theories. Secondly, working order by

order in the hypermultiplet mass m, one can verify that the N roots of the Donagi-Witten

equation are given by

yi = ai −m2
∑

j 6=i

h′1
aij

− m3

2

∑

j 6=k 6=i

h′′1
aij aik

− m4

6

(∑

j 6=i

E2 h
′
1 − h′′′1
a3ij

+
∑

j 6=k 6=ℓ6=i

h′′′1
aij aik aiℓ

)
+O

(
m5

)
.

(7.24)

Remarkably, this precisely matches, up to an overall sign, the answer (7.18) for the simple

codimension-2 surface operator we have obtained using localization. Once again, we have

exhibited the equivalence of twisted chiral rings calculated for the two kinds of surface

operators. Furthermore, we can rewrite the Donagi-Witten equation in a factorized form

as follows
N∏

i=1

(
y +W ′

i

)
− FN (y,X, Y ) = 0 (7.25)

which is the N = 2⋆ equivalent of the pure theory relation (7.11).

At this point one is tempted to proceed as in the pure theory and try to deduce also

the superpotential for surface operators of type {p,N − p}. However, from our explicit

localization results we know that in this case W ′ is not simply the sum of the superpo-

tentials of type {1, N − 1}, differently from what happens in the pure theory (see (7.3)).

Thus, a naive extension to the N = 2⋆ of the proposal of [5] to describe the coupling of a

two dimensional Grassmannian sigma-model to the four dimensional gauge theory can not

work in this case. This problem as well as the coupling of a flag variety to the N = 2⋆

theory, which is relevant for surface operators of general type, remains an open question

which we leave to future investigations.

7.3 Some remarks on the results

The result we obtained from the twisted superpotential in the case of simple operators

is totally consistent with the proposal given in the literature for simple codimension-4

surface operators labeled by a single continuous parameter z, whose superpotential has been

identified with the line integral of the Seiberg-Witten differential of the four-dimensional

gauge theory along an open path [11]:

W(z) =

∫ z

z∗
λSW (7.26)

where z∗ is an arbitrary reference point. Indeed, in the Donagi-Witten variables, the

differential is simply λSW (z) = y(z) dz. Given that the Donagi-Witten curve is an N -fold
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cover of the torus, the twisted superpotential with the classical contribution proportional

to ai can be obtained by solving for y(z) and writing out the solution on the ith branch.

As we have seen in the previous subsection, the general identification in (7.26) works

also in the pure N = 2 theory, once the parameters in the Seiberg-Witten differential are

rescaled by a factor of ΛN [5]. This rescaling can be interpreted as a renormalization of

the continuous parameter that labels the surface operator [72].

The agreement we find gives further evidence of the duality between defects realized as

codimension-2 and codimension-4 operators that we have already discussed in section 5.1,

where we showed the equality of the twisted effective superpotential computed in the two

approaches for simple defects in the SU(2) theory. We have extended these checks to

defects of type {p,N −p} in pure N = 2 theories, and to simple defects in N = 2⋆ theories

with higher rank gauge groups. All these checks support the proposal of [52] based on a

“separation of variables” relation.

8 Conclusions

In this paper we have studied the properties of surface operators on the Coulomb branch of

the four dimensionalN = 2⋆ theory with gauge group SU(N) focusing on the superpotential

W. This superpotential, describing the effective two-dimensional dynamics on the defect

world-sheet, receives non-perturbative contributions, which we calculated using equivariant

localization. Furthermore, exploiting the constraints arising from the non-perturbative

SL(2,Z) symmetry, we showed that in a semi-classical regime in which the mass of the

adjoint hypermultiplet is much smaller than the classical Coulomb branch parameters, the

twisted superpotential satisfies a modular anomaly equation that we solved order by order

in the mass expansion.

We would like to remark some interesting properties of our results. If we focus on the

derivatives of the superpotential, the coefficients of the various terms in the mass expansion

are linear combination of elliptic and quasi-modular forms with a given weight. The explicit

expression for the twisted superpotential can be written in a very general and compact form

in terms of suitable restricted sums over the root lattice of the gauge algebra.

The match of our localization results with the ones obtained in [5] by studying the

coupling with two-dimensional sigma models is a non-trivial check of our methods and

provides evidence for the duality between the codimension-2 and codimension-4 surface

operators proposed in [52]. Further evidence is given by the match of the twisted super-

potentials in the N = 2⋆ theory, which we proved for the simple surface operators using

the Donagi-Witten curve of the model. A key input for this match is the exact quantum

expression of the chiral ring elements calculated using localization [44, 69]. It would be

really important to extend the discussion of this duality to more general surface operators

described by a generic Levi decomposition.

There are several possible extensions of our work. A very direct one would be to check

that the general expression given for the twisted superpotential is actually valid for all

simply laced groups, in analogy to what happens for the four-dimensional prepotential.

A technically more challenging extension would be to study surface operators for theories
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with non-simply laced gauge groups. The prepotential in these cases has been calculated

in [42] using localization methods and expressed in terms of modular forms of suitable

congruence subgroups of SL(2,Z), and it would be very interesting to similarly calculate

the twisted superpotential in a semi-classical expansion.

Another interesting direction would be to study surface operators in SQCD theories.

