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This article investigates the role of key enabling
technologies (KETs) in regional branching. Taking
into account the general purpose properties of these
technologies, and referring to recombinant innovation
theories, we argue that KETs knowledge could attenu-
ate the effect that regional branching ascribes to tech-
nological relatedness, giving regions more scope for
their technological diversification strategies.
Furthermore, we claim that regions could benefit
from this KETs effect, even if they are followers in
their development, thanks to interregional spillovers
from closer KETs leaders. Combining regional patent
and economic data from a thirty-year panel (1980–
2010) of twenty-six European countries, we actually
find that KETs negatively moderate the role of tech-
nological relatedness for regional specialization in new
technological fields, captured by a revealed technology
advantage index. KETs knowledge also increases the
number of new technological specializations. This
positive effect more than compensates the previous
negative moderation effect, so that the net impact of
KETs on regional branching is positive. Supportive
evidence is also found for KETs cross-regional spill-
overs. Overall, the results provide scientific support for
the recent European Commission recommendation to
plug KETs into the policy toolbox for smart speciali-
zation strategies inspired by regional branching.
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This article deals with the dynamics of regional
branching, according to which new industries and
technologies emerge more easily in regions when
they are related to preexisting ones (Frenken and
Boschma 2007; Boschma and Frenken 2011a).
Since this thesis entered the economic geography
debate with its recent evolutionary turn (Boschma
and Frenken 2006; Boschma and Martin 2007), it
has rapidly gained attention and stimulated intensive
work at the theoretical and the empirical level. In
both respects, important advances have been
achieved, and the thesis has found supportive evi-
dence in different geographic contexts (e.g., Neffke,
Henning, and Boschma 2011; Boschma, Minondo,
and Navarro 2013).

These results have contributed to making regional
branching the scientific background of the latest
wave of European regional policies based on the
concept of smart specialization strategies (S3)
(Boschma 2014; Boschma and Giannelle 2014).
These are bottom-up processes of entrepreneurial
discovery of what a region is best at doing in
terms of research and development (R&D) and in-
novation by applying them to its existing specializa-
tion patterns (Foray, David, and Hall 2009). In
addition to regional branching, the concept of
smart specialization is based on another important
element, but on which research has instead lagged
behind: the role of general-purpose technologies
(GPTs). Originally devised as part of the “logical
framework [. . .] of Smart Specialisation” (ibid., 3),
GPTs were deemed able to foster S3 through the co-
invention of new applications for existing technolo-
gies related to them. Since then, the role of GPTs has
always remained in the background. Only recently
has it reemerged more explicitly, thanks to the
European Commission’s (EC’s) recommendations
to build regional strategies of smart specialization
(e.g,. in regional operational plans) on the so-called
key enabling technologies (KETs) (Sörvik,
Rakhmatullin, and Palazuelos Martínez 2014): six
GPTs aimed at “ensuring the competitiveness of
European industries in the knowledge economy”
(EC 2014, 31; see also EC 2009, 2012a, 2012b,
2012c, 2013a).
This awakening of policy attention to GPTs with

respect to regional diversification has been mainly
factual, and it has occurred in the absence of a clear
theoretical foundation. In particular, the way in
which KETs could relate to regional branching, as

Acknowledgments

Preliminary versions of the
article have been presented
in 2014, 2015, and 2016 in
the seminar series of the
following institutions: JRC-
IPTS, European Commission,
Seville; DEAMS Department
of Economics, Business,
Mathematics and Statistics,
University of Trieste;
Department of Economics of
the University of Trento;
Kore Business and
Economics, University Kore
of Enna; Department of
Economics, University of
Patras; Department of
Economics and Statistics,
University of Torino;
Department of Economics,
University of Roma Tre. The
article has also been accepted
and presented at the
following conferences:
November 30, 2016, Spanish
National Research Council,
Institute of Public Goods and
Policies (IPP), Madrid (ES);
October 22–24, 2015, 56th
Annual Meeting of Italian
Economists Society (Società
Italiana degli Economisti SIE),
University of Naples;
September 10–11, 2015,12th
European Network on the
Economics of the Firm
(ENEF) meeting, University of
Toulouse; DRUID 2015
Summer Conference, Rome;
2015 Annual Conference of
the Regional Studies
Association, Piacenza;
European Meeting on Applied
Evolutionary Economics
(EMAEE) 2015 Conference,
Maastricht; 2014 Annual

368

ECONOMIC GEOGRAPHY

D
ow

nl
oa

de
d 

by
 [

2.
23

0.
90

.2
00

] 
at

 1
4:

34
 1

0 
Se

pt
em

be
r 

20
17

 

http://www.tandfonline.com


the other ingredient of smart specialization, has been
left unexplored. This, for us, is doubly unfortunate.
First, this analysis could enhance our understanding
of the technological mechanisms that drive regional
branching. Second, it could help European regions
to find a more precise space for KETs in their policy
toolbox for S3.

The present article aims at filling this gap by
investigating the role that KETs can perform in
regional branching.

From a theoretical point of view, we look at the
implications of the GPT properties of KETs for the
recombinant innovation theories previously placed
at the basis of regional branching (Colombelli,
Krafft, and Quatraro 2014; Castaldi, Frenken, and
Los 2015). In this regard, we argue that available
KETs knowledge could boost regional branching
and, above all, attenuate the effect that regional
branching ascribes to technological relatedness, giv-
ing regions more scope for technological diversifi-
cation. From a methodological point of view, we test
this argument by extending an econometric model
previously developed to investigate the effect
exerted on new regional specializations by their
relatedness to preexisting ones in the technological
space (Hidalgo et al. 2007). In particular, we extend
this methodology in three respects. First, we focus
on regional branching at the extensive margin, by
looking at the region’s capacity to acquire a set of
related (to previous ones) new technologies, with
respect to that at the intensive margin, which is
generally considered by the literature in regard to
specific individual technologies. Second, we plug
KETs knowledge, proxied by regional patents in
coherent technological classes, among the regressors
of this model, and allow KETs to play a moderating
role on the effect of technological relatedness. Third,
we integrate the standard estimations of the model
with a spatial econometric robustness check
(Quatraro 2010; Essletzbichler 2015), which allows
KETs to spread their effects across closer regions.
This is a crucial aspect in light of the smart speciali-
zation logic of considering the presence of core and
peripheral regions also in the development of KETs.
Crossing regional patent and economic data, the

model is applied to a large sample of regions, be-
longing to twenty-six European countries observed
over thirty years (1980–2010). KETs are found to
negatively moderate the role of technological relat-
edness for regional specialization in new
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technological fields. KETs knowledge also increases the number of new technological
specializations, to an extent that more than compensates the previous negative moder-
ation, so that the net effect of KETs on regional branching is positive. Overall,
evidence emerges that KETs could enable regions to explore away from the existing
technological base and to specialize more distantly from what they know: a result quite
in line with the S3. Furthermore, the evidence on interregional spillovers suggests that
KETs could be beneficial also to follower regions in their development, provided that
they are geographically closer to leader regions: another smart specialization–friendly
insight that does not force regions to invent themselves as KETs developers from
scratch.

The rest of the article is organized as follows. The next section illustrates the
theoretical background of the article. This is followed by a section that presents the
empirical application, the data, and the econometric strategy through which it was
performed, referring to the appendixes for their details. The penultimate section
discusses the main results. The final section concludes and illustrates the policy
implications.

Theoretical and Policy Background
The logic of regional branching and its relevance to economic geography is quite

straightforward (Tanner 2014). The preexisting industry structure is a crucial determi-
nant of the development path that a region embraces and the economic growth from
which it can benefit (Boschma and Frenken 2011a, 2011b). In particular, the emergence
of new industries in a region can be facilitated by the presence of industries that are
technologically related to them (Neffke, Henning, and Boschma 2011; Essletzbichler
2015).1

Several cases of regional branching have been documented in different geographic
contexts, especially in technological terms, by looking at the role of related (and
unrelated) variety in the dynamics of scientific knowledge and technological innova-
tions in local areas (Kogler, Rigby, and Tucker 2013; Boschma, Heimeriks, and
Balland 2014; Colombelli, Krafft, and Quatraro 2014; Tanner 2014; Backman and
Lööf 2015; Boschma, Balland, and Kogler 2015; Castaldi, Frenken, and Los 2015;
Rigby 2015).2 The reference to journal articles and patent data, in fact, makes this kind
of branching easier to map in empirical terms. On the other hand, the theoretical
mechanisms of this kind of regional branching have not yet received much attention.
In particular, the role that GPTs, like KETs, can play in the same respect has been
unfortunately neglected. Its recovery represents the main novelty of our article.

