

UNIVERSITÀ DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Biextensions of 1-motives in Voevodsky's category of motives

This is a pre print version of the following article:	
Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/41996 since 2018-03-23T13:35:00Z	
Published version:	
DOI:10.1093/imrn/rnp071	
Terms of use:	
Open Access	
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.	

(Article begins on next page)

BIEXTENSIONS OF 1-MOTIVES IN VOEVODSKY'S CATEGORY OF MOTIVES

CRISTIANA BERTOLIN AND CARLO MAZZA

ABSTRACT. Let k be a perfect field. In this paper we prove that biextensions of 1-motives define multilinear morphisms between 1-motives in Voevodsky's triangulated category $\mathrm{DM}^{\mathrm{eff}}_{\mathrm{gm}}(k,\mathbb{Q})$ of effective geometrical motives over k with rational coefficients.

CONTENTS

Introduction	1
Acknowledgment	2
Notation	2
1. 1-motives in Voevodsky's category	4
2. Bilinear morphisms between 1-motives	6
3. Multilinear morphisms between 1-motives	7
References	8

INTRODUCTION

Let k be a perfect field. In [O] Orgogozo constructs a fully faithful functor

(0.1)
$$\mathcal{O}: \mathcal{D}^{b}(1-\operatorname{Isomot}(k)) \longrightarrow \mathrm{DM}^{\mathrm{eff}}_{\mathrm{sm}}(k, \mathbb{Q})$$

from the bounded derived category of the category 1 - Isomot(k) of 1-motives over k defined modulo isogenies to Voevodsky's triangulated category $\text{DM}_{\text{gm}}^{\text{eff}}(k, \mathbb{Q})$ of effective geometrical motives over k with rational coefficients. If M_i (for i = 1, 2, 3) is a 1-motive defined over k modulo isogenies, in this paper we prove that the group of isomorphism classes of biextensions of (M_1, M_2) by M_3 is isomorphic to the group of morphisms of the category $\text{DM}_{\text{gm}}^{\text{eff}}(k, \mathbb{Q})$ from the tensor product $\mathcal{O}(M_1) \otimes_{tr} \mathcal{O}(M_2)$ to $\mathcal{O}(M_3)$:

Theorem 0.1. Let M_i (for i = 1, 2, 3) be a 1-motive defined over a perfect field k. Then

 $\operatorname{Biext}^{1}(M_{1}, M_{2}; M_{3}) \otimes \mathbb{Q} \cong \operatorname{Hom}_{\operatorname{DM}_{\operatorname{eff}}^{\operatorname{eff}}(k, \mathbb{Q})}(\mathcal{O}(M_{1}) \otimes_{tr} \mathcal{O}(M_{2}), \mathcal{O}(M_{3})).$

This isomorphism answers a question raised by Barbieri-Viale and Kahn in [BK1] Remark 7.1.3 2). In loc. cit. Proposition 7.1.2 e) they prove the above theorem in the case where M_3 is a semi-abelian variety. Our proof is a generalization of theirs.

¹⁹⁹¹ Mathematics Subject Classification. 14F, 14K.

Key words and phrases. multilinear morphisms, biextensions, 1-motives.

If k is a field of characteristic 0 embeddable in \mathbb{C} , by [D] (10.1.3) we have a fully faithful functor

(0.2)
$$T: 1 - Mot(k) \longrightarrow \mathcal{MR}(k)$$

from the category 1 - Mot(k) of 1-motives over k to the Tannakian category $\mathcal{MR}(k)$ of mixed realizations over k (see [J] I 2.1), which attaches to each 1-motive its Hodge realization for any embedding $k \hookrightarrow \mathbb{C}$, its de Rham realization, its ℓ -adic realizations for any prime number ℓ , and its comparison isomorphisms. According to [B1] Theorem 4.5.1, if M_i (for i = 1, 2, 3) is a 1-motive defined over k modulo isogenies, the group of isomorphism classes of biextensions of (M_1, M_2) by M_3 is isomorphic to the group of morphisms of the category $\mathcal{MR}(k)$ from the tensor product $T(M_1) \otimes$ $T(M_2)$ of the realizations of M_1 and M_2 to the realization $T(M_3)$ of M_3 . Putting together this result with Theorem 0.1, we get the following isomorphisms