For SU(N) gauge groups, the prepotential as well as the action of S-duality on the infrared

variables have been calculated in a special locus of the Coulomb moduli space that has

a ZN symmetry [38, 39]. Of special importance was the generalized Hecke groups acting

on the period integrals and the period matrix of the Seiberg-Witten curve. It would be

worthwhile to explore if such groups continue to play a role in determining the twisted

superpotential as well.

A related development would be to analyze the higher order terms in the ǫ2 expansion

of the partition function (see (3.36)) and check whether or not they also obey a modular

anomaly equation like the prepotential and the superpotential do. This would help us in

clarifying the properties of the partition function in the presence of a surface operator in

a general Ω background.

There has been a lot of progress in understanding M2 brane surface operators via the

4d/2d correspondence. For higher rank theories, explicit results for such surface defects

have been obtained in various works including [73–77]. In particular in [75], the partition

functions of theories with N2
f free hypermultiplets on the deformed 4-sphere in the presence

of surface defects have been related to specific conformal blocks in Toda conformal field

theories. This has been extended in [76, 77] to study gauge theory partition functions in the

presence of intersecting surface defects. It would be interesting to study such configurations

directly using localization methods.
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A Useful formulas for modular forms and elliptic functions

In this appendix we collect some formulas about quasi-modular forms and elliptic functions

that are useful to check the statements of the main text.

Eisenstein series. We begin with the Eisenstein series E2n, which admit a Fourier ex-

pansion in terms of q = e2πiτ of the form

E2n = 1 +
2

ζ(1− 2n)

∞∑

k=1

σ2n−1(k)q
k , (A.1)
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where σp(k) is the sum of the p-th powers of the divisors of k. More explicitly we have

E2 = 1− 24
∞∑

k=1

σ1(k)q
k = 1− 24q − 72q2 − 96q3 − 168q4 + · · · ,

E4 = 1 + 240
∞∑

k=1

σ3(k)q
k = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + · · · ,

E6 = 1− 504
∞∑

k=1

σ5(k)q
k = 1− 504q − 16632q2 − 122976q3 − 532728q4 + · · · .

(A.2)

Under a modular transformation τ → aτ+b
cτ+d

, with a, b, c, d ∈ Z and ad − bc = 1, the

Eisenstein series transform as

E2 → (cτ + d)2E2 +
6

πi
c (cτ + d) , E4 → (cτ + d)4E4 , E6 → (cτ + d)6E6 . (A.3)

In particular, under S-duality we have

E2(τ) → E2

(
−1

τ

)
= τ2

(
E2(τ) + δ

)
,

E4(τ) → E4

(
−1

τ

)
= τ4E4(τ) ,

E6(τ) → E6

(
−1

τ

)
= τ6E6(τ)

(A.4)

where δ = 6
πiτ .

Elliptic functions. The elliptic functions that are relevant for this paper can all be

obtained from the Jacobi θ-function

θ1(z|τ) =
∞∑

n=−∞

q
1
2
(n− 1

2
)2 (−x)(n−

1
2
) (A.5)

where x = e2πiz. From θ1, we first define the function

h1(z|τ) =
1

2πi

∂

∂z
log θ1(z|τ) = x

∂

∂x
log θ1(z|τ) , (A.6)

and the Weierstraß ℘-function

℘(z|τ) = − ∂2

∂z2
log θ1(z|τ)−

π2

3
E2(τ) . (A.7)

In most of our formulas the following rescaled ℘-function appears:

℘̃(z|τ) := ℘(z, τ)

4π2
= x

∂

∂x

(
x
∂

∂x
log θ1(z|τ)

)
− 1

12
E2(τ) , (A.8)

which we can write also as

℘̃(z|τ) = h′1(z|τ)−
1

12
E2(τ) . (A.9)
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Another relevant elliptic function is the derivative of the Weierstraß function, namely

℘̃ ′(z|τ) := 1

2πi

∂

∂z
℘̃(z|τ) = x

∂

∂x
℘̃(z|τ) = h′′1(z|τ) . (A.10)

The Weierstraß function and its derivative satisfy the equation of an elliptic curve, given by

℘̃ ′(z|τ)2 + 4 ℘̃(z|τ)3 − E4

12
℘̃(z|τ)− E6

216
= 0 . (A.11)

By differentiating this equation, we obtain

℘̃ ′′(z|τ) = −6 ℘̃(z|τ)2 + E4

24
(A.12)

which, using (A.9) and (A.10), we can rewrite as

h′′′1 (z|τ) = −6
(
h′1(z|τ)

)2
+ E2 h

′
1(z|τ)−

E2
2 − E4

24
. (A.13)

The function h1, ℘̃ and ℘̃ ′ have well-known expansions near the point z = 0. However,

a different expansion is needed for our purposes, namely the expansion for small q and x.

To find such an expansion we observe that q and x variables must be rescaled differently,

as is clear from the map (3.32) between the gauge theory parameters and the microscopic

counting parameters. In particular for M = 2 this map reads (see also (3.39))

q = q1q2 , x = q2 , (A.14)

so that if the microscopic parameters are all scaled equally as qi −→ λqi, then the gauge

theory parameters scale as

q → λ2q x → λx . (A.15)

With this in mind, we now expand the elliptic functions for small λ and set λ = 1 in the

end, since this is the relevant expansion needed to compare with the instanton calculations.

