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Robust Multi-variate Temporal (RMT) Features of
Multi-variate Time Series
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Many applications generate and/or consume multi-variate temporal data and experts o�en lack the means

to adequately and systematically search for and interpret multi-variate observations. In this paper, we �rst

observe that multi-variate time series o�en carry localized multi-variate temporal features that are robust

against noise. We then argue that these multi-variate temporal features can be extracted by simultaneously

considering, at multiple scales, temporal characteristics of the time-series along with external knowledge, in-

cluding variate relationships that are known a priori. Relying on these observations, we develop data models

and algorithms to detect robust multi-variate temporal (RMT) features that can be indexed for e�cient and

accurate retrieval and can be used for supporting data exploration and analysis tasks. Experiments con�rm

that the proposed RMT algorithm is highly e�ective and e�cient in identifying robust multi-scale temporal

features of multi-variate time series.
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1 INTRODUCTION

Many applications, such as motion recognition [34], generate temporal data and, in many of these
applications, (a) the resulting time series data are multi-variate, (b) relevant processes underlying
these time series are of di�erent scales [17, 29, 48], and (c) the variates (i.e., observation parameters)
are dependent on each other in various ways [40].
Analysis and exploration of time series (as well as other types of data) o�en start with extrac-

tion of pa�erns and features that describe salient properties of the data. Popular approaches in
the literature include extraction of global features of the time series (such as spectral properties
quanti�ed using a transformation; e.g. Discrete Cosine or Wavelet Transforms) and the use of
these global features (which describe properties of the time series as a whole) for indexing [5].
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Fig. 1. A multi-variate time series data set, where each variate is plo�ed as a row of gray scale pixels and

sample multi-variate features identified on the data set (each feature is marked with a di�erent color): the

figure shows 26 variates of length 150 and 5 local multi-variate features on these time series: note that some

of the features correspond to the onset of a rise in amplitude, whereas other correspond to the drop in the

series amplitude. For each time series involved in a given multi-variate feature, we plot the corresponding

temporal scope (i.e., duration) of that feature.

Correlations, transfer functions, variate clusters, and spectral properties [47], SVD and similar
eigen-decompositions can be used for extracting global �ngerprints of multi-variate time series
data [27]. �e analogous analysis operation on a tensor, which can be used to represent temporal
evolution of multi-modal data, is known as tensor decomposition [23]. Both matrix and tensor
decomposition operations, as well as other techniques, such as probabilistic techniques (such as
Dynamic Topic Modeling, DTM [3]), and AutoRegressive Integrated Moving-Average (ARIMA)
based analyses (which separate a time series into autoregressive, moving-average, and integrative
components for modeling and forecasting [33]) are expensive.
Several researchers noticed that signi�cant amount of waste in processing and exploration can

be avoided if the a�ention is directed towards parts of a given time series that are likely to contain
interesting pa�erns [4, 35]. One way to achieve this involves searching for frequently repeating
pa�erns; this is commonly known as the motif search problem [14]. Most of the common ap-
proaches for motif search involve incrementally moving (or shi�ing) a �xed-length time window
starting from the beginning of the given time series. For each window interval a temporal sig-
nature (such as SAX words [28]) is generated (to speed up the matching of subsequences) and
frequent sub-sequences are discovered using di�erent indexing and hashing algorithms and lever-
aging pruning techniques for eliminating non-promising subsequences [54]. Other local features
of uni-variate time-series include landmarks [38], perceptually important points (PIP) [10], pat-
terns [1], shapelets [42, 55], snippets [50], longest common subsequences (LCSS [49]), and motif-
based schemes (which search for frequently repeating temporal pa�erns) [6]. Noting that uni-
variate time series o�en carry localized temporal features which can be used for e�cient search
and analysis, in our earlier work [4] we developed an sDTW algorithm for extracting salient local
features (that are robust against various types of noise) of uni-variate time series and showed that
these can help align similar time series more e�ciently and e�ectively. RPM [52] and STS3 [37]
are two recent approaches that also seek informative pa�erns from uni-variate time series.