As Castaldi, Frenken, and Los (2015) duly point out, the way in which relatedness
spurs regional technological branching can be explained by referring to Schumpeter’s
seminal insight of newly recombining existing ideas (Becker, Knudsen, and Swedberg
2012). In these terms, the notion of recombinant innovation defined by Weitzman
(1998) and its regional declination appears crucial for the theoretical foundation of

1 Other mechanisms, which are not addressed in the article, concern the role of technological relatedness
in reducing the chances that existing industries disappear from the region in the future and in increasing
its technological cohesion over time.

2 The emergence of new regional industries can be also followed in economic terms by considering, for
example, the relatedness of sector employment growth (Bishop 2012), the evolution of product exports
(Boschma, Minondo, and Navarro 2013), and the changes in the product portfolio of industry plants
(Neffke, Henning, and Boschma 2011). On the mechanisms underlying this kind of regional branching,
see the recent work by Tanner (2014).
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regional branching (Quatraro 2010; Castaldi, Frenken, and Los 2015). On the one hand,
the local variety of regions in terms of industries affects the diversity of their knowl-
edge base and favors, per se, a cross-fertilization of ideas that generates Jacobsian
spillovers (Jacobs 1969) and recombinant innovations in their boundaries. On the other
hand, the relatedness degree of these heterogeneous activities, expressed by the
commonalities in the knowledge base that different industries can share, makes it
easier to innovate by recombining ideas and technologies at the regional level.

An apparently missing piece in this story is the role that GPTs, like our focal KETs,
can play in the unfolding of recombinant regional innovations.

As well known, the “rare properties” (Foray 2009, 21) of these technologies are their
horizontal application throughout the knowledge base of a national/regional economy
(e.g., the widespread industrial use of nanotechnologies) and the complementarity
between inventions and applications in their development (e.g., the application of a
newly invented biotechnology to a new maritime resources exploitation) (Bresnahan
2010). These two properties attribute to GPTs an important, though hitherto unrecog-
nized, function in the technological transition that recombinant innovations drive at the
regional level through branching processes (van den Bergh 2008; Frenken, Izquierdo,
and Zeppini 2012). First, by moving the general technological frontier of the region
ahead, GPT inventions may attenuate the limits that its ruling technological paradigm
previously imposed on the combinatory process of existing ideas (Olsson and Frey
2002). KETs’ knowledge could in fact provide an extra buffer of ideas recombination
at the local level. In so doing, KETs could increase regional branching at the extensive
margin, so to speak, by augmenting the number of new technologies that the region is
able to master by exploiting their relatedness to the existing ones. A similar role for
KETs could be expected also with respect to the region’s capacity to acquire a certain
new technology rather than another one by referring to regional branching at the
intensive margin, as the extant literature, in fact, does. However, given the horizontal
propagation of GPTs, we maintain that the highest KETs potential should be sought at
the extensive margin.3

The second distinguishing property of GPTs entails an additional role for KETs in
regional branching. As we said, the development of GPTs is marked by a typical co-
invention/application pattern through which the extant applicative path can be linked to
a new inventive path, yielding recombinations that the simple branching of the former
would not have made possible. These are innovations of a really recombinant nature,
rather than softer branching innovations occurring when the recombination takes place
along a certain (and related) technological path (Frenken, Izquierdo, and Zeppini
2012).4 At the regional level, this argument leads us to expect that the local availability
of KETs’ knowledge makes the role of technological relatedness less binding for
regional branching.5 Not only do KETs provide regions with an extra buffer of

3 To provide an example, the nanotechnology advantages that a region has been able to gain in the
production of carbon nanotubes may induce it to acquire a new technological specialization in polymer
films or microfibers. Indeed, all of these applications draw on a core of nanotechnology knowledge and
on the region’s capacity to extend it to different fields.

4 Castaldi, Frenken, and Los (2015) do not draw this distinction, and instead contrast recombinant
innovations in the presence of related rather than unrelated variety, attributing to the latter (the former)
a larger weight in radical (incremental) breakthroughs in regions: an issue, however, that falls outside the
scope of this article.

5 For example, the combination of (KETs) microelectronics with more traditional home technologies
embodied in the region (e.g., wood and plastics assembling technologies) may make the latter less
binding on the region’s capacity to obtain new specializations in the field, as in the case of smart
domotics.
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recombining existing ideas, but they also allow regions to obtain new recombinations
that are less technologically closer to the extant ones.

This last argument is consistent with the recently proposed idea of application
relatedness (Tanner 2014).6 However, in our view, it is the invention, along with the
application, of GPTs, rather than of any other technologies in use, to determine this
kind of relatedness, above all in light of their rare horizontal nature. Furthermore, we
maintain that this argument holds true well beyond the strategic decision of firms to
diversify and applies to all the regional stakeholders following the idea of smart
specialization.

The policy implications of the previous arguments for the undertaking of S3 are
immediate. These strategies are meant to foster entrepreneurs’ ability to discover new
learning opportunities for the region by drawing on previously accumulated knowledge
(McCann and Ortega-Argilés (2015): in short, by regional branching (Boschma and
Giannelle 2014). Furthermore, the EC expects S3 to spur entrepreneurial processes that
prioritize KETs, given their contribution to the general spectrum of regional techno-
logical activities and given their horizontal nature (Sörvik, Rakhmatullin, and
Palazuelos Martínez 2014; Foray 2015; Pattinson et al. 2015).
The six KETs identified by the EC—industrial biotechnology, nanotechnology,

micro- and nanoelectronics, photonics, advanced materials, and advanced manufactur-
ing technologies—represent a new generation of GPTs acting as building blocks for a
wide array of products and industrial processes in today’s economies. Of course,
although sharing the GPT properties that we have identified, the six technologies are
inherently diverse, for example, in terms of stage of their life cycle and industries/
countries of main diffusion. However, we do not have grounds to assume that these
heterogeneous characteristics would entail differences in our reinterpretation of region-
al branching. Accordingly, we leave it to the empirical application to reveal if this is
actually the case and postpone the issue to our future research. For the time being, the
GPT nature of these KETs and our research questions about the KETs’ functions for
regional branching could be useful to address important policy issues such as the
following: Do KETs increase the regional capacity for smart specialization? Do
KETs enable regions to specialize more distantly from what they know?

In addressing these questions, we should consider that, as Foray, David, and Hall
(2009) point out, regions differ in their capacity to develop GPTs. In the original
formulation of the concept, this fact was not deemed problematic. Provided that
"leader," “follower,” and “laggard” regions differently modulate the balance between
their inventions and application potential, all of them can benefit from GPTs (Foray
2009, 21). To this argument we add that a focal region does not branch its activities in
isolation from other regions. As has been widely shown by the literature on interre-
gional spillovers (e.g., Maurseth and Verspagen 2002; Bottazzi and Peri 2003;
Kalapouti and Varsakelis 2015), spatial proximity allows knowledge to flow from
one region to another in different ways (e.g., through technology transfer, research
collaboration, and labor mobility). Cross-regional spillovers may concern, above all,
KETs, especially if we consider the explicit nature of their knowledge base.
Accordingly, we can expect that the benefits that KETs have for regional branching
could be gained even by regions that lag behind in their development—typically,
peripheral regions—provided that they are closer to leader regions in the same
respect—typically, core regions. On this basis, given that the prioritization of KETs

6 According to Tanner (2014), the “principle of technological relatedness” in regional branching fades
away when “firms diversify by incorporating new technologies into their product portfolios” (ibid., 423).
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does not necessarily require from-scratch investments, and that it can be conversely
activated also by combining interregional knowledge flows with their absorptive
capacity, it could be feasible also for KETs’ lagging regions and fully consistent with
the smart specialization idea.