Proceeding in this way, we find14

h1(x|q) = h1(λx|λ2q)
∣∣∣
λ=1

=

[
− 1

2
+ λ

(
q

x
− x

)
+ λ2

(
q2

x2
− x2

)
+ λ3

(
q3

x3
+

q2

x
− qx− x3

)

− λ4 x4 + λ5

(
q3

x
− q2x− x5

)
− λ6

(
q2x2 + x6

)
+ · · ·

]

λ=1

(A.16)

= −1

2
−
(
x+ x2 + x3 + x4 + x5 + x6 + · · ·

)
+

(
1

x
− x

)
q

+

(
1

x2
+

1

x
− x− x2

)
q2 +

(
1

x3
+

1

x
+ · · ·

)
q3 + · · · ,

14Depending on the context, we denote the arguments of the elliptic functions by either (z|τ) as we did

so far, or by their exponentials (x|q) when the expansions are being used.
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℘̃(x|q) = ℘̃(λx|λ2q)
∣∣∣
λ=1

=

[
− 1

12
− λ

(
q

x
+ x

)
+ λ2

(
− 2q2

x2
+ 2q − 2x2

)

− λ3

(
3q3

x3
+

q2

x
+ qx+ 3x3

)
+ λ4

(
6q2 − 4x4

)
+ · · ·

]

λ=1

(A.17)

= − 1

12
−

(
x+ 2x2 + 3x3 + 4x4 + · · ·

)
−

(
1

x
− 2 + x

)
q

−
(

2

x2
+

1

x
− 6 + · · ·

)
q2 − 3q3

x3
+ · · · ,

℘̃ ′(x|q) = ℘̃ ′(λx|λ2q)
∣∣∣
λ=1

=

[
λ

(
q

x
− x

)
+ λ2

(
4q2

x2
− 4x2

)

+ λ3

(
9q3

x3
+

q2

x
− qx− 9x3

)
− 16λ4x4 + · · ·

]

λ=1

(A.18)

= −
(
x+ 4x2 + 9x3 + 16x4 + · · ·

)
+

(
1

x
− x

)
q+

(
4

x2
+

1

x
+ · · ·

)
q2+

9q3

x3
+ · · · .

As a consistency check it is possible to verify that, using these expansions and those of the

Eisenstein series in (A.2), the elliptic curve equation (A.11) is identically satisfied order by

order in λ.

As we have seen in section 2, the modular group acts on (z|τ) as follows:

(z|τ) →
(

z

cτ + d

∣∣∣∣
aτ + b

cτ + d

)
(A.19)

with a, b, c, d ∈ Z and ad − bc = 1. Under such transformations the Weierstraß function

and its derivative have, respectively, weight 2 and 3, namely

℘(z|τ) → ℘

(
z

cτ + d

∣∣∣∣
aτ + b

cτ + d

)
= (cτ + d)2 ℘(z|τ) ,

℘ ′(z|τ) → ℘ ′

(
z

cτ + d

∣∣∣∣
aτ + b

cτ + d

)
= (cτ + d)3 ℘ ′(z|τ) .

(A.20)

Of course, similar relations hold for the rescaled functions ℘̃ and ℘̃ ′. In particular, under

S-duality we have

℘̃(z|τ) → ℘̃

(
−z

τ

∣∣∣∣−
1

τ

)
= τ2 ℘̃(z|τ) ,

℘̃ ′(z|τ) → ℘̃ ′

(
−z

τ

∣∣∣∣−
1

τ

)
= −τ3 ℘̃ ′(z|τ) .

(A.21)

B Generalized instanton number in the presence of fluxes

In this appendix we calculate the second Chern class of the gauge field in the presence of

a surface operator for a generic Lie algebra g.
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Surface operator Ansatz. A surface operator creates a singularity in the gauge field

A. As discussed in the main text, we parametrize the space-time R
4 ≃ C

2 by two complex

variables (z1 = ρ eiφ , z2 = r eiθ), and consider a two-dimensional defect D located at z2 = 0

and filling the z1-plane. In this set-up, we make the following Ansatz [8]:

A = Â+ g(r) dθ , (B.1)

where Â is regular all over R
4 and g(r) is a g-valued function regular when r → 0. The

corresponding field strength is then

F := dA− iA ∧A = F̂ + d
(
g(r) dθ

)
− i dθ ∧

[
g(r), Â

]
. (B.2)

From this expression we obtain

TrF ∧ F = Tr F̂ ∧ F̂ + 2Tr
(
d
(
g(r) dθ

)
∧ F̂

)
− 2 i Tr

(
dθ ∧

[
g(r), Â

]
∧ F̂

)
(B.3)

= Tr F̂ ∧ F̂ + 2Tr d
(
g(r) dθ ∧ F̂

)
+ 2Tr

(
g(r)dθ ∧

(
dF̂ − i Â ∧ F̂ − i F̂ ∧ Â

))
.

