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Abstract—Diabetic polyneuropathy is a major complication
of diabetes mellitus, causing severe alterations of the neural
circuits between spinal nerves and spinal cord. The analysis of
3D confocal images of dorsal root ganglia in diabetic mice, where
different fluorescent markers are used to identify different types
of nociceptors, can help understanding the unknown mechanisms
of this pathology. Nevertheless, due to the inherent challenges of
3D confocal imaging, a thorough and comprehensive visual inves-
tigation is very difficult. In this work we introduce a tool, 3DRG,
that provides a fully-automated segmentation and 3D rendering
of positively labeled nociceptors in a dorsal root ganglion, as
well a quantitative characterisation of its immunopositivity to
each fluorescent marker. Our preliminary experiments on 3D
confocal images of entire dorsal root ganglia from healthy and
diabetic mice provided very interesting insights about the effects
of the pathology on two different types of nociceptors.

I. INTRODUCTION

D IABETIC polyneuropathy (DPN) is one of the most
common and serious complications of diabetes mellitus,

which includes several types of nerve damaging disorders [1].
High glycemic levels associated with diabetes create injuries
to the small vessels supplying the nerves, with symptoms
that can range from pain and numbness in the extremities to
problems with the digestive system, urinary tract, blood vessels
and heart. Such symptoms in minor cases can be extremely
disabling and even fatal.

While literature had traditionally focused only on injures of
the peripheral nerves (mainly legs and feet), early works have
now unveiled possible implications of DPN at all levels of
the nervous system, with special regards to the neural circuits
between the spinal nerves and the spinal cord [2]. Most recent
studies are especially focusing on the Dorsal Root Ganglia
(DRGs), clusters of sensory neurons in the dorsal root of
spinal nerves (see Figure 1), whose underlying mechanisms
in relation to DPN are at the moment poorly understood.
In particular, the role of nociceptive sensory cells in the
DRGs (i.e. neurons specialised in conveying pain information
to the higher centers) is now one of the main topics of

investigation [3], [4]. The analysis of immunofluorescence
images via 3D confocal microscopy has a major role in such
investigations. In particular, entire DRGs of mice can be dis-
sected out and stained with multiple fluorescent markers, each
targeting a specific type of nociceptor. The result is a complex
multi-coloured stack of images, where different nociceptors
are labelled by fluorochromes emitting signal of a known
spectral range, hence they can be imaged in separate color
channels (see left part of Figure 2). Typically used markers
include biotin-conjugated Isolectin B4 (IB4) and the antibody
for Calcitonin Gene-Related Peptide (CGRP), which identify
the unmyelinated non-peptidergic and the small peptidergic
neurons in the DRGs, respectively [3].

While the imaging technology per se is widely acknowl-
edged for being a valuable support to this type of study, the
analysis of 3D images of DRGs remains a challenging task.
First, because distinguishing the positively stained neural cells
is made difficult by the presence of noise and artefacts (e.g.
spurious fluorescence, black spots, etc.), which are intrinsic
limitations of immunofluorescence. Second, because the 3D
nature of the images makes manual analysis unfeasible. To
the best of our knowledge, there is no availability of a
completely automated tool able to support this type of analysis.
Hence, the data presented by most of the published works
in this context are obtained with semi-automated procedures,

Figure 1. Cross-section of spinal cord.
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Figure 2. Simplified input/output diagram.

where the positive cells in few significant slices of the stack
are distinguished from the background based on user-defined
thresholds or standard 2D thresholding techniques. Then, the
immunopositivity of the sample is quantified based on the
number and average intensity of such cells [5], [3]. This
process has two evident limitations: (i) it lacks reproducibility,
due to the inherent subjectivity of user-interaction; (ii) by
counting positive cells only on selected slices, it does take the
3D nature of the images into proper account. For example, a
single neuron may span more consecutive slices of the stack,
hence it should be counted only once.

As a solution to these problems, we propose 3DRG, a
tool for the immunofluorescence analysis of DRG samples.
The main contribution of this work is two-fold. First, a fully
automated 3D segmentation and 3D rendering of the positively
labeled DRG neurons, based on a 3D spatial filtering tech-
nique. Second, a more accurate analysis of immunopositivity,
which quantifies the number of positive cells and amount of
fluorescent signal in the whole DRG stack.

Besides improving the feasibility and objectivity of DRG
image analysis, 3DRG allows the analysis of the spatial
relations between cells marked by different types of antibodies.
This opens up new perspectives in the investigation of the role
and interaction of different types of nociceptor in the context
of DPN alterations.

This paper is structured as follows. In Section II we provide

the technical details of the three modules of our proposed tool.
In Section III we characterise the DRG samples used in our
preliminary experiments. In Section IV we report and discuss
the obtained results. Finally, in Section V we draw conclusions
and provide future perspectives of our work.

II. PROPOSED METHOD

As reported in Figure 2, our proposed tool 3DRG receives as
input the digitalised z-confocal stacks of the immunolabelled
DRG samples, as returned by the confocal microscope. Sepa-
rate modules of the tool provide the following output:

1) Segmentation of positive cells.
2) 3D multichannel rendering.
3) 3D quantitative analysis.
In the following, we describe the three modules in detail.