Empirical Application
Data
The empirical application of the article is based on a regional data set of twenty-six

EU countries (the EU 28, minus Greece and Croatia) over the period 1981 to 2010: an
ideal sample for investigation, given the policy importance of smart specialization in
the EU2020 strategy.

The data set was obtained by merging regional patent data at the NUTS2 level,
drawn from the Organization for Economic Cooperation and Development (OECD)
Reg Pat data set (July 2014), with those of the European Regional Database maintained
by Cambridge Econometrics7 at the same territorial level of analysis.

Following the extant literature, patent data were first of all used to proxy the region’s
capacity to branch into new technologies by looking at its technological specializations
(see “Variables”). Using a “technology diffusion approach” (EC 2011, 21), patent data
were also used to identify the presence of KETs’ knowledge in the regions and
investigate their role in regional branching. In particular, we looked at the number of
regional patent applications in KETs-mapped International Patent Classification (IPC)
classes, using the latest version of the conversion table put forward by the EC
Feasibility Study on KETs (see Vezzani et al. 2014). Finally, patent data were also
used to measure the technological relatedness between the new and the existing
technologies, and other technological determinants of regional branching (see
“Variables”).

The European Regional Database was the reference to proxy for other economic
determinants of regional branching and to obtain some regional controls necessary for
its analysis. Because they are absent from this database, data on regional R&D were
taken from EUROSTAT regional statistics. However, given the much lower number of
observations with respect to Cambridge statistics, rather than opting for a further merge
of data sets, data on R&D were drawn separately from EUROSTAT and used only
limitedly in some specifications of the empirical analysis.

Variables
Consistent with the literature on the emergence of new activities in regional contexts

(see, e.g., Boschma, Minondo, and Navarro 2013; Colombelli, Krafft, and Quatraro
2014), our focal dependent variable was built by looking at region i’s acquisition of a
new technological specialization s at time t: that is, a technological specialization that
the region did not have at time t–k. If we identify a generic technological specialization
with a standard patent-based indicator of revealed technological advantages, RTAist, its
newness can be characterized by a dichotomic variable, New_RTAist, taking value 1 if
such an advantage is new and 0 otherwise (see Appendix A.1). New_RTAist is thus
linked to the emergence of a revealed technological advantage, but it should be
interpreted differently from RTAist. In particular, a nil value for it may denote both
the absence of specialization in technology s, as for RTAist, and a technological

7 http://www.camecon.com/SubNational/SubNationalEurope/RegionalDatabase.aspx.
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specialization in s that the region keeps from the previous period: although different,
both the situations fall outside the realm of regional branching.

The extant literature has generally focused on this technology-region level of
analysis, by looking at New_RTAist and addressing the role of technology s’s related-
ness to the preexisting ones of the region i in its unfolding. As we said in “Theoretical
and Policy Background,” our focus on KETs makes it more important to look at the
extension of new technological specializations that the region acquires in a related
manner. Accordingly, we instead based our analysis on an aggregate variable,
New_RTAit, which simply counts the number of new technological specializations of
region i at time t. More precisely, since our focus was on the role of KETs in the
dynamics of new technological activities, in order to mitigate the risk of spurious
relationships between the dependent variable and the KETs’ focal regressors,
New_RTAit was calculated for each of the new regional technologies except those
classified as KETs, in moving from t–k to t (Appendix A.1).8 For the sake of
comparison with the extant literature, however, the results of the estimations carried
out at the region-technology level are also reported as a robustness check
(Appendix A.3).

In order to account for a regional branching process, the dynamics of New_RTAit

were first regressed against the technological space that local agents had managed to
command in the past, that is, by the lagged value of the dependent variable, New_RTAit-k.
In the literature (e.g., Boschma, Minondo, and Navarro 2013; Colombelli, Krafft, and
Quatraro 2014), this first regressor has been retained to account for the path dependency
of technological specialization at the regional level, at which different patterns of
hysteresis can emerge, like the typical success breeds success one. In spite of the
complexity that it introduces into the econometric strategy (see “Econometric
Strategy”), its inclusion is thus essential in order to distinguish the extent to which the
acquisition of new technologies is the result of a relatedness rather than experience
driven kind of branching.

The core regressor of our regional branching analysis was represented by the
relatedness of the newly acquired technologies, as measured by New_RTAis, to the
existing ones of the region. Drawing on the manifold notion of proximity in
economic geography (Boschma 2005), and on the idea of technological/cognitive
proximity in particular, substantial research efforts have been made to find a
relatedness measurement suited to this purpose (e.g., Kogler, Rigby, and Tucker
2013; Colombelli, Krafft, and Quatraro 2014; Essletzbichler 2015; Rigby 2015).
Among the available alternatives, we referred to Hidalgo et al. (2007) and adapted
their representation of the product space of a country to the technology space of a
region. In particular, we first looked at regional patent applications in technological
fields pairwise. This was made in order to identify concurrent patenting that could
reveal a proximity linkage between each new regional technology s at time t and
each and every one of those technologies (out of the remaining m ≠ s) in which it
was specialized at time t–k. All of the individual proximity linkages to technology s
were then grouped together through a density indicator for the same technology, and
an average density was finally calculated with respect to all the new technologies of
region i. The resulting variable, Av_Densit, was our proxy for the technological
relatedness between the set of new and existing technologies of the region, and
indeed the one on which we focus to ascertain the occurrence of regional branching

8 We wish to thank an anonymous reviewer for his/her suggestions on refinement of the dependent
variable.
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at the extensive margin (see Appendix A.1 for details). As we said, a regional
branching process would be suggested by a positive correlation between Av_Densit
and our dependent variable, pointing to the accumulation of technological compe-
tences in close or complementary technologies for the development of new ones.

The list of independent variables of our regional branching approach is completed by
the inclusion of a number of regional controls. First of all, we controlled for the
technological drivers of new regional specializations with two variables: the (lagged log
of the) R&D intensity of the focal region, R&Dit-k, defined as the ratio between its R&D
expenditure and its gross value added; and the number of IPC codes in which a region had
registered patent applications, CountIPCit-k. In spite of the regional pervasiveness of their
role, mainly due to their direct—through innovation and internal knowledge—and indi-
rect—through imitation and external knowledge sourcing—effects on regional growth
(Grillitsch, Tödtling, and Höglinger 2015; Vogel 2015), these are typical variables of
regions following a so-called science–technology–innovation (STI) mode (see Jensen
et al. 2007). However, data availability prevented us from considering other controls,
which could also have accounted for an alternative and possibly more widespread doing–
interacting–using (DUI) mode of innovating among regions, based on more informal
technological drivers. Given the dramatic loss of observations entailed by the use of R&D
with the data at hand (see Table 2), in our benchmark estimations (see "Econometric
Strategy") we mainly used CountIPC and referred to both only for the sake of a robustness
check. Indeed, their simultaneous inclusion could be motivated by the fact that, although
they are both size-related variables, they are different in nature because CountIPCit-k also
accounts for the degrees of freedom that the region has available in exploring new
technological advantages over time.

As for the other controls, we included in the estimated model the (lagged logarithm
of) regional gross value added, GVAit-k, and the (lagged logarithm of) regional employ-
ment, Employmentit-k.

In order to plug KETs into the model and test our arguments about their role in
regional branching, we referred again to the notion of RTA (see Appendix A.1) and
first counted the number of cases in which region i had obtained a technological
specialization in a KETs-related IPC class, irrespective of the specific KETs in which
this had occurred. KETs_RTAit-k was thus a proxy for the generic KETs knowledge that
the region is able to master. The same indicator was then replicated by referring to the
number of IPC classes pertaining to each of the six KETs separately considered. As we
said, this could help us detect possible heterogeneity among KETs in their regional
branching role (Appendix A.1). In both cases, the KETs variable was considered in
additive terms and as a moderating variable of that proxying for the role of technologi-
cal relatedness, that is Av_Densit (see “Econometric Strategy”).
Table 1 summarizes the variables used in the study, how they were defined, and the data

sources upon which they build. As illustrated in Appendix A.1, a value of k = 1 has been
adopted for the lag in the estimations, requiring a transformation of some variables (the
RTA based) to account for their volatility and will be referred to hereafter.