The last term vanishes due to the Bianchi identity, and thus we are left with

TrF ∧ F = Tr F̂ ∧ F̂ + 2Tr d
(
g(r) dθ ∧ F̂

)
(B.4)

We now assume that the function g(r) has components only along the Cartan directions

of g, labeled by an index i, such that

lim
r→0

gi(r) = −γi and lim
r→∞

gi(r) = 0 . (B.5)

This means that near the defect the gauge connection behaves as

A = Aµ dx
µ ≃ − diag

(
γ1, · · · , γrank(g)

)
dθ (B.6)

for r → 0. Using this in (B.4), we have

TrF ∧ F = Tr F̂ ∧ F̂ + 2
∑

i

d
(
gi(r) dθ ∧ F̂i

)
. (B.7)

Notice that in the last term we can replace F̂i with Fi because the difference lies entirely in

the transverse directions of the surface operator and thus does not contribute in the wedge

product with dθ. Since the defect D effectively acts as a boundary in R
4 located at r = 0,

integrating (B.7) over R4 we have

1

8π2

∫

R4

TrF ∧ F =
1

8π2

∫

R4

Tr F̂ ∧ F̂ +
∑

i

γi
2π

∫

D

Fi = k +
∑

i

γimi . (B.8)

Here we have denoted by k the instanton number of the smooth connection Â and taken

into account a factor of 2π originating from the integration over θ. Finally, we have defined

mi =
1

2π

∫

D

Fi . (B.9)
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These quantities, which we call fluxes, must satisfy a quantization condition that can be

understood as follows. All fields of the gauge theory are organized in representations15

of g and, in particular, can be chosen to be eigenstates of the Cartan generators Hi with

eigenvalues λi. These eigenvalues define a vector ~λ = {λi}, which is an element of the weight

lattice ΛW of g. Let us now consider a gauge transformation in the Cartan subgroup with

parameters ~ω = {ωi}. On a field with weight ~λ, this transformation simply acts by a phase

factor exp
(
i ~ω · ~λ

)
. From the point of view of the two-dimensional theory on the defect,

the Cartan gauge fields Ai must approach a pure-gauge configuration at infinity so that

Ai ∼ dωi for ρ → ∞ , (B.10)

with ωi being a function of φ, the polar angle in the z1-plane. In this situation, for the

corresponding gauge transformation to be single-valued, one finds

~ω(φ+ 2π) · ~λ = ~ω(φ) · ~λ+ 2πn (B.11)

with integer n. In other words ~ω · ~λ must be a map from the circle at infinity S∞
1 into S1

with integer winding number n. Given this, we have

2πmi =

∫

D

Fi =

∮

S∞

1

dωi = ωi(φ+ 2π)− ωi(φ) . (B.12)

Then, using (B.11), we immediately deduce that

~m · ~λ ∈ Z . (B.13)

For the group SU(N) this condition amounts to say that ~m must belong to the dual of the

weight lattice:

~m ∈ (ΛW )∗ . (B.14)

The SU(N) case. For U(N) the Cartan generators Hi can be taken as the diagonal

(N×N) matrices with just a single non-zero entry equal to 1 in the i-th place (i = 1, · · · , N).

The restriction to SU(N) can be obtained by choosing a basis of (N−1) traceless generators,

for instance (Hi −Hi+1)/
√
2. In terms of the standard orthonormal basis {~ei} of RN , the

(N − 1) simple roots of SU(N) are then {(~e1−~e2), (~e2−~e3), · · · } and the root lattice ΛR is

the Z-span of these simple roots. Note that ΛR lies in a codimension-1 subspace orthogonal

to
∑

i ~ei, and that the integrality condition for the weights is simply ~α · ~λ ∈ Z for any root

~α. This shows that the weight lattice is the dual of the root lattice, or equivalently that the

dual of the weight lattice is the root lattice: (ΛW )∗ = ΛR. Therefore, the condition (B.14)

implies that the flux vector ~m must be of the form

~m = n1(~e1 − ~e2) + n2(~e2 − ~e3) + · · ·+ nN−1(~eN−1 − ~eN ) with ni ∈ Z . (B.15)

This simply corresponds to

~m =
∑

i

mi ~ei with mi ∈ Z and
∑

i

mi = 0 . (B.16)

The fact that the fluxes mi are integers (adding up to zero) has been used in the main text.

15Here for simplicity we consider the gauge group G to be the universal covering group of g; in particular

for g = AN−1, we take G = SU(N).
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Generic surface operator. The case in which all the γi’s defined in (B.5) are distinct,

corresponds to the surface operator of type [1, 1, . . . , 1], also called full surface operator.

If instead some of the γi’s coincide, the surface operator has a more generic form. Let us

consider for example the case in which the SU(N) gauge field at the defect takes the form

(see (2.8)):

A = Aµ dx
µ ≃ − diag

(

︸ ︷︷ ︸
n1

γ1, · · · , γ1,
︸ ︷︷ ︸

n2

γ2, · · · , γ2, · · · ,
︸ ︷︷ ︸

nM

γM , · · · , γM
)
dθ , (B.17)

for r → 0, which corresponds to splitting the gauge group according to

SU(N) → S
[
U(n1)×U(n2)× · · · ×U(nM )

]
. (B.18)

The calculation of the second Chern class (B.8) proceeds as before, but the result can be

written as follows

1

8π2

∫

M

TrF ∧ F = k +
M∑

I=1

γI mI (B.19)

with

mI =

nI∑

i=1

mi =
1

2π

∫

D

nI∑

i=1

Fi =
1

2π

∫

D

TrFU(nI) . (B.20)

Here we see that it is the magnetic flux associated with the U(1) factor in each subgroup

U(nI) that appears in the expression for the generalized instanton number in the presence

of magnetic fluxes.