A. Segmentation of positive cells

The immunolabelled DRG cells are automatically detected
in the 3D volume, discarding noise, spurious objects and
artefacts. This is obtained by a 3D cell segmentation technique
whose main steps are reported in the flow-charts of Figure 3.

1) Preprocessing: First, some preprocessing is performed
on the 2D slices of the stacks, in order to ease the segmentation
process by generally improving the image quality. The contrast
between cells and background is enhanced by a combination
of Contrast Limited Adaptive Histogram Equalisation tech-
nique [6] and background subtraction, where a simple model
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Figure 3. 3D Cell Segmentation: flow-chart.

of background computed by average filtering is subtracted to
the original image. Following contrast enhancement, median
filtering is performed to reduce high frequency noise preserv-
ing significant details of the image such as the borders of DRG
cells.

2) Rough segmentation of objects with positive fluores-
cence: After preprocessing, fluorescent objects are roughly
distinguished from the dark background by a 2D segmenta-
tion technique applied to each slice of the stack. This step
implements a spatial fuzzy c-means algorithm (SFCM).

Standard fuzzy c-means (FCM) is a widely used clustering
technique that partitions the data into a number of groups
working towards the minimisation of the distance of points
within the same cluster. The fuzziness of such process lies in
assigning to the data points a [0,1] membership level to each
of the clusters (the so-called membership functions).

In order to decrease sensitivity to noise and reduce the
spurious blobs, which are recurring problems in fluorescent
image segmentation, 3DRG uses a variant of conventional
FCM that incorporates local spatial information into its imple-
mentation, by summing up the membership functions in the
neighbourhood of each pixel [7]. After clustering, the shapes
of the foreground objects are regularised by means of standard

morphological operations such as opening and holes filling.
3) Separation of clusters: The foreground regions returned

by SFCM algorithm may either contain one individual cell or
multiple touching cells, which need to be separated into indi-
vidual objects. Based on the assumption that individual cells
are approximately circular, 3DRG implements a Circle Hough
transform (CHT), with the purpose of decomposing the input
regions into a minimal number of circular components [8].

4) Refinement of cell segmentation: As ultimate step, the
cell segmentation obtained by SFCM and CHT is refined by
taking into account 3D spatial information (see 3D spatial
filtering flow-chart in Figure 3). More specifically, per each
foreground object, the filter generates a 3D neighbourhood
by projecting such object onto N consecutive slices of the
z-stack (see Figure 4). N is set to be roughly equal to the
expected length of DRG cells. Hence, its value depends on
slice thickness.

If the 3D neighbourhood does not contain a significant
portion (at least 50%) of positive regions, the corresponding
object is interpreted as a spurious fluorescent spike, hence it is
discarded. Otherwise, it is interpreted as part of a positive cell.
In the latter case, the intensity values of consecutive slices in
the 3D neighbourhood are interpolated along the z-axes, in
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Figure 4. 3D neighbourhood for 3D spatial filtering.

order to remove black spots and ensure the 3D continuity of
the cell.

More specifically, the pixels of the 3D neighbourhood in
the slices above and below the positive object are replaced by
the arithmetic mean of their corresponding pixels in the two
closest slices, as follows:

slice(i) =
slice(i− 1)+ slice(i+ 1)

2
, (1)

where i is the z-coordinate of the slice.
The final output of this step is a 3D volume where only

the positive DRG cells have non-zero intensity values, pro-
portional to the level of expression of the fluorescent marker.

B. 3D multichannel rendering

3DRG generates a volume rendering of the DRG-positive
stack as returned by the cell segmentation module, with
the possibility of displaying one channel at a time or more
channels together (as in the example of Figure 2).

The user can interactively rotate the volume and visualise
ortho-slices (i.e. three orthogonal slices through the volume).
This allows to analyse spatial relations between different
markers (e.g. cell clusters, recurring patterns, etc.) that are
otherwise impossible to appreciate.

C. 3D quantitative analysis

The 3D sample is automatically characterized in terms of
positive expression of each immunofluorescent marker.

This module allows the calculation of the following param-
eters:

• Number of positive cells (P), as automatically identified
by the 3D cell segmentation algorithm.

• 3D Density calculated as P/Vs, where P is the number of
positive cells and VS is the fraction of the sample volume
with a non-zero fluorescent signal strength.

• Integrated Optical Density (IOD) calculated as the sum
of mean intensity values (MIV ) of the foreground (i.e.

the positive cells) in each slice of the volume. More
specifically:

IOD =
#Slices

∑
i=1

MIVi, (2)

where MIVi is computed as the sum of the intensities of
the foreground pixels in i− th slice, divided by the total
number of foreground pixels.

• Related Optical Density (ROD) calculated as:

ROD = IODF − IODB, (3)

where IODF and IODB are the IOD values of the
foreground and of the background, respectively.

III. MATERIALS

In this work we performed experiments on DRG samples
belonging to two populations of mice, respectively diabetic
and healthy subjects (here referred as controls). Such samples
were obtained as follows.