In order to avoid problems of multicollinearity, following a common econometric
practice, each variable was first centered around its mean. Hence, both the centered
indexes and their interactions were included in the econometric specifications of our
model (see “Econometric Strategy”). Table 2 reports the main descriptive statistics of
these variables, although Table 3 shows the pairwise correlations among all of them.
As can be observed, although some correlations are significant, the variance inflation
factor (VIF) tests reported for each model in Tables 5 and 7 excluded problems of
collinearity in all of the cases.9
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Econometric Strategy
The model that we used to test our research arguments is implicitly defined as

follows:

New RTAi;t¼ fðNew RTAi;t�1;Av densi;t;KETsi;t�1;

Av densi;t�KETsi;t�1;RDi;t�1;CountIPCi;t�1;zi;t�1; dtime; dregion;εi;tÞ (1)

where, besides the above-defined variables, z is the vector of our structural regional
controls; dtime and dregion are year and regional dummies, respectively; and ε is an
error term with standard properties.

In addition to the role of KETs_RTAit in affecting the scope for regional branching
(New_RTAit), the focal feature of this model is the presence of an interaction term
between KETs themselves and the technological relatedness of the new technologies to

Table 1

Variables Definition

Variable Definition Source

New_RTAit Technological specializations of region i, which were
observed at time t but not at time t-1 (with the
exception of KETs ones).

Our own elaborations on OECD RegPat
Database (July 2014).

Av_Densit Regional average value of the density of the proximity
linkages that each technology observed at time t in
region i reveals with respect to all of the
technologies observed in the same region at time t-1.

Our own elaborations on OECD RegPat
Database (July 2014).

KETs_RTAit Number of KETs in which region i is technologically
specialized at time t.

Our own elaborations on OECD RegPat
Database (July 2014); EC (2011).

R&Dit Logarithm of the ratio between regional R&D
expenditure and gross value added.

Our own elaborations on EUROSTAT and
Cambridge Econometrics Databases.

CountIPCit Number of technology fields observed in the patent
portfolio of region i at time t.

Our own elaborations on OECD RegPat
Database (July 2014).

GVAit Logarithm of gross value added of region i at time t. Cambridge Econometrics (December 2014)
Employmentit Logarithm of employment level in region i at time t. Cambridge Econometrics (December 2014)

Table 2

Descriptive Statistics

Variable N Max. Min. Mean SD Skewness Kurtosis

New_RTA 7942 109.714 −7.285997 31.099 27.76733 0.1556514 1.786634
Av_Dens 6797 0.39556 −0.1374235 0.000 0.1123399 0.4340593 2.147397
KETs_RTA 7427 809.4517 −71.34832 0.000 110.7524 3.100625 14.72068
Av_Dens* KETs_RTA 5843 286.1283 0 20.403 36.77944 3.250057 15.241
CountIPC 9290 6467.147 −445.8528 −0.000 771.3372 3.56832 18.88889
Employmenta 7145 9.23807 −7.338643 −1.392 6.301594 0.5084939 1.349983
GVAa 7145 13.66599 −11.07115 −2.707 9.948503 0.5845996 1.387877
R&Da 3418 0.1359378 0.0002327 0.0148 0.012625 1.929691 8.788489

aVariables after inverse sine transformation.

9 It is worth noting that CountIPC shows a correlation coefficient with KETs_RTA of about 0.85. Although
the VIF tests reassured us, we nonetheless run a battery of estimations excluding the variable CountIPC
from the list of regressors. The results are consistent with those shown in Tables 5 and 7, and are
available from the authors upon request. However, because they were more easily interpretable and
guaranteed a more pervasive convergence among the different models that we used, we decided to retain
CountIPC in discussing our results.
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the preexisting ones, Av_Densit. Indeed, consistently with our theoretical arguments in
“Theoretical and Policy Background,” our expectation is that not only do KETs
positively affect New_RTAit, but they also negatively moderate the positive effect
that, according to the branching hypothesis, Av_Densit should have on New_RTAit.

10

The nature of the dependent variable, New_RTAit, which is a count one with a
nonnormal distribution (see Figure 1), would require the implementation of count-
data models in a panel setting to estimate the model.

However, we should also consider that the model regresses the dependent variable at
time t against its lagged value. This introduces an intrinsic element of dynamics, which
calls for an econometric strategy able to minimize the possible bias in the estimations,
such as a generalized method of moments (GMM) model. Accordingly, we used this
model by making some changes to our own dependent variable that could prevent
problematic issues in its application to count data (see Appendix A.2).

A further requirement of the econometric strategy to estimate our focal model
derived from the fact that the construction of regional technological advantages on
which it focused may be affected by the KETs efforts of geographically closer regions.

Table 3

Correlation Matrix

1 2 3 4 5 6 7 8

1 New_RTA 1
2 Av_Dens 0.9096 1
3 KETs_RTA 0.8832 0.7698 1
4 Av_Dens* KETs_RTA 0.2222 0.1728 0.4755 1
5 CountIPC 0.8729 0.7965 0.8563 0.4782 1
6 Employment 0.4635 0.4102 0.4641 0.351 0.5044 1
7 GVA 0.6543 0.6413 0.5976 0.2791 0.6371 0.7791 1
8 R&D 0.5986 0.5155 0.5781 0.1978 0.6134 0.2262 0.409 1
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Figure 1. Kernel density distribution of New_RTAit.
Deviance goodness-of-fit = 29388.91, Prob > chi2(5921) = 0.0000.
Pearson goodness-of-fit = 27248.95, Prob > chi2(5921) = 0.0000.

10 As said, the model in question is used in the article to address regional branching at the extensive
margin. The analysis at the intensive margin was instead carried out for the sake of a robustness check
(as reported in Appendix A.3), by using New_RTAist rather than New_RTAit as dependent variable, and
by rescaling the relevant regressors at the region-technology level of analysis.
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In particular, the technological effects that KETs can exert in the regional knowledge
base (see “Theoretical and Policy Background”) may extend beyond a region’s geo-
graphic boundaries and make the KETs knowledge/specialization of that region signif-
icant for the development of new technological specializations in neighboring ones.

As well known, in regard to possible spatial dependence phenomena of this kind,
traditional econometric models may yield biased results. Spatial econometrics should
be preferred as more reliable.

In this respect, Figure 2 suggests that the phenomenon concerned could actually
have an important spatial specification across the regions of our sample.

The spatial distribution of the average values of New_RTAit in 2006 (upper part of
the map) provides evidence of a marked geographic concentration of that variable
whereby Central EU regions appear to be characterized by higher values, although the
emergence of new technological specialization in peripheral regions seems to be a
much weaker phenomenon. The distribution of the count of KETs in which the region
developed a technological specialization in 2006 (lower part of the map) also suggests

Figure 2. Spatial distribution of NEW_RTA and RTA_KET (average values 1996–2001).
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that its highest values are concentrated in Central EU regions. Overall, there seem to be
traces of an idiosyncratic geographic distribution of the phenomenon, which somehow
mimics that of other more standard economic indicators. This suggests its apparent
neutrality with respect to the need to favor regional convergence across Europe: an
issue that we postpone to our future research agenda.

The insights of this visual inspection are confirmed by the results of the tests for spatial
autocorrelation. Using the robust Lagrangian multiplier (LM) tests for error and lag forms
of spatial dependence for panel data (Elhorst 2014a), Table 4 suggests a preference for the
lag model. This implies that autocorrelation actually stems from the economic interdepen-
dence of the creation of new technological specializations across neighboring regions.

On the basis of the previous evidence, in a robustness check (see “Robustness
Checks: A Closer Look at Spatial Aspects”), we integrated the standard estimates of
our model with those obtained by running a spatial model suitable for our research
question. This should be one able to appreciate both the effects of the spatially lagged
dependent variable, New_RTA, and of a spatially lagged regressor, KETs_RTA, like a
spatial Durbin model (SDM) (see Appendix A.2). Also in this case, the application of
the estimator to panel data required some transformations in the dependent variable so
as to solve the problems due to its nonnegative and discrete nature (see Appendix A.2).