$$\operatorname{Biext}^{1}(M_{1}, M_{2}; M_{3}) \otimes \mathbb{Q} \cong \operatorname{Hom}_{\operatorname{DM}_{gm}^{\operatorname{eff}}(k; \mathbb{Q})}(\mathcal{O}(M_{1}) \otimes_{tr} \mathcal{O}(M_{2}), \mathcal{O}(M_{3}))$$

(0.3)
$$\cong \operatorname{Hom}_{\mathcal{MR}(k)}(\operatorname{T}(M_{1}) \otimes \operatorname{T}(M_{2}), \operatorname{T}(M_{3})).$$

These isomorphisms fit into the following context: in [H] Huber constructs a functor

$$\mathcal{H}: \mathrm{DM}^{\mathrm{eff}}_{\mathrm{gm}}(k, \mathbb{Q}) \longrightarrow \mathcal{D}(\mathcal{MR}(k))$$

from Voevodsky's category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(k,\mathbb{Q})$ to the triangulated category $\mathcal{D}(\mathcal{MR}(k))$ of mixed realizations over k, which respects the tensor structures. Extending the functor T (0.2) to the derived category $\mathcal{D}^b(1-\mathrm{Isomot}(k))$, we obtain the following diagram

(0.4)
$$\mathcal{D}^{b}(1 - \operatorname{Isomot}(k)) \xrightarrow{\mathrm{T}} \mathcal{D}(\mathcal{MR}(k))$$

$$\mathcal{D}_{\mathrm{gm}}^{\mathrm{eff}}(k, \mathbb{Q})$$

The isomorphisms (0.3) mean that biextensions of 1-motives define in a compatible way bilinear morphisms between 1-motives in each category involved in the above diagram. Barbieri-Viale and Kahn informed the authors that in [BK2] they have proved the commutativity of the diagram (0.4) in an axiomatic setting. If $k = \mathbb{C}$, they can prove its commutativity without assuming axioms.

We finish generalizing Theorem 0.1 to multilinear morphisms between 1-motives.

Acknowledgment

The authors are very grateful to Barbieri-Viale and Kahn for several useful remarks improving the first draft of this paper.

NOTATION

If C is an additive category, we denote by $C \otimes \mathbb{Q}$ the associated \mathbb{Q} -linear category which is universal for functors from C to a \mathbb{Q} -linear category. Explicitly, the category $C \otimes \mathbb{Q}$ has the same objects as the category C, but the sets of arrows of $C \otimes \mathbb{Q}$ are the sets of arrows of C tensored with \mathbb{Q} , i.e. $\operatorname{Hom}_{C \otimes \mathbb{Q}}(-, -) = \operatorname{Hom}_{C}(-, -) \otimes_{\mathbb{Z}} \mathbb{Q}$.

We give a quick review of Voevodsky's category of motives (see [V]). Denote by $\operatorname{Sm}(k)$ the category of smooth varieties over a field k. Let $A = \mathbb{Z}$ or \mathbb{Q} be the coefficient ring. Let $\operatorname{SmCor}(k, A)$ be the category whose objects are smooth varieties over k and whose morphisms are finite correspondences with coefficients in A. It is an additive category.

The triangulated category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(k, A)$ of effective geometrical motives over k is the pseudo-abelian envelope of the localization of the homotopy category $\mathcal{H}^{b}(\mathrm{SmCor}(k, A))$ of bounded complexes over $\mathrm{SmCor}(k, A)$ with respect to the thick subcategory generated by the complexes $X \times_k \mathbb{A}^1_k \to X$ and $U \cap V \to U \oplus V \to X$ for any smooth variety X and any Zariski-covering $X = U \cup V$.

The **category of Nisnevich sheaves on** Sm(k), $Sh_{Nis}(Sm(k))$, is the category of abelian sheaves on Sm(k) for the Nisnevich topology.