C Ramified instanton moduli and their properties

In this appendix we describe the instanton moduli in the various sectors. Our results are

summarized in table 1.

Let us first consider the neutral states of the strings stretching between two D-

instantons.

• (−1)/(−1) strings of type I-I: all moduli of this type transform in the adjoint

representation (dI , d̄I) of U(dI). A special role is played by the bosonic states created in the

Neveu-Schwarz (NS) sector of such strings by the complex oscillator ψv in the last complex

space-time direction, which is neutral with respect to the orbifold. We denote them by χI .

They are characterized by a U(1)4 weight {0, 0, 0, 0} and a charge (+1) with respect to the

last U(1). The complex conjugate moduli χ̄I , with weight {0, 0, 0, 0} and charge (−1), are

paired in a Q-doublet with the fermionic moduli η̄I coming from the ground state of the

Ramond (R) sector with weight
{
− 1

2 ,−1
2 ,−1

2 ,−1
2

}
and charge (−1

2). All other moduli in

this sector are arranged in Q-doublets. One doublet is (Az1
I ,M z1

I ), where Az1
I is from the

ψz1 oscillator in the NS sector with weight {+1, 0, 0, 0} and charge 0, and M z1
I is from the

R ground state
{
+ 1

2 ,−1
2 ,−1

2 ,−1
2

}
with charge (+1

2). Another doublet is (A
z4
I ,M z4

I ), where

Az4
I is from the ψz4 oscillator in the NS sector with weight {0, 0, 0,+1} and charge 0, and

M z4
I is from the R ground state with weight

{
− 1

2 ,−1
2 ,−1

2 ,+
1
2

}
and charge (+1

2). Also the
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Doublet (−)Fα Chan-Paton U(1)4charge Q2-eigenvalue λα Character

(χ̄I , η̄I) + (dI , d̄I)
{

0, 0, 0, 0
}

χI,σ − χI,τ

(Az1
I ,M

z1
I ) + (dI , d̄I)

{

+1, 0, 0, 0
}

χI,σ − χI,τ + ǫ1 V ∗

I VIT1

(Az4
I ,M

z4
I ) + (dI , d̄I)

{

0, 0, 0,+1
}

χI,σ − χI,τ + ǫ4 V ∗

I VIT4

(λI , DI) − (dI , d̄I)
{

+ 1

2
,+ 1

2
,+ 1

2
,+ 1

2

}

χI,σ − χI,τ

(λz1
I , D

z1
I ) − (dI , d̄I)

{

+ 1

2
,− 1

2
,− 1

2
,+ 1

2

}

χI,σ − χI,τ + ǫ1 + ǫ4 −V ∗

I VIT1T4

(Az2
I ,M

z2
I ) + (dI , d̄I+1)

{

0,+1, 0, 0
}

χI,σ − χI+1,ρ + ǫ̂2 V ∗

I+1VIT2

(λz2
I , D

z2
I ) − (dI , d̄I+1)

{

− 1

2
,+ 1

2
,− 1

2
,+ 1

2

}

χI,σ − χI+1,ρ + ǫ̂2 + ǫ4 −V ∗

I+1VIT2T4

(Āz3
I , M̄

z3
I ) + (dI , d̄I+1)

{

0, 0,−1, 0
}

χI,σ − χI+1,ρ − ǫ̂3 V ∗

I+1VIT1T2T4

(λz3
I , D

z3
I ) − (dI , d̄I+1)

{

+ 1

2
,+ 1

2
,− 1

2
,− 1

2

}

χI,σ − χI+1,ρ + ǫ1 + ǫ̂2 −V ∗

I+1VIT1T2

(wI , µI) + (nI , d̄I)
{

+ 1

2
,+ 1

2
, 0, 0

}

aI,s − χI,σ + 1

2
(ǫ1 + ǫ̂2) V ∗

I WI

(µ′

I , h
′

I) − (nI , d̄I)
{

0, 0,− 1

2
,+ 1

2

}

aI,s − χI,σ + 1

2
(ǫ1 + ǫ̂2) + ǫ4 −V ∗

I WIT4

(ŵI , µ̂I) + (dI , n̄I+1)
{

+ 1

2
,+ 1

2
, 0, 0

}

χI,σ − aI+1,t +
1

2
(ǫ1 + ǫ̂2) W ∗

I+1VIT1T2

(µ̂′

I , ĥ
′

I) − (dI , n̄I+1)
{

0, 0,− 1

2
,+ 1

2

}

χI,σ − aI+1,t +
1

2
(ǫ1 + ǫ̂2) + ǫ4 −W ∗

I+1VIT1T2T4

Table 1. The spectrum of moduli, organized in doublets of the BRST charge Q (or its conjugate Q̄).

For each of them, we display their statistics (−)Fα , the representation of the color and ADHM groups

in which they transform, their charge vector with respect to the U(1)4 symmetry, the eigenvalue

λα of Q2 and the corresponding contribution to the character. The neutral moduli carrying a

superscript z1, z2, z3 or z4, and the colored moduli in this table are complex. The quantities

appearing in the last column, namely VI , WI , T1,T2 and T4 are defined in (3.26) and (3.27).

complex conjugate doublets are present. Finally, there is a (real) doublet (λI , DI) where

λI is from the R ground state with weight
{
+ 1

2 ,+
1
2 ,+

1
2 ,+

1
2

}
and charge (−1

2), and DI is

an auxiliary field, and a complex doublet (λz1
I , Dz1

I ) with λz1
I associated to the R ground

state with weight
{
+ 1

2 ,−1
2 ,−1

2 ,+
1
2

}
and charge (−1

2), and Dz1
I an auxiliary field.