Results
Let us now consider the results of the estimates, starting with those on the role of

KETs in aggregate terms. Table 5 reports different estimations of that role in its nine
columns by using different combinations of the relevant regional controls (see
“Variables”). Before discussing the results, it is worth stressing again that the VIF
tests across the different models—reported at the bottom of the relevant table—
suggested that we can exclude that multicollinearity as an issue in our empirical
strategy. All of the variables actually showed VIF values below ten, which is the
critical value generally used in the literature.

First, as expected, previous gains of new technological advantages (New_RTAit-1)
contribute positively to further gains of them in the following period. Having entered
new technological fields in the past, regions develop the capacity to do so persistently,
confirming the evidence of hysteresis already found by some previous studies (e.g.,
Boschma, Minondo, and Navarro 2013; Colombelli, Krafft, and Quatraro 2014).
However, it should be noted that, although statistically different from zero, the relative
coefficient is lower than one. This implies a dynamic process in which the opportunities
to develop new technological specializations are likely to become exhausted in the long
run, preventing an implausible exponential growth of them over time.

Table 4

Spatial Autocorrelation Statistics

(1) (2) (3) (4)

Robust LM test no spatial lag 9.5698 9.0046 8.4757 10.371
(0.002) (0.003) (0.004) (0.001)

Robust LM test no spatial lag error 0.4323 0.2782 0.1826 0.6706
(0.511) (0.598) (0.669) (0.413)

Model (1) also includes CountIPC; Model (2) also includes Employment; Model (3) also includes GVA; Model (4) also
includes R&D.
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Although it is linked to the region’s experience, the construction of new RTA also
shows the distinguishing feature of a regional branching process. Consistent with the
extant literature, our relatedness variable (Av_Densit) has a significant and positive
coefficient. Not only does related variety help regions in diversifying their technologi-
cal base at the intensive margin (Frenken, Van Oort, and Verburg 2007)—a result that
our robustness checks confirm (Appendix A.3)—but it also increases their capacity to
branch at the extensive margin by augmenting the set of newly acquired technologies.

Turning to the control variables, CountIPCit-1 shows a positive and significant
coefficient. When, at the price of an important loss of observations, a more standard
proxy for innovation efforts at the regional level is also included, R&Dit-1 also proves
to be significant and positive in the specifications from columns (4) to (9). These
results suggest that, consistent with expectations, more innovation-intensive regions are
likely to develop technological competencies in new fields with respect to their existing
knowledge base: a result that seems to suggest a STI mode of innovating across the
sampled regions, which however needs to be confirmed by using also DUI-related
variables in future research. Finally, in spite of the negative sign of Employmentt-1, in
two of the nine specifications, when the economic dimension of the regions is consid-
ered through their GVAt-1, this shows positive and significant coefficients, pointing to a
technological branching advantage of both larger and richer regions. Along with that
obtained with respect to R&D, these results are extremely important. At first sight, they
seem to suggest that the more peripheral regions, which have also been found to rely
on less informal and non-R&D based modes of innovating, could be disfavored in a
process of technological diversification from which they should instead benefit the
most. In order to be more solidly confirmed, this insight would require us to consider
the degree of entrepreneurial development of the regions at stake, about which longi-
tudinal data consistent with our application are unfortunately still missing. However,
some confirmative evidence is found when, in columns (7) to (9) of Table 5, we plug
among the regressors the Regional Entrepreneurship and Develoment Index (REDI): a
synthetic indicator released by the EC to rank European regions in terms of entrepre-
neurial attitudes, abilities, and aspirations with respect to the temporal window
2007–2011.11 Although time invariant, this index actually allows us to control for
the effect of different entrepreneurial dimensions on the emergence of new technologi-
cal specializations. Consistent with the evidence of the baseline specifications in
columns (1) to (8), the coefficient of the variable is positive and significant, suggesting
that the entry in new technological fields is actually more probable in more entrepre-
neurially developed regions.

In light of all of the previous results, the role that KETs can play in different regions,
above all through spillover mechanisms between leader and follower regions, becomes
of absolute importance: an aspect to which we will return in “Robustness Checks: A
Closer Look at Spatial Aspects.”

As regards our focal KETs regressors, a first finding is that the availability of generic
KETs knowledge in the region increases its capacity to acquire new technological
specializations: KETs_RTAit-1 is significant and positive across all the models. In line
with our expectations, the horizontal GPT nature of these technologies provides
regions with an extra buffer of recombining existing ideas into new ones. With the

11 These are the three subindices that the REDI superindex integrates, each of which is made up of several
pillars—for example, start-up skills (for attitudes), technology adoption (for abilities), and financing
(for aspirations)—in turn consisting of an institutional and an individual variable each—for example,
for start-up skills, skill perception, and quality of education, respectively. For details, see EC (2013b).
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help of KETs, the capacity of regions to benefit from recombinant innovations
increases by their being provided with a margin of branching into new technologies
additional to that guaranteed by their experience and technological relatedness.

Again in line with our expectations, KETs_RTAit-1 performs a significant moderating
role of the impact of Av_Densit onNew_RTAit, and the sign of the interaction is negative. In
other words, KETs make the role of technological relatedness less important for the
acquisition of new technological advances and implicitly enable regions to access technol-
ogies that are relatively less close to the existing ones. This is consistent with our argument
concerning the capacity of KETs to enable regions to implement really recombinant, rather
than simply branching, innovations, given their co-invention/application pattern through
which the extant applicative path can be linked to a new inventive path.

Although both of the previous results are confirmative of our theoretical arguments,
from an empirical point of view, their combined reading may still yield a counteractive
result. Because KETs_RTAit-1 is significantly positive, but its interaction with
Av_Densit-1 is significantly negative, a basic question arises: do KETs exert a positive
net effect on the region’s capacity to develop new technological specializations?
In this regard, it can be useful to evaluate the marginal effects at means of the

variables in the model. Indeed, having transformed all variables using an inverse sine
operation, which is equivalent to a log transformation (see Appendix A.2), the coeffi-
cients of Table 5 can be read as elasticities and informing us about the extent to which
the differential value of the dependent variable changes for any one unit change in the
predictor variable, all other things being equal. Accordingly, the net impact of KETs
can be directly calculated.

The first row of Table 6 provides the results of the calculation, along with a z-test
indicating if the overall effect is statistically different from zero.

The net impact of KETs on regional branching, obtained by considering both the
buffer effect that they offer in terms of variety and the dampening effect that they exert
on the impact of technological relatedness, appears to be positive and significant. An
increase of 1 percent in the specialization that regions acquire in KETs enables them a
more than proportional increase (roughly of 1.23 percent) in the number of new
technological specializations they manage to gain. This is of course a reassuring result,
which makes KETs an actual and unambiguous enabler of the region’s capacity to enter
into new technological domains.

The second battery of results concerns the estimates of the same model as above but
with separate consideration of the regional specialization in each and every of the six
technologies j (with j = BIOTECH, NANOTECH, NANOELECT, PHOTO, ADVMAT,
and ADVTECH).12 Given the robustness of the aggregated results to the inclusion of

Table 6

Net Impact of KETs_RTAit-1 on New_RTAit: Overall and by KETs Type

Coeff. Std. Err. z P > z

1 Overall effect 0.012236 0.0002643 46.29 0.000
2 Biotech 0.0184698 0.0002852 64.77 0.000
3 Nanotech 0.0186339 0.0018674 9.98 0.029
4 Nanoelect 0.0215530 0.0003241 66.5 0.000
5 Photo 0.0085465 0.0006934 8.90 0.000
6 Advmat 0.0292412 0.0004333 43.54 0.000
7 Advtech 0.0085972 0.0004191 20.51 0.000

Linear combination of margins at means.
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R&D, in order to keep a satisfactory number of observations, we will limit this part of
the analysis to the benchmark specifications of Table 5, by including CountIPCit-1 and
excluding the regional R&D intensity from the regressors.13

As Table 7 shows, the basic mechanisms underlying the construction of new RTA
are confirmed when each of the six KETs is individually considered. For each and
every one of them, a regional specialization positively affects regional branching at the
extensive margin and negatively moderates the positive impact that, following the

Table 7

Acquisition of New Revealed Technological Advantages (New_RTAit) and Regional Specialization in
Different KETs (KETsj_RTAit-1)—GMM System Estimator