A presheaf with transfers on Sm(k) is an additive contravariant functor from SmCor(k, A) to the category of abelian groups. It is called a Nisnevich sheaf with transfers if the corresponding presheaf of abelian groups on Sm(k) is a sheaf for the Nisnevich topology. Denote by $\text{Sh}_{\text{Nis}}(\text{SmCor}(k, A))$ the **category of Nisnevich sheaves with transfers**. By [V] Theorem 3.1.4 it is an abelian category.

A presheaf with transfers F is called homotopy invariant if for any smooth variety X the natural map $F(X) \to F(X \times_k \mathbb{A}^1_k)$ induced by the projection $X \times_k \mathbb{A}^1_k \to X$ is an isomorphism. A Nisnevich sheaf with transfers is called homotopy invariant if it is homotopy invariant as a presheaf with transferts.

The **category** $\text{DM}^{\text{eff}}_{-}(k, A)$ of effective motivic complexes is the full subcategory of the derived category $\mathcal{D}^{-}(\text{Sh}_{\text{Nis}}(\text{SmCor}(k, A)))$ of complexes of Nisnevich sheaves with transfers bounded from the above, which consists of complexes with homotopy invariant cohomology sheaves.

There exists a functor $L : \operatorname{SmCor}(k, A) \to \operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k, A))$ which associates to each smooth variety X a Nisnevich sheaf with transfers given by $L(X)(U) = c(U, X)_A$, where $c(U, X)_A$ is the free A-module generated by prime correspondences from U to X. This functor extends to complexes furnishing a functor

$$L: \mathcal{H}^{b}(\mathrm{SmCor}(k, A)) \longrightarrow \mathcal{D}^{-}(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{SmCor}(k, A))).$$

There exists also a functor C_* : $\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k, A)) \to \operatorname{DM}_-^{\operatorname{eff}}(k, A)$ which associates to each Nisnevich sheaf with transfers F the effective motivic complex $C_*(F)$ given by $C_n(F)(U) = F(U \times \Delta^n)$ where Δ^* is the standard cosimplicial object. This functor extends to a functor

(0.5)
$$\mathbf{R}C_*: \mathcal{D}^-(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{SmCor}(k, A))) \longrightarrow \mathrm{DM}^{\mathrm{eff}}(k, A)$$

which is left adjoint to the natural embedding. Moreover, this functor identifies the category $\mathrm{DM}^{\mathrm{eff}}_{-}(k, A)$ with the localization of $\mathcal{D}^{-}(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{SmCor}(k, A)))$ with respect to the localizing subcategory generated by complexes of the form $L(X \times_k \mathbb{A}^1_k) \to L(X)$ for any smooth variety X (see [V] Proposition 3.2.3).

If X and Y are two smooth varieties over k, the equality

$$(0.6) L(X) \otimes L(Y) = L(X \times_k Y)$$

defines a tensor structure on the category $\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k, A))$, which extends to the derived category $\mathcal{D}^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k, A)))$. The tensor structure on $\operatorname{DM}_{-}^{\operatorname{eff}}(k, A)$, that we denote by \otimes_{tr} , is the descent with respect to the projection $\operatorname{\mathbf{R}}_{-}(0.5)$ of the tensor structure on $\mathcal{D}^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k, A)))$.

If we assume k to be a perfect field, by [V] Proposition 3.2.6 there exists a functor

(0.7)
$$i: \mathrm{DM}^{\mathrm{eff}}_{\mathrm{gm}}(k, A) \to \mathrm{DM}^{\mathrm{eff}}_{-}(k, A)$$

which is a full embedding with dense image and which makes the following diagram commutative

$$\begin{array}{ccc} \mathcal{H}^{b}(\mathrm{SmCor}(k,A)) & \stackrel{L}{\to} & \mathcal{D}^{-}(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{SmCor}(k,A))) \\ & & & \downarrow \mathbf{R}C_{*} \\ \mathrm{DM}^{\mathrm{eff}}_{\mathrm{gm}}(k,A) & \stackrel{i}{\dashrightarrow} & \mathrm{DM}^{\mathrm{eff}}_{-}(k,A). \end{array}$$