• (−1)/(−1) strings of type I-(I + 1): in this sector the moduli transform in the

bi-fundamental representation (dI , d̄I+1) of U(dI)×U(dI+1). In order to cancel the phase

ω−1 due to the different representations on the Chan-Paton indices at the two endpoints,

the weights under spacetime rotations of the operators creating the states in this sector

must be such that l2 − l3 = 1. In this way they can survive the ZM -orbifold projection.

Applying this requirement, we find a doublet (Az2
I ,M z2

I ), Az2
I is from the ψz2 oscillator in

the NS sector with weight {0,+1, 0, 0} and charge 0, and M z2
I is from the R ground state{

− 1
2 ,+

1
2 ,−1

2 ,−1
2

}
with charge (+1

2). Another doublet is (Ā
z3
I , M̄ z3

I ) where Āz3
I is from the

ψ̄z3 oscillator in the NS sector with weight {0, 0,−1, 0} and charge 0, and M̄ z3
I is from the

R ground state
{
+ 1

2 ,+
1
2 ,−1

2 ,+
1
2

}
with charge (+1

2).
16 Furthermore, we find two other

complex Q-doublets, (λz2
I , Dz2

I ) and (λz3
I , Dz3

I ) where λz2
I and λz3

I are associated to the R

ground states with weights
{
− 1

2 ,+
1
2 ,−1

2 ,+
1
2

}
and

{
+ 1

2 ,+
1
2 ,−1

2 ,−1
2

}
and charges (−1

2),

16Notice that this last doublet is actually the complex conjugate of a Q-doublet of type (I+1)-I, which is

made of (Az3
I ,M

z3
I ) with A

z3
I corresponding to the weight {0, 0, 1, 0} and M

z3
I corresponding to the weight

{

− 1

2
,− 1

2
,+ 1

2
,− 1

2

}

.
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while Dz2
I and Dz3

I are auxiliary fields. Also the complex conjugate doublets are present in

the ZM -invariant spectrum, and arise from strings with the opposite orientation.

• 3/(−1) strings of type I-I: these open strings have mixed Neumann-Dirichlet

boundary conditions along the (z1, z2)-directions and thus the corresponding states are

characterized by the action of a twist operator ∆ [50]. We assign an orbifold charge ω− 1
2

to this twist operator, so that the states which survive the ZM -projection are those with

weights such that l2 − l3 = 1/2. The moduli in this sector belong to the bi-fundamental

representation (nI × d̄I) of the gauge and ADHM groups, and form two complex dou-

blets. One is (wI , µI) where the NS component wI has weight
{
+ 1

2 ,+
1
2 , 0, 0

}
and charge

0, and the R component µI has weight
{
0, 0,−1

2 ,−1
2

}
and charge (+1

2). The other doublet

is (µ′
I , h

′
I) where µ′

I is associated to the R ground state with weight
{
0, 0,−1

2 ,+
1
2

}
and

charge (−1
2), while h

′
I is an auxiliary field. Also the complex conjugate doublets, associated

to the (−1)/3 strings of type I-I, are present in the spectrum.

• (−1)/3 strings of type I-(I+1): these open strings have mixed Dirichlet-Neumann

boundary conditions along the (z1, z2)-directions and transform in the bi-fundamental rep-

resentation (dI × n̄I+1) of the gauge and ADHM groups. As compared to the previous

case, the states in this sector are characterized by the action of an anti-twist operator ∆̄

which carries an orbifold parity ω+ 1
2 . Thus the ZM -invariant configurations must have

again weights with l2 − l3 = 1/2 in order to compensate for the ω−1 factor carried by

the Chan-Paton indices. Taking this into account, we find two complex doublets: (ŵI , µ̂I)

where the NS component ŵI has weight
{
+ 1

2 ,+
1
2 , 0, 0

}
and charge 0, and the R component

µ̂I has weight
{
0, 0,−1

2 ,−1
2

}
and charge (+1

2), and (µ̂′
I , ĥ

′
I) where µ̂′

I is associated to the

R ground state with weight
{
0, 0,−1

2 ,+
1
2

}
and charge (−1

2), while ĥ′I is an auxiliary field.

Also the complex conjugate doublets, associated to the 3/(−1) strings of type (I + 1)-I,

are present in the spectrum.

Notice that no states from the 3/(−1) strings of type I-(I + 1) or from the (−1)/3

strings of type (I + 1)-I survive the orbifold projection. Indeed, in the first case the

phases ω− 1
2 and ω−1 from the twist operator ∆ and the Chan-Paton factors cannot be

compensated by the NS or R weights; while in the second case the phases ω+ 1
2 and ω+1

from the anti-twist operator ∆̄ and the Chan-Paton factors cannot be canceled.

All the above results are summarized in table 1, which contains also other relevant

information about the moduli. As an illustrative example, we now consider in detail the

SU(2) theory.

C.1 SU(2)

In this case we have M = 2, and thus necessarily n1 = n2 = 1. Therefore, in the SU(2)

theory we have only simple surface operators. Furthermore, since the index s takes only

one value, we can simplify the notation and suppress this index in the following.