(1) (2) (3) (4) (5) (6)
GMM-SYS GMM-SYS GMM-SYS GMM-SYS GMM-SYS GMM-SYS

New_RTAit-1 0.9079*** 0.9601*** 0.9232*** 0.9325*** 0.8985*** 0.9365***
(0.0014) (0.0011) (0.0012) (0.0012) (0.0013) (0.0012)

Av_Densit 0.1855*** 0.2022*** 0.0088 0.0770*** 0.0819*** 0.1009***
(0.0100) (0.0112) (0.0084) (0.0106) (0.0099) (0.0092)

BIOTECH_RTA it-1 0.0184***
(0.0003)

Av_Densit*
BIOTECH_RTA it-1

−0.2548***

(0.0022)
NANOTECH_RTAit-1 0.0186***

(0.0019)
Av_Densit * NANOTECH_RTAit-1 −0.2762***

(0.0116)
NANOELECT_RTAit-1 0.0215***

(0.0003)
Av_Densit* NANOELECT_RTAit-1 −0.2457***

(0.0023)
PHOTO_RTAit-1 0.0085***

(0.0007)
Av_Densit *
PHOTO_RTAit-1

−0.2543***

(0.0021)
ADVMAT_RTAit-1 0.0292***

(0.0004)
Av_Densit * ADVMAT_RTAit-1 −0.2230***

(0.0028)
ADVTECH_RTAit-1 0.0086***

(0.0004)
Av_Densit * ADVTECH_RTAit-1 −0.1645***

(0.0020)
CountIPCit-1 0.0656*** 0.0101*** 0.0482*** 0.0695*** 0.0447*** 0.0466***

(0.0018) (0.0020) (0.0012) (0.0015) (0.0018) (0.0017)
Cons 0.3119*** 0.2347*** 0.3404*** 0.3018*** 0.3930*** 0.2616***

(0.0025) (0.0016) (0.0031) (0.0024) (0.0027) (0.0027)
N 5843 5843 5843 5843 5843 5843
Mean VIF 2.88 2.15 3.18 3.41 3.42 4.21
test for autocorrelation of

order 1
−10.7202 −10.7122 −10.7758 −10.6926 −10.7562 −10.7003

test for autocorrelation of
order 2

1.2189 1.3306 1.2048 1.2681 1.2635 1.2680

Sargan test statistic 254.3253 257.9597 257.2522 256.1407 258.9309 254.6381

Standard errors in parentheses.
*p < 0.10, ***p < 0.01.

12 The six strings into brackets refer for the six KETs identified by the EC, that is, respectively, industrial
biotechnology, nanotechnology, micro- and nanoelectronics, photonics, advanced materials, and ad-
vanced manufacturing technologies.

13 As we said, the mean VIF values reported at the bottom of Table 7 suggests that multicollinearity is not
an issue in this case either.
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branching argument, the technological relatedness to the existing technologies has on
the acquisition of new ones.

This is an interesting confirmation of our theoretical arguments. Furthermore, it can
also be seen as a reassuring result on the functional boundaries of the KETs club
identified by the EC. Whether these same features are not shown by other non-KETs
technologies, thus representing an actual boundary with respect to the former is instead
an open issue, which we postpone to our future research agenda.

To conclude, similar to what we have done for RTA_KETs, we can evaluate the net
contribution of each KET to the creation of new technological specializations. Rows
(2) to (7) of Table 6 provide the results of the calculations using the margins at means.
First of all, one observes that an enabling role (additive and moderating) in developing
new technological advantages, which we already singled out with our model in
aggregate terms, also applies to all of the six subclasses of KETs. However, the net
effect of the significant KETs is quite heterogeneous: ADVMAT shows the highest
effect (2.9 percent), followed by NANOELECT (2.1 percent). At a smaller order of
magnitude (around 1.8 percent) we find BIOTECH and NANOTECH, and further
behind (around 0.8 percent) PHOTO and ADVTECH. The possibility that these six
KETs exert different degrees of enabling power on regional branching and smart
specialization is by now a simple suggestion, which requires further scrutiny of their
knowledge bases and applications in future research.

Robustness Checks: A Closer Look at Spatial Aspects
The evidence discussed so far provides sound support for the role of KETs in

enabling the emergence of new technological specializations in regional contexts,
although some important differences are apparent among the specific subclasses of
these technologies. In this section we present a further battery of additional estimations
conducted to check whether our previous results were robust to a more explicit
consideration of spatial aspects. As we said, although nonspatially related, an addition-
al robustness check is involved by the implementation of our previous estimations at
the technology-region level, for the sake of comparison with the extant literature
(Boschma, Minondo, and Navarro 2013; Colombelli, Krafft, and Quatraro 2014). The
results are reported in Appendix A.3 (Table A3.1) and are consistent both with the
other estimates provided in this article and with the extant literature.

Returning to the spatial aspects of the analysis, a first robustness check concerned
the sensitivity of our estimates to the distinction between core and peripheral regions
(Foray, David, and Hall 2009). In fact, this is important in order better to appreciate the
apparent disadvantage that our main estimates seem to attribute to the latter in the
capacity of regional branching (see “Empirical Application”). Given the importance
that the literature has granted to entrepreneurship for the policy implications of regional
branching, as we said in regard to smart specialization (see Foray 2015), we tried to
distinguish core from peripheral regions by looking at data about their relative com-
petitiveness that also include aspects in the entrepreneurial realm. In particular, we
referred to the EC Regional Competitiveness Index (RCI) at the regional level and,
given its reference to entrepreneurial-related aspects (e.g., technological readiness,
business sophistication, and innovation), we focused on the 2013 innovation subindex
(released in 2014). On its basis, we split our regional sample into more (RCI = 1) and
less (RCI = 0) competitive regions, depending on the normalization of RCI to be larger
or smaller than zero, respectively (the RCI provides the deviation of each European
region from the EU28 average). The results of the estimates of our model for the two
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samples are reported in Table 8 (as in Table 5, columns from (2) to (4) include different
sets of size control variables).

The results are quite stable across the different models, with some apparently
counterintuitive ones that require clarification. In particular, peripheral regions show
a higher effect of CountIPC than core ones, possibly in the light of their higher share of
still unexplored technologies. Related to that is the higher effect that gross value added
(GVA) also shows in peripheral regions than in core ones, pointing to a possible
convergence advantage of the former in gaining new technologies. Finally, the larger
effect of R&D in peripheral than core regions could suggest that, in acquiring new
technologies, developing a regional absorptive capacity through R&D to acquire
external knowledge—as typically occurs in the former—could be more effective than
investing internally for that to happen—as in the case of the latter.

Focusing on our focal regressors, let us notice that Av_Densit and KETs_RTAit-1 still
yield positive and significant coefficients, although the interaction between the two
shows a negative and significant coefficient in both the cases.14 Overall, the mechan-
isms that we have identified in relation to the regional branching role of KETs appear
rather invariant with respect to the competitiveness degree of the regions, at least in
rough terms. To be sure, an important difference emerges with respect to the impact of
Av_Densit, which appears to be higher for less competitive (peripheral) (RCI = 0) than
more competitive (core) regions (RCI = 1), in most of the models. Conversely, the
magnitude of the coefficient of KETs_RTAit-1, is instead systematically higher for core
(competitive) regions. The evidence would therefore suggest that more competitive
regions are somehow less constrained by their past specializations in the search for new
technological advantages and at the same time that KETs play a stronger role in these
contexts than in less competitive regions. Very speculatively, one might conclude that
the learning dynamics that we investigate make innovating agents in highly competi-
tive regions better able to command recombinant capabilities to gain the control of new
and previously untried technological domains, drawing upon the enabling features of
KETs.

The last set of results refers to the spatial econometric analysis of the relationship
between KETs and regional branching (Table 9).

At the outset, let us notice that the results of the two postestimation tests (Test 1 and
Test 2; see Appendix A.2) that we have reported at the bottom of Table 9, suggest that
the SDM is actually the most appropriate choice. The upper part of table shows the
point estimates of the SDM, obtained by using a row-normalized inverse distance-
weighting matrix, with respect to the latitude and longitude coordinates of the relevant
regions. In particular, the odd columns report the estimations including only time-fixed
effects, although even ones include both time and region fixed effects.