Four weeks old CD-1 male mice were made diabetic after a
single intraperitoneal injection of streptozotocin (150 mg/Kg),
while controls received only the vehicle. Glucose levels of all
the subjects were weekly monitored, in order to ensure the
correct categorization of diabetics and controls. All animals
were sacrificed at eight weeks of postnatal age. Then, DRGs
were acutely excised and the connective tissue was dissolved
by incubation in 5-10 mg/mL collagenase. The entire DRGs
were then used for immunofluorescence.

DRGs were stained for two classical phenotypic markers of
nociceptors, i.e. the calcitonin gene-related peptide (CGRP)
and the isolectin B4 (IB4) by a rabbit antibody and a biotin-
conjugate, respectively. Whole DRGs z-stacks were then col-
lected using confocal microscopy.

IV. PRELIMINARY RESULTS

We run 3DRG on a total number of 90 DRG samples. Of
the 90 samples, 45 belonged to diabetic subjects and 45 to
controls. Hence, the two populations were perfectly balanced.

Positive DRG cells were automatically detected as explained
in Section II-A, and volume rendering of the segmented cells
was generated (see the example of Figure 5).

IB4 and CGRP markers were automatically quantified in all
the 90 samples, as reported in Section II-C.

The obtained results are summarised by the box-plots of
Figure 6, grouping the data into diabetic and control subjects,
respectively.

On each box-plot, the central red line is the median value,
and the box has edges corresponding to the 25th and 75th per-
centiles (the so-called inter-quartile range IQR). The whiskers
extend to the most extreme data points not considering outliers,
while outliers are plotted individually using a red cross-shaped
marker. As in previous works, all the values are normalised
by the median of controls [3].
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Figure 5. DRG sample. (a) IB4 labelling (green channel). (b) CGRP labelling (red channel). (c) Volume rendering of DRG positive cells automatically
detected by 3DRG tool.

In order to facilitate statistical comparisons between differ-
ent groups, each box is displayed with a notch defining the
confidence interval C.I. around the median, computed as:

CI = median value± 1.57 · IQR√
N
, (4)

where N is the number of observations and the constant 1.57 is
an empirical value that is set to approximate a 95% confidence
interval around the median [9].

Hence, when the notches of two groups of data points do
not overlap, it interpreted as a strong evidence that the medians
of the two samples are significantly different.

From the analysis of the box-plots in Figure 6, the following
considerations can be drawn:

1) 3D quantitative analysis revealed relevant differences
between control and diabetic groups.
In particular, the plots show a decrease of both IB4 and
CGRP in the diabetic subjects.

2) the highest discrimination between controls and diabet-
ics is obtained with IB4 marker. All four plots related
to IB4 show non-overlapping notches between control
and diabetic boxes, suggesting that the median values of
the corresponding populations are different with a 95%
confidence level.
The same happens with CGRP, but only when consid-
ering IOD and ROD values.

The experimental results automatically obtained with
3DRG are in line with the assumptions made by literature
on neuroscience.

As reported by [3], [10], nonpeptidergic unmyelinated IB4-
labeled afferents may have a higher susceptibility to diabetes,
and their decrease might be a reason for the early sensory
dysfunctions associated with this pathology.

On the other hand, CGRP-labeled peptidergic fibers are also
to a lesser extent involved in the deficit.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper we presented an automated tool, 3DRG, that is
able to

1) perform a segmentation of positively labeled DRG neu-
rons;

2) provide a multichannel 3D rendering of the labeled
neurons;

3) characterise the immunopositivity of the sample to the
DRG markers.

Our proposed tool allows to obtain better insights into the
analysis of immunofluorescence DRG images applied to the
study of diabetic neuropathies, for two main reasons.

First, differently from previous works, where counting of
positive cells was performed in a semi-automated way and on
only few slices of the 3D stack, 3DRG is able to characterise
the sample in a fully-automated way, and by taking into
account the whole 3D volume. This improves the repeatability
and objectivity of the results, and allows to fasten and ease
the analysis of large amount of image data.

Second, the 3D reconstruction and rendering of the seg-
mented cells allows to visualise the 3D distribution of the
different markers and to highlight spatial relations between
different types of DRG afferents. This analysis cannot be
performed on the original 3D stack due to noise and spurious
fluorescence.

Results obtained in our preliminary experiments by running
3DRG on DRG samples of healthy and diabetic mice were
very interesting, in that they support the hypothesis that the
alterations of the neural circuits between spinal nerve and
spinal cord via the DRG might be involved in DPN, which
is also confirmed by recent literature.

Indeed, fully-automated analysis of DRG images offers po-
tential for huge improvements in the study of neural alterations
related to diabetes. In our future work, we plan to extend
3DRG to support a quantitative analysis of the 3D spatial
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Figure 6. 3D quantitative immunofluorescence results on control and diabetic mice (values expressed as % of controls).

distribution of the different markers. This would allow to
study the pathology-driven alterations of the relations between
different DRG afferents, which is a type of analysis that was
never performed before with immunofluorescence.
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