Each pair Y = (Y1, Y2) of Young tableaux contributes to the instanton partition func-

tion with a weight qd11 qd22 where d1 and d2 are given by (3.22), which in this case take the
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simple form [8]

d1 =
∑

j

(
Y 2j+1
1 + Y 2j+1

2

)
, d2 =

∑

j

(
Y 2j+2
1 + Y 2j+2

2

)
. (C.1)

with Y k
I representing the length of the kth column of the tableau YI .

Let us begin by considering the case of pairs of Young tableaux with a single box.

There are two such pairs that can contribute. One is Y = ( , •) corresponding to d1 = 1

and d2 = 0. Using these values in (3.18), we find

z{1,0} =
(ǫ1 + ǫ4)

(
a1 − χ1,1 +

1
2(ǫ1 + ǫ̂2) + ǫ4

) (
χ1,1 − a2 +

1
2(ǫ1 + ǫ̂2) + ǫ4

)

ǫ1 ǫ4
(
a1 − χ1,1 +

1
2(ǫ1 + ǫ̂2)

) (
χ1,1 − a2 +

1
2(ǫ1 + ǫ̂2)

) (C.2)

Due to the prescription (3.19), only the pole at

χ1,1 = a1 +
1

2
(ǫ1 + ǫ̂2) (C.3)

contributes to the contour integral over χ1,1, yielding

Z( , •) =
(ǫ1 + ǫ4) (a12 + ǫ1 + ǫ̂2 + ǫ4)

ǫ1 (a12 + ǫ1 + ǫ̂2)
=

(ǫ1 + ǫ4) (4a+ 2ǫ1 + ǫ2 + 2ǫ4)

ǫ1 (4a+ 2ǫ1 + ǫ2)
(C.4)

where in the last step we used the notation a12 = a1−a2 = 2a and reintroduced ǫ2 = 2ǫ̂2. A

similar analysis can be done for the second pair of tableaux with one box that contributes,

namely Y = (•, ) corresponding to d1 = 0 and d2 = 1. In this case we find

Z(•, ) =
(ǫ1 + ǫ4) (−4a+ 2ǫ1 + ǫ2 + 2ǫ4)

ǫ1 (−4a+ 2ǫ1 + ǫ2)
. (C.5)

In the case of two boxes, we have five different pairs of tableaux that can contribute.

They are: Y = ( , ), Y = ( , •), Y = (•, ), Y =
(

, •
)
and Y =

(
•,

)
. The

contributions of these five diagrams are listed below in table 2.

Multiplying all contributions with the appropriate weight factor and summing over

them, we obtain the instanton partition function for the SU(2) gauge theory in the presence

of the surface operator:

Zinst[1, 1] = 1 + q1
(ǫ1 + ǫ4) (4a+ 2ǫ1 + ǫ2 + 2ǫ4)

ǫ1 (4a+ 2ǫ1 + ǫ2)
+ q2

(ǫ1 + ǫ4) (−4a+ 2ǫ1 + ǫ2 + 2ǫ4)

ǫ1 (−4a+ 2ǫ1 + ǫ2)

+q21
(ǫ1 + ǫ4) (2ǫ1 + ǫ4) (4a+ 2ǫ1 + ǫ2 + 2ǫ4) (4a+ 4ǫ1 + ǫ2 + 2ǫ4)

2ǫ21 (4a+ 2ǫ1 + ǫ2) (4a+ 4ǫ1 + ǫ2)

+q22
(ǫ1 + ǫ4) (2ǫ1 + ǫ4) (−4a+ 2ǫ1 + ǫ2 + 2ǫ4) (−4a+ 4ǫ1 + ǫ2 + 2ǫ4)

2ǫ21 (−4a+ 2ǫ1 + ǫ2) (−4a+ 4ǫ1 + ǫ2)

+q1q2

(
(ǫ1 + ǫ4)(ǫ2 + ǫ4)(4a+ ǫ2 − 2ǫ4)(4a+ 2ǫ1 + ǫ2 + 2ǫ4)

ǫ1ǫ2(4a+ ǫ2)(4a+ 2ǫ1 + ǫ2)

+
(ǫ1 + ǫ4)(ǫ2 + ǫ4)(−4a+ ǫ2 − 2ǫ4)(−4a+ 2ǫ1 + ǫ2 + 2ǫ4)

ǫ1ǫ2(−4a+ ǫ2)(−4a+ 2ǫ1 + ǫ2)

+
(ǫ1 + ǫ4)

2(4a+ ǫ2 + 2ǫ4)(−4a+ ǫ2 + 2ǫ4)

ǫ21(4a+ ǫ2)(−4a+ ǫ2)

)
+ · · · (C.6)
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Y weight poles ZY

( , ) q1q2
χ1,1 = a1 +

1
2 (ǫ1 + ǫ̂2)

χ2,1 = a2 +
1
2 (ǫ1 + ǫ̂2)

(ǫ1+ǫ4)2(4a+ǫ2+2ǫ4)(−4a+ǫ2+2ǫ4)

ǫ21(4a+ǫ2)(−4a+ǫ2)

( , •) q1q2
χ1,1 = a1 +

1
2 (ǫ1 + ǫ̂2)