Focusing on our focal regressors, we observe that Av_Densit appears still character-
ized by a persistent positive and significant coefficient, although the interaction term
Av_Densit*KETs_RTAit-1 still shows a negative and significant coefficient. So far,
therefore, the results are consistent with our benchmark estimations.

As for the spatially lagged regressors, they all show positive and significant coeffi-
cients in all of the models. This is also in line with expectations. Indeed, because we
used an inverse distance weighting matrix, a positive coefficient means that a region’s
capacity to enter new technological specializations is favored by the introduction of

14 To be sure, two exceptions can be found, that is, the results for less competitive regions in model (1),
where Av_Densit is not significant, and the very same result in models (3) and (4) for high competitive
regions.
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new technological specializations in neighboring regions. Second, the spatially lagged
KETs_RTAit-1 variable exhibits a positive and significant coefficient in most of the
models (the result is persistent across even columns), thereby suggesting that the
technological relationships, which KETs have the potential to engender, are actually
transmitted through interregional spillovers.

Because exclusive reference to coefficients may not be reliable in ascertaining the
existence of spatial spillovers (Le Sage and Pace 2009), following Elhorst (2014b), in
the lower part of Table 9, we look at the effects that a change in our explanatory
variables in a particular region have on the dependent variable in both that region

Table 9

Acquisition of New Revealed Technological Advantages (New_RTAit) and Regional Specialization in
KETs (KETs_RTAit-1)—Spatial Durbin Model

(1) (2) (3) (4)
SDM SDM SDM SDM

KETs_RTAit-1 0.0038*** 0.0037*** 0.0037*** 0.0034***
(0.0003) (0.0003) (0.0003) (0.0003)

Av_Densit 2.5728*** 2.5534*** 2.5228*** 2.5113***
(0.1559) (0.1556) (0.1563) (0.1570)

Av_Densit* −0.0102*** −0.0100*** −0.0101*** −0.0102***
KETs_RTAit-1 (0.0008) (0.0008) (0.0008) (0.0008)
GVAit-1 0.2719***

(0.0736)
Employmentit-1 0.3046***

(0.0897)
CountIPCit-1 0.0001***

(0.0000)
Time dummies YES YES YES YES
Regional dummies YES YES YES YES
W× KETs_RTAit-1 0.0069*** 0.0073*** 0.0075*** 0.0068***

(0.0015) (0.0015) (0.0015) (0.0015)
W × New_RTAit 0.6524*** 0.6529*** 0.6327*** 0.6422***

(0.0751) (0.0750) (0.0779) (0.0765)
0.0371*** 0.0370*** 0.0370*** 0.0370***
(0.0010) (0.0010) (0.0010) (0.0010)

Direct effects
KETs_RTAit-1 0.0040*** 0.0038*** 0.0038*** 0.0036***

(0.0003) (0.0003) (0.0003) (0.0003)
Av_Densit 2.5950*** 2.5751*** 2.5417*** 2.5312***

(0.1521) (0.1518) (0.1523) (0.1530)
Av_Densit* −0.0103*** −0.0100*** −0.0101*** −0.0103***
KETs_RTAit-1 (0.0008) (0.0008) (0.0008) (0.0008)
Indirect Effects
KETs_RTAit-1 0.0285*** 0.0293*** 0.0281*** 0.0263***

(0.0082) (0.0086) (0.0078) (0.0075)
Av_Densit 5.2624*** 5.1399** 4.6446** 4.8228**

(1.9292) (2.1401) (1.8818) (2.0120)
Av_Densit* −0.0208*** −0.0201** −0.0185** −0.0197**
KETs_RTAit-1 (0.0077) (0.0089) (0.0079) (0.0086)
Total Effects
KETs_RTAit-1 0.0325*** 0.0332*** 0.0319*** 0.0299***

(0.0082) (0.0087) (0.0078) (0.0075)
Av_Densit 7.8574*** 7.7149*** 7.1864*** 7.3539***

(1.9509) (2.1613) (1.9033) (2.0340)
Av_Densit* −0.0311*** −0.0301*** −0.0287*** −0.0300***
KETs_RTAit-1 (0.0078) (0.0091) (0.0081) (0.0088)
N 2814 2814 2814 2814
Test 1 20.73*** 23.15*** 24.20*** 20.04***
Test 2 44.56*** 47.64*** 48.69*** 40.32***
Akaike Information Criterion −1238.1673 −1243.8243 −1241.7245 −1239.7917
Bayesian Information Criterion −1149.0318 −1130.9194 −1128.8196 −1126.8868

Standard errors in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01.
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(direct effect) and on closer regions (indirect effect) as well as on their sum (total
effect).

Although the direct effects resemble the results of the point estimates, the indirect
effects, which can be more properly understood as cross-regional spillovers, are
consistent with expectations and persist across all of the models for all of our variables
of interest. In particular, Av_Densit and KETs_RTAit-1 show a positive and significant
effect, although the interaction term is characterized by a negative and significant one.
The same applies to total effects reported at the end of Table 9.
In synthesis, we can conclude that significant geographic spillovers can be

detected in the analysis of the emergence of new technological specializations
when the role of KETs is considered. In other words, spatial proximity to KETs-
specialized regions adds to the role of cognitive proximity to previously acquired
technologies in the region as a driver of regional branching: an extremely important
result that should be considered among the implications of the article to which we
turn in the last section.

Conclusions
The recent identification by the European policy makers of KETs, and their

recommendations to plug them into the regional policy toolbox, furnish an interest-
ing opportunity to reconcile, after some time of divergence, the two original driving
mechanisms of the smart specialization concept, that is, related diversification, and
GPTs. Furthermore, this can be done in a theoretically consistent way by looking at
the role of KETs in the growing body of economic geography analysis of regional
branching. Last but not least, with the help of spatial econometrics, this analysis
can be enriched with inspection of possible cross-regional spillovers in the impact
of KETs.

By combining patent and economic data for European regions in a longitudinal
setting, in this article we have taken a first step in exploitation of this research
opportunity. In particular, we have theoretically identified and empirically tested a
number of arguments concerning the characteristics of KETs, which make them crucial
in the processes of recombinant innovations at the basis of regional branching
phenomena.

The results that we have obtained are quite interesting. Irrespective of their
specificities, the six KETs enable European regions to increase their portfolios of
new technologies over time, confirming their theoretical role in providing regions
with an extra buffer of branching capacity at the extensive margin. All of the six
KETs also attenuate the impact that relatedness to preexisting technologies has on
the acquisition of new ones, confirming the theoretical arguments about their role in
a more exploratory extension of the regional knowledge base. In all the cases, this
latter effect, which is a negative one of KETs on new technological specializations,
is more than compensated by their positive impact on the region’s recombinant
innovation processes. In brief, KETs guarantee regions a higher capacity to master
new technological advantages by combining with the role of regional experience
and technological relatedness in the same respect. However, their net impact on
regional technological specialization is different, pointing to KETs specificities that
will have to be addressed in future research. Finally, our spatial econometric
analysis suggests that interregional spillovers are in place with respect to KETs
and that the branching process of a certain region can be helped by the KETs’
knowledge developed by closer ones.
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These results are quite helpful in reinforcing and refining the not yet evident
reasons for plugging KETs into the regional policy toolbox for S3. First, our article
show that KETs seem to have an extra enabling role with respect to that foreseen
by the EC, and precisely in the S3 realm: that of increasing the capacity of regions
to branch into a wider set of new technologies by retaining the relatedness to their
preexisting ones. Second, KETs also seem to make regional branching less depen-
dent on the role of technological relatedness, providing regions with the opportunity
to make it more exploratory and to span the boundaries of the regions’ related
variety still consistent with the S3 rationale. Third, cross-regional spillovers in the
diffusion of the KETs enable regions to exploit a strategy alternative or possibly
complementary to the regional development of KETs for the sake of their techno-
logical diversification: that of absorbing their knowledge from the outside through
mechanisms like interregional technology transfer and cooperation agreements.
Indeed, this could be a way for KETs’ follower regions (typically peripheral) to
benefit from closer KETs’ leader (core) ones in pursuing their S3. On the other
hand, some preliminary evidence from our study seems to suggest that the mechan-
isms that we have identified in relation to the regional branching role of KETs
appear invariant with respect to the level of entrepreneurial/competitive capacity of
regions. This is an insight to whose analysis we will devote our future research,
which will have to consider regional heterogeneity more directly than we have done
so far. In particular, access to new and alternative data will need to be explored in
order to extend the insights that this article has obtained by implicitly focusing on
an STI mode at the regional level, to an alternative DUI mode of innovating quite
pervasive among European regions (Cooke 2013).
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Appendix A.1: Variables Construction