Remark 0.2. For Voevodsky's theory of motives with rational coefficients, the étale topology gives the same motivic answer as the Nisnevich topology: if we construct the category of effective motivic complexes using the étale topology instead of the Nisnevich topology, we get a triangulated category $\text{DM}_{-,\text{\acute{e}t}}^{\text{eff}}(k, A)$ which is equivalent as triangulated category to the category $\text{DM}_{-,\text{\acute{e}t}}^{\text{eff}}(k, A)$ if we assume $A = \mathbb{Q}$ (see [V] Proposition 3.3.2).

1. 1-MOTIVES IN VOEVODSKY'S CATEGORY

- A 1-motive M = (X, A, T, G, u) over a field k (see [D] §10) consists of
 - a group scheme X over k, which is locally for the étale topology, a constant group scheme defined by a finitely generated free \mathbb{Z} -module,
 - an extention G of an abelian k-variety A by a k-torus T,
 - a morphism $u: X \longrightarrow G$ of commutative k-group schemes.

A 1-motive M = (X, A, T, G, u) can be viewed also as a length 1 complex $[X \xrightarrow{u} G]$ of commutative k-group schemes. In this paper, as a complex we shall put X in degree 0 and G in degree 1. A morphism of 1-motives is a morphism of complexes of commutative k-group schemes. Denote by 1 - Mot(k) the category of 1-motives over k. It is an additive category but it isn't an abelian category.

Denote by 1 - Isomot(k) the \mathbb{Q} -linear category $1 - \text{Mot}(k) \otimes \mathbb{Q}$ associated to the category of 1-motives over k. The objects of 1 - Isomot(k) are called 1-isomotifs and the morphisms of 1 - Mot(k) which become isomorphisms in 1 - Isomot(k) are the isogenies between 1-motives, i.e. the morphisms of complexes $[X \to G] \to [X' \to G']$ such that $X \to X'$ is injective with finite cokernel, and $G \to G'$ is surjective with finite kernel. The category 1 - Isomot(k) is an abelian category (see [O] Lemma 3.2.2).

Assume now k to be a perfect field. The two main ingredients which furnish the link between 1-motives and Voevodsky's motives are:

- (1) any commutative k-group scheme represents a Nisnevich sheaf with transfers, i.e. an object of $Sh_{Nis}(SmCor(k, A))$ ([O] Lemma 3.1.2),
- (2) if A (resp. T, resp. X) is an abelian k-variety (resp. a k-torus, resp. a group scheme over k, which is locally for the étale topology, a constant group scheme defined by a finitely generated free \mathbb{Z} -module), then the Nisnevich sheaf with transfers that it represents is homotopy invariant ([O] Lemma 3.3.1).

Since we can view 1-motives as complexes of smooth varieties over k, we have a functor from the category of 1-motives to the category C(Sm(k)) of complexes over Sm(k). According to (1), this functor factorizes through the category of complexes over $\text{Sh}_{\text{Nis}}(\text{SmCor}(k, A))$:

$$1 - \operatorname{Mot}(k) \longrightarrow \mathcal{C}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k, A)))$$

If we tensor with \mathbb{Q} , we get an additive exact functor between abelian categories

 $1 - \text{Isomot}(k) \longrightarrow \mathcal{C}(\text{Sh}_{\text{Nis}}(\text{SmCor}(k, A)) \otimes \mathbb{Q}).$

Taking the associated bounded derived categories, we obtain a triangulated functor

 $\mathcal{D}^b(1-\operatorname{Isomot}(k)) \longrightarrow \mathcal{D}^b(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k,A)) \otimes \mathbb{Q}).$

Finally, according to (2) this last functor factorizes through the triangulated functor

$$\mathcal{O}: \mathcal{D}^b(1-\operatorname{Isomot}(k)) \longrightarrow \operatorname{DM}^{\operatorname{eff}}_{-}(k,A) \otimes \mathbb{Q}.$$