χ2,1 = χ1,1 + ǫ̂2

(ǫ1+ǫ4)(ǫ2+ǫ4)(4a+ǫ2−2ǫ4)(4a+2ǫ1+ǫ2+2ǫ4)

ǫ1ǫ2(4a+ǫ2)(4a+2ǫ1+ǫ2)

(•, ) q1q2
χ2,1 = a2 +

1
2 (ǫ1 + ǫ̂2)

χ1,1 = χ2,1 + ǫ̂2

(ǫ1+ǫ4)(ǫ2+ǫ4)(−4a+ǫ2−2ǫ4)(−4a+2ǫ1+ǫ2+2ǫ4)

ǫ1ǫ2(−4a+ǫ2)(−4a+2ǫ1+ǫ2)

(
, •
)

q21
χ1,1 = a1 +

1
2 (ǫ1 + ǫ̂2)

χ1,2 = χ1,1 + ǫ1

(ǫ1+ǫ4)(2ǫ1+ǫ4)(4a+2ǫ1+ǫ2+2ǫ4)(4a+4ǫ1+ǫ2+2ǫ4)

2ǫ21(4a+2ǫ1+ǫ2)(4a+4ǫ1+ǫ2)

(
•,

)
q22

χ2,1 = a2 +
1
2 (ǫ1 + ǫ̂2)

χ2,2 = χ2,1 + ǫ1

(ǫ1+ǫ4)(2ǫ1+ǫ4)(−4a+2ǫ1+ǫ2+2ǫ4)(−4a+4ǫ1+ǫ2+2ǫ4)

2ǫ21(−4a+2ǫ1+ǫ2)(−4a+4ǫ1+ǫ2)

Table 2. We list the tableaux, the weight factors, the pole structure and the contribution to the

partition function in all five cases with two boxes for the SU(2) theory.

where the ellipses stand for the contributions originating from tableaux with higher number

of boxes, which can be easily generated with a computer program. We have explicitly

computed these terms up six boxes, but we do not write them here since the raw expressions

are very long and not particularly illuminating. To the extent it is possible to make

comparisons, we observe that the above result agrees with the instanton partition function

reported in eq. (B.6) of [8] under the following change of notation

q1 → y , q2 → x , ǫ4 → −m, 2a → 2a+
ǫ2
2
. (C.7)

Note then that the mass m appearing in [8] is the equivariant mass of the hypermulti-

plet [78], which differs by ǫ-corrections from the mass we have used in this paper (see (3.35)).

D Prepotential coefficients for the SU(N) gauge theory

The prepotential F of the N = 2⋆ SU(N) gauge theory has been determined in terms of

quasi-modular forms in [34, 41]. Expanding F as in (4.12), the first few non-zero coefficients

fℓ in the NS limit turn out to be

f2 =
1

4

(
m2 − ǫ21

4

)∑

u 6=v

log
(au − av)

2

Λ2
+N

(
m2 − ǫ21

4

)
log η̂ , (D.1)

f4 = − 1

24

(
m2 − ǫ21

4

)2

E2C2 , (D.2)

f6 = − 1

288

(
m2 − ǫ21

4

)2
{[

2

5

(
m2 − ǫ21

4

)(
5E2

2 + E4

)
− 6 ǫ21E4

]
C4

+
1

2

(
m2 − ǫ21

4

)(
E2

2 − E4

)
C2;1,1

}
, (D.3)
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f8 = − 1

1728

(
m2 − ǫ21

4

)2
{[

2

105

(
m2 − ǫ21

4

)2(
175E3

2 + 84E2E4 + 11E6

)

− 24 ǫ2

35

(
m2 − ǫ21

4

)(
7E2E4 + 3E6

)
+

24 ǫ4

7
E6

]
C6

− 1

5

(
m2 − ǫ21

4

)[(
m2 − ǫ21

4

)(
5E3

2 − 3E2E4 − 2E6

)
− 6 ǫ2

(
E2E4 − E6

)]
C4;2

− 1

5

(
m2 − ǫ21

4

)[
1

12

(
m2 − ǫ21

4

)(
5E3

2 − 3E2E4 − 2E6

)
− 3 ǫ2

(
E2E4 − E6

)]
C3;3

+
1

24

(
m2 − ǫ21

4

)2(
E3

2 − 3E2E4 + 2E6

)
C2;1,1,1,1

}
. (D.4)

Here E2, E4 and E6 are the Eisenstein series and

log η̂ = −
∞∑

k=1

σ1(k)

k
qk = − 1

24
log q + log η (D.5)

with η being the Dedekind η-function. Finally, the root lattice sums are defined by

Cn;m1,m2,··· ,mk
=

∑

~α∈Φ

∑

~β1 6=~β2 6=···6=~βk∈Φ(~α)

1

(~α · ~a)n(~β1 · ~a)m1(~β2 · ~a)m1 · · · (~βk · ~a)mk

(D.6)

where Φ is the root system of SU(N) and

Φ(~α) = {~β ∈ Φ
∣∣ ~α · ~β = 1} . (D.7)

We refer to [41] for the details and the derivation of these results. Notice, however, that

we have slightly changed our notation, since fhere
2ℓ = f there

ℓ . By expanding the modular

functions in powers of q and selecting SU(2) as gauge group, it is easy to show that the

above formulas reproduce both the perturbative part and the instanton contributions,

reported respectively in (4.10a) and (3.42) of the main text.
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