—Dependent variable: New_RTAit

In analytical terms, our dependent variable can be synthetically defined as

New RTAit ¼
X

s
New RTAsit (A1)

Where New_RTAist = 1 if RTAist > 1 and 0 < RTAist-k < 1; 0, otherwise, and where RTAist

denotes the Revealed Technological Advantage (RTA) of region i (out of n) in
technology s (out of m) at time t. This is in turn captured with a standard Balassa
indicator for trade specialization, redefined in terms of number of patents filed in the
corresponding IPC class (PATist) (Soete 1987):
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RTAist ¼
PATist

�Pn
i¼1 PATistPm

s¼1 PATist
�Pn

i¼1

Pm
s¼1 PATist

(A2)

In our sample, m = 632 and n = 235. According to the standard interpretation of the
Balassa index, a region has a technological specialization in s when RTAist is greater than
1, although it does not have such a specialization if the indicator is in-between 0 and 1.

In building New_RTAit, the absence of conclusive recommendations about its
specification induced us to use a lag of 1 year (k = 1) for the emergence of a new
RTA.1 This choice may suffer from the inherent volatility of patent statistics, because
the emergence of a new RTA in one year may be artificially due to a small number of
applications in that specific field the year before. In order to attenuate this source of
distortions, a five-year moving average was used in the construction of the dependent
variable. Although arbitrary to a certain extent, a five-year period of time can be
reasonably thought long enough to smooth the erratic trend of the flow of patents.

—Technological relatedness: Av_Densit
We first calculate a proximity measure (φ) between two technologies, s and z, which is
defined as the minimum of the pairwise conditional probability of a region having RTA
in a technology s, given that it has a RTA in another technology z, that is

φs;z;t ¼ min P RTAs;tjRTAz;t

� �
;P RTAz;tjRTAs;t

� �� �
(A3)

Where

P RTAs;tjRTAz;t

� � ¼ P RTAs;t\RTAz;t

� �

P RTAz;t

� �

The idea is that the higher is the number of places in which two different technological
fields jointly appear as technological specializations, the higher the technological
relatedness between the two. The rationale for this measure lies in the cognitive
mechanisms behind the generation of technological knowledge in regional contexts
(Quatraro 2009, 2010). The fact that two technological fields are frequently observed
as distinctive advantages across regions may imply that they rely on similar or
complementary capabilities and competences.

For each focal technology z, we then calculate the (weighted) average proximity
with respect to it of the different s technologies in which region i has gained a new
revealed technological advantage at time t, as follows

wadizt�1¼
P

s�z φszt�1New RTAistP
s�z φszt�1

(A4)

Finally, for each and every region i, we calculate the regional average (or average
density) of these z-specific distances at time t-1, by weighting them with the (relative)
revealed technological advantages that the region has gained in z at time t, that is

1 Different and longer lag specifications were tried, and the results were fairly consistent.
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Av densit ¼
X

s�z

wadizt�1 � New RTAiztP
z�s

New RTAizt
(A5)

Av_Densit is thus a proxy for the extent to which the new technological advantages
that a region gains at time t are, all together (that is, on average), close (in the
sense specified above) to those in which it had gained an advantage in the previous
period t-1. In brief, it is a proxy for the idea of related variety. Also in this case, it
should be noted that working with the one-year lag of a technological specialization
index in the construction of this variable may make it suffer from the erratic trend of
the flow of patents over time. Once again, we tried to accommodate this problem by
making use of five-year moving averages of the transformed Balassa index (i.e.,
New_RTA) that enters the construction of Av_Dens.

Specialization in KETs: RTA_KETsit-1 and RTA_KETsjit-1
Again referring to the idea of revealed technological advantage, its formula (Eq. A2) is
calculated by considering regional patents in any of the KETs-mapped IPC classes
(RTA_KETsit-1) and in those that pertain to each KETs j of the six (RTA_KETsjit-1). In
both cases, for the same reasons as discussed with respect to the dependent variable, a
five-year moving average was considered.

Appendix A.2: Econometric Strategy

The GMM model that we implemented is the GMM estimator originally proposed by
Arellano and Bond (1991), which obtains asymptotically efficient estimators in the
presence of arbitrary heteroscedasticity, taking into account the structure of residuals to
generate consistent estimates. More precisely, we used the GMM System (GMM-SYS)
estimator in order to increase the efficiency of the estimates (Arellano and Bover 1995;
Blundell and Bond 1998). Indeed, this estimator instruments the variables in levels
with lagged first-differenced terms to obtain a dramatic improvement in the relative
performance of the system estimator as compared to the usual first-difference GMM
estimator.

Because the direct application of this estimator to our original dependent variable,
which was a count (i.e., discrete and nonnegative) one, raised some problematic
issues,2 we followed Bonaccorsi et al. (2013) and used as a dependent variable for
the GMM estimations the inverse hyperbolic sine transformation of the number of new
revealed technological specializations. Put briefly, this transformation can be

2 GMM estimators for dynamic count data models are still in their inception phase, and as yet there is no
convergence on a standard approach. Cameron and Trivedi (2005, 2010), for example, propose a set of
possible alternatives to estimate Poisson-like just identified and overidentified models by using the Stata
software. However, the relative routine does not allow implementing the test on the moment conditions
that are necessary to validate the model. Windmeijer (2002) has developed a routine working with the
Gauss software, to run estimates drawing upon Chamberlain and Wooldridge moment conditions, which
instead reports the full set of validation tests. However, one main issue is that these estimators are
appropriate for dependent variables that are Poisson distributed, which is not our case. For this reason,
although we ran also these alternative estimations by using both Stata and Gauss routines, obtaining
consistent results for our focal regressor and satisfactory validation tests (available on request), we opted
to implement a different modeling strategy, as explained in the main text.
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interpreted as a logarithmic transformation, but it is more appropriate when the
dependent variable assumes value zero for some observations (Burbidge, Magee, and
Robb 1988).

As regards the choice of the spatial Durbin model (SDM), its selection was
consistent with the recent appreciation in the literature of its superior performance
with respect to other spatial models. This is well summarized in Elhorst’s (2014)
classic book, which concludes the survey as follows: “Originally, the central focus of
spatial econometrics has been on the spatial lag model (SAR) and on the spatial error
model (SEM) with one type of interaction effect. The results shown in this chapter
make clear that this approach is too limited and that the focus should shift to the spatial
durbin model (SDM)” (ibid., 33).

In order to get further support for our choice, we follow Belotti, Hughes, Piano
Mortari (2016, 15) and run two postestimation estimation tests, which allow us to
check whether the SDM is an appropriate choice, as compared to SAR and SEM, and
whether the spatial structure of the error is relevant. Test 1 is a linear hypothesis test, in
which the null hypothesis is that the coefficient of the spatially lagged regressor is
equal to zero. Test 2 is a nonlinear hypothesis, in which the null is that the coefficient
of the spatially lagged regressor is equal to the product between the coefficient of the
not spatially lagged same regressor and the coefficient of the spatially lagged depen-
dent variable. The results are reported at the bottom of Table 9, and confirm that our
econometric strategy is actually the most appropriate.

As for the problems due to the application of SDM to panel data,3 we used the same
transformation that was implemented to run the GMM estimations.

3 The standard estimator that Lambert, Brown, and Florax (2010) propose to deal with this issue is not
appropriate in this context for two main reasons. First, it has proved to work well with cross-sectional
data only. Second, it is conditional on spatial count models based on a Poisson distribution, although our
dependent variable is clearly overdispersed.
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