By [O] Proposition 3.3.3 this triangulated functor is fully faithful, and by loc. cit. Theorem 3.4.1 it factorizes through the thick subcategory $d_1 \text{DM}_{\text{gm}}^{\text{eff}}(k, \mathbb{Q})$ of $\text{DM}_{\text{gm}}^{\text{eff}}(k, \mathbb{Q})$ generated by smooth varieties of dimension ≤ 1 over k and it induces an equivalence of triangulated categories, that we denote again by \mathcal{O} ,

$$\mathcal{O}: \mathcal{D}^b(1-\operatorname{Isomot}(k)) \longrightarrow d_1 \operatorname{DM}_{\operatorname{gm}}^{\operatorname{eff}}(k, \mathbb{Q}).$$

In order to simplify notation, if M is a 1-motive, we denote again by M its image in $d_1 \text{DM}_{\text{gm}}^{\text{eff}}(k, \mathbb{Q})$ through the above equivalence of categories and also its image in $\text{DM}_{-}^{\text{eff}}(k, A)$ through the full embedding (0.7).

For the proof of Theorem 0.1, we will need the following

Proposition 1.1. Let M_i (for i = 1, 2, 3) be a 1-motive defined over k. The forgetful triangulated functors

$$\mathrm{DM}^{\mathrm{eff}}_{-}(k,A) \xrightarrow{a} \mathcal{D}^{-}(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{SmCor}(k,A))) \xrightarrow{b} \mathcal{D}^{-}(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{Sm}(k)))$$

induce an isomorphism

$$\operatorname{Hom}_{\operatorname{DM}^{\operatorname{eff}}(k,A)}(M_1 \otimes_{tr} M_2, M_3) \cong \operatorname{Hom}_{\mathcal{D}^-(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Sm}(k)))}(M_1 \overset{\circ}{\otimes} M_2, M_3).$$

Proof. The forgetful functor a admits as left adjoint the functor $\mathbf{R}C_*$ (0.5). The forgetful functor b from the category of Nisnevich sheaves with transfers to the category of Nisnevich sheaves admits as left adjoint the free sheaf with transfers functor

(1.1)
$$\Phi: \mathcal{D}^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Sm}(k))) \longrightarrow \mathcal{D}^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{SmCor}(k, A)))$$

([V] Remark 1 page 202). If X is a smooth variety over k, let $\mathbb{Z}(X)$ be the sheafification with respect to the Nisnevisch topology of the presheaf $U \mapsto \mathbb{Z}[\operatorname{Hom}_{\operatorname{Sm}(k)}(U, X)]$. Clearly $\Phi(\mathbb{Z}(X))$ is the Nisnevich sheaf with transfers L(X). If Y is another smooth variety over k, we have that $\mathbb{Z}(X) \otimes \mathbb{Z}(Y) = \mathbb{Z}(X \times_k Y)$ (see [MVW] Lemma 12.14) and so by formula (0.6) we get

$$\Phi(\mathbb{Z}(X) \otimes \mathbb{Z}(Y)) = \Phi(\mathbb{Z}(X)) \otimes_{tr} \Phi(\mathbb{Z}(Y)).$$

The tensor structure on $\text{DM}^{\text{eff}}_{-}(k, A)$ is the descent of the tensor structure on $\mathcal{D}^{-}(\text{Sh}_{\text{Nis}}(\text{SmCor}(k, A)))$ with respect to $\mathbf{R}C_{*}$ and therefore

$$\mathbf{R}C_* \circ \Phi(\mathbb{Z}(X) \otimes \mathbb{Z}(Y)) = \mathbf{R}C_* \circ \Phi(\mathbb{Z}(X)) \otimes_{tr} \mathbf{R}C_* \circ \Phi(\mathbb{Z}(Y)).$$

Using this equality and the fact that the composite $\mathbf{R}C_* \circ \Phi$ is the left adjoint of $b \circ a$, we have

$$\operatorname{Hom}_{\mathcal{D}^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Sm}(k)))}(M_{1} \overset{\circ}{\otimes} M_{2}, M_{3}) \cong \operatorname{Hom}_{\operatorname{DM}_{-}^{\operatorname{eff}}(k, A)}(\mathbf{R}C_{*} \circ \Phi(M_{1} \overset{\circ}{\otimes} M_{2}), M_{3})$$
$$\cong \operatorname{Hom}_{\operatorname{DM}_{-}^{\operatorname{eff}}(k, A)}(\mathbf{R}C_{*} \circ \Phi(M_{1}) \otimes_{tr} \mathbf{R}C_{*} \circ \Phi(M_{2}), M_{3})$$

Since 1-motives are complexes of homotopy invariant Nisnevich sheaves with transferts, the counit arrows $\mathbf{R}C_* \circ \Phi(M_i) \to M_i$ (for i = 1, 2) are isomorphisms and so we can conclude.

2. BILINEAR MORPHISMS BETWEEN 1-MOTIVES

Let $K_i = [A_i \xrightarrow{u_i} B_i]$ (for i = 1, 2, 3) be a length 1 complex of abelian sheaves (over any topos **T**) with A_i in degree 1 and B_i in degree 0. A **biextension** ($\mathcal{B}, \Psi_1, \Psi_2, \lambda$) **of** (K_1, K_2) **by** K_3 consists of

- (1) a biextension of \mathcal{B} of (B_1, B_2) by B_3 ;
- (2) a trivialization Ψ_1 (resp. Ψ_2) of the biextension $(u_1, id_{B_2})^*\mathcal{B}$ of (A_1, B_2) by B_3 (resp. of the biextension $(id_{B_1}, u_2)^*\mathcal{B}$ of (B_1, A_2) by B_3) obtained as pull-back of \mathcal{B} via $(u_1, id_{B_2}) : A_1 \times B_2 \to B_1 \times B_2$ (resp. via $(id_{B_1}, u_2) :$ $B_1 \times A_2 \to B_1 \times B_2$). These two trivializations have to coincide over $A_1 \times A_2$;
- (3) a morphism $\lambda : A_1 \otimes A_2 \to A_3$ such that the composite $A_1 \otimes A_2 \xrightarrow{\lambda} A_3 \xrightarrow{u_3} B_3$ is compatible with the restriction over $A_1 \times A_2$ of the trivializations Ψ_1 and Ψ_2 .

We denote by **Biext** $(K_1, K_2; K_3)$ the category of biextensions of (K_1, K_2) by K_3 . The Baer sum of extensions defines a group law for the objects of the category **Biext** $(K_1, K_2; K_3)$, which is therefore a Picard category (see [SGA7] Exposé VII 2.4, 2.5 and 2.6). Let Biext⁰ $(K_1, K_2; K_3)$ be the group of automorphisms of any biextension of (K_1, K_2) by K_3 , and let Biext¹ $(K_1, K_2; K_3)$ be the group of isomorphism classes of biextensions of (K_1, K_2) by K_3 .

According to the main result of [B2], we have the following homological interpretation of the groups $\operatorname{Biext}^{i}(K_{1}, K_{2}; K_{3})$:

(2.1)
$$\operatorname{Biext}^{i}(K_{1}, K_{2}; K_{3}) \cong \operatorname{Ext}^{i}(K_{1} \overset{\flat}{\otimes} K_{2}, K_{3}) \qquad (i = 0, 1)$$

Since we can view 1-motives as complexes of commutative S-group schemes of length 1, all the above definitions apply to 1-motives.

Remark 2.1. The homological interpretation (2.1) of biextensions computed in [B2] is done for chain complexes $K_i = [A_i \xrightarrow{u_i} B_i]$ with A_i in degree 1 and B_i in degree 0. In this paper 1-motives are considered as cochain complexes $M_i = [X_i \xrightarrow{u_i} G_i]$ with X in degree 0 and G in degree 1. Therefore after switching from homological notation to cohomological notation, the homological interpretation of the group $\text{Biext}^1(M_1, M_2; M_3)$ can be stated as follow:

$$\text{Biext}^1(M_1, M_2; M_3) \cong \text{Ext}^1(M_1[1] \overset{\circ}{\otimes} M_2[1], M_3[1])$$

where the shift functor [i] on a cochain complex C^* acts as $(C^*[i])^j = C^{i+j}$.

Proof of Theorem 0.1 By proposition 1.1, we have that

 $\operatorname{Hom}_{\operatorname{DM}_{\operatorname{gm}}^{\operatorname{eff}}(k,\mathbb{Q})}(M_1 \otimes_{tr} M_2, M_3) \cong \operatorname{Hom}_{\operatorname{DM}_{-}^{\operatorname{eff}}(k,A) \otimes \mathbb{Q}}(M_1 \otimes_{tr} M_2, M_3)$

$$\cong \operatorname{Hom}_{\mathcal{D}^{-}(\operatorname{Sh}_{\operatorname{Nig}}(\operatorname{Sm}(k)))}(M_1 \otimes M_2, M_3) \otimes \mathbb{Q}_1$$

On the other hand, according to the remark 2.1 we have the following homological interpretation of the group $\operatorname{Biext}^1(M_1, M_2; M_3)$:

$$Biext^{1}(M_{1}, M_{2}; M_{3}) \cong Ext^{1}(M_{1}[1] \overset{\circ}{\otimes} M_{2}[1], M_{3}[1]) \cong Hom_{\mathcal{D}^{-}(Sh_{Nis}(Sm(k)))}(M_{1} \overset{\circ}{\otimes} M_{2}, M_{3})$$

and so we can conclude.

3. Multilinear morphisms between 1-motives

1-motives are endowed with an increasing filtration, called the weight filtration. Explicitly, the weight filtration W_* on a 1-motive $M = [X \xrightarrow{u} G]$ is

$$W_i(M) = M \text{ for each } i \ge 0,$$

$$W_{-1}(M) = [0 \longrightarrow G],$$

$$W_{-2}(M) = [0 \longrightarrow Y(1)],$$

$$W_j(M) = 0 \text{ for each } j \le -3.$$

Defining $\operatorname{Gr}_{i}^{W} = W_{i}/W_{i+1}$, we have $\operatorname{Gr}_{0}^{W}(M) = [X \to 0], \operatorname{Gr}_{-1}^{W}(M) = [0 \to A]$ and $\operatorname{Gr}_{-2}^{W}(M) = [0 \to Y(1)]$. Hence locally constant group schemes, abelian varieties and tori are the pure 1-motives underlying M of weights 0,-1,-2 respectively.

The main property of morphisms of motives is that they have to respect the weight filtration, i.e. any morphism $f: A \to B$ of motives satisfies the following equality

$$f(A) \cap W_i(B) = f(W_i(A)) \quad \forall i \in \mathbb{Z}.$$

Assume M and M_1, \ldots, M_l to be 1-motives over a perfect field k and consider a morphism

$$F: \otimes_{j=1}^{l} M_j \to M.$$

Because morphisms of motives have to respect the weight filtration, the only non trivial components of the morphism F are the components of the morphism

$$\otimes_{j=1}^{l} M_j / W_{-3}(\otimes_{j=1}^{l} M_j) \longrightarrow M.$$

Using [B1] Lemma 3.1.3 with i = -3, we can write explicitly this last morphism in the following way

$$\sum_{\substack{\iota_1 < \iota_2 \text{ and } \nu_1 < \cdots < \nu_{l-2} \\ \iota_1, \iota_2 \notin \{\nu_1, \dots, \nu_{l-2}\}}} X_{\nu_1} \otimes \cdots \otimes X_{\nu_{l-2}} \otimes (M_{\iota_1} \otimes M_{\iota_2} / W_{-3}(M_{\iota_1} \otimes M_{\iota_2})) \longrightarrow M.$$

To have the morphism

$$X_{\nu_1} \otimes \cdots \otimes X_{\nu_{l-2}} \otimes (M_{\iota_1} \otimes M_{\iota_2} / W_{-3}(M_{\iota_1} \otimes M_{\iota_2})) \longrightarrow M$$

is equivalent to have the morphism

$$M_{\iota_1} \otimes M_{\iota_2} / W_{-3}(M_{\iota_1} \otimes M_{\iota_2}) \longrightarrow X_{\nu_1}^{\vee} \otimes \cdots \otimes X_{\nu_{l-2}}^{\vee} \otimes M$$

where $X_{\nu_n}^{\vee}$ is the k-group scheme $\underline{\text{Hom}}(X_{\nu_n}, \mathbb{Z})$ for $n = 1, \ldots, l-2$. But as observed in [B1] §1.1 "to tensor a motive by a motive of weight zero" means to take a certain number of copies of this motive, and so applying Theorem 0.1 we get

Theorem 3.1. Let M and M_1, \ldots, M_l be 1-motives over a perfect field k. Then,

 $\operatorname{Hom}_{\operatorname{DM}_{\operatorname{com}}^{\operatorname{eff}}(k,\mathbb{Q})}(M_1 \otimes_{tr} M_2 \otimes_{tr} \cdots \otimes_{tr} M_l, M) \cong$

$$\sum \operatorname{Biext}^{1}(M_{\iota_{1}}, M_{\iota_{2}}; X_{\nu_{1}}^{\vee} \otimes \cdots \otimes X_{\nu_{l-2}}^{\vee} \otimes M) \otimes \mathbb{Q}$$

where the sum is taken over all the (l-2)-uplets $\{\nu_1, \ldots, \nu_{l-i+1}\}$ and all the 2-uplets $\{\iota_1, \iota_2\}$ of $\{1, \cdots, l\}$ such that $\{\nu_1, \ldots, \nu_{l-2}\} \cap \{\iota_1, \iota_2\} = \emptyset$ and $\nu_1 < \cdots < \nu_{l-2}$, $\iota_1 < \iota_2$.

References

- [BK1] L. Barbieri-Viale and B. Kahn, On the derived category of 1-motives, I, Prépublication Mathématique de l'IHES (M/07/22), June 2007.
- [BK2] L. Barbieri-Viale and B. Kahn, On the derived category of 1-motives, II, in preparation.
- [B1] C. Bertolin, *Multilinear morphisms between 1-motives*, to apprear in J. Reine Angew. Math. 2008.
- [B2] C. Bertolin, Homological interpretation of extensions and biextensions of complexes, submitted.
- [D] P. Deligne, Théorie de Hodge III, pp. 5–77, Inst. Hautes Études Sci. Publ. Math. No. 44, 1974.
- [H] A. Huber, Realization of Voevodsky's motives, pp. 755–799, J. Algebraic Geom. 9, no. 4, 2000 (Corrigendum: J. Algebraic Geom. 13, no. 1, pp. 195–207, 2004).
- [J] U. Jannsen, Mixed motives and algebraic K-theory, with appendices by S. Bloch and C. Schoen. Lecture Notes in Mathematics, Vol. 1400. Springer-Verlag, Berlin, 1990.
- [MVW] C. Mazza, V. Voevodsky, C. Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, 2. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006.
- [O] F. Orgogozo, Isomotifs de dimension inférieure ou égale à 1, pp. 339–360, Manuscripta Math. 115, no. 3, 2004.
- [SGA7] A. Grothendieck and others, Groupes de Monodromie en Géométrie Algébrique, SGA 7 I, Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin-New York, 1972.
- [V] V. Voevodsky, Triangulated category of motives over a field, in "Cycles, transfers and motivic cohomology theories", Princeton Univ. Press, Annals of Math. Studies 143, 2000.

NWF-I MATHEMATIK, UNIVERSITÄT REGENSBURG, D-93040 REGENSBURG *E-mail address*: cristiana.bertolin@mathematik.uni-regensburg.de

DIP. DI MATEMATICA, UNIVERSITÀ DI GENOVA, VIA DODECANESO 35, I-16133 GENOVA *E-mail address*: mazza@dima.unige.it