1.1 Contributions of this Paper: Local Features of Multi-Variate Time Series

In this paper, we develop data models and algorithms to detect local, robust multi-variate tem-

poral (RMT) features of multi-variate time series (Figure 1). Recently, in [51], we proposed a
multi-variate feature extraction technique, which considered the relationships and dependencies
between the individual uni-variate time-series that make up the multi-variate series. �e local,
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Robust Multi-variate Temporal (RMT) Features of Multi-variate Time 1:3

robust multi-variate temporal (RMT) features are extracted leveraging known correlations and de-
pendencies among the variates. As in [4], for uni-variate series, [51] also (a) smoothes the data to
generate di�erent version of the input object corresponding to di�erent scales and (b) compares
neighboring points both in time (or in x and y dimensions) and scale to identify regions where the
gradients are large. As in [31], SIFT-like feature descriptors are extracted to support search.
What makes the problem of extracting local features from multi-variate series di�cult, however, is

that the concepts of neighborhood, gradient, and smoothing are not well-de�ned in the presence of

multiple variates. In [51], we argued that this di�culty can be overcome by leveraging metadata
(known correlations and dependencies among the variates in the time series) to de�ne neighbor-
hoods, support data smoothing, and construct scale spaces in which gradients can be measured.
Based on this observation, we proposed topology-sensitive smoothing and topology-sensitive gra-

dient computation techniques to identify local features of multi-variate time series at di�erent
time/variate scales. In this paper, we show that unlike [51] (where the time and variate scales are
shrank and expanded together), more e�ective local-feature sets can be located if we allow for
the time and variate aspects of the multi-variate time series to be considered independently from
each other – leading to multi-variate features with heterogeneous time- and variate-scales. �is
is also visualized in Figure 1, where we see some features that are short in time but contain a lot
of variates (such as the feature highlighted in red), whereas others are longer, but contain fewer
variates (such as the feature highlighted in yellow). We also provide a detailed discussion of RMT
based multi-variate time series matching and inconsistency removal and experimentally evaluate
their e�ectiveness in gesture and motion recognition [34].

1.2 Organization of the Paper

In the next section, we describe the related work. In Section 3.1, we introduce the metadata-
enriched multi-variate time series (MMTS) model that forms the basis of the proposed work. In
Section 3.2, we present an overview of the proposed approach to locate robust multi-variate tempo-

ral (RMT) features and extract their descriptors. Sections 4 through 8 provide details of the various
steps of the proposed RMT feature identi�cation and descriptor extraction algorithm. Section 9
formally de�nes the RMT feature set of a multi-variate time series and Section 10 describes how
to use these features for matching multi-variate time series. We present experimental evaluations
of the proposed approach in Section 11. We conclude the paper in Section 12.

2 RELATED WORK

Euclidean distance and, more generally Lp -normmeasures, were among the �rst used to determine
the similarity between two time series. �ey require that the time series being compared are of
same temporal length and, since they assume strict synchrony among time series, they are not suit-
able when two time series can have di�erent speeds or are shi�ed in time [7, 21]. Other measures
that require equal length and perfect synchrony across time series include cosine and (Pearson’s)
correlation similarity [44]. In contrast, edit distance [24] measures aim to determine the minimum
sequence of edit operations that are required to measure similarity. In 70s Sakoe [43] and then in
mid 90s, Berndt [2] proposed dynamic time warping (DTW) technique to �nd an optimal align-
ment between two given (time-dependent) sequences under certain restrictions. Intuitively, DTW
considers all possible warping paths that can warp (or transform) one series into the other and
picks the warping path that has the lowest cost. DTW has found wide acceptance and last two
decades have seen several innovations [8, 11, 20, 21, 41]. For example, while the original DTW is
not metric (does not satisfy triangular inequality) [8] proposed an extended version of DTW that
satis�es triangular inequality. Most of the above algorithms, including DTW, are initially designed
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1:4 S.Liu et al.

for comparing uni-variate time series. More recently, various extensions of DTW have been pro-
posed formulti-dimensional time series [39, 45]. �emost prevalent of these are the vectorized and
independent extensions. In vectorized DTW, a multi-variate time series is considered as a sequence
of vectors, where the length of vector is equal to number of variates in the time series. �e DTW
algorithm is then applied using the distances among these vectors instead of di�erences in signal
amplitude. In independent DTW, however, each variate is treated independently from the others
and DTW is applied separately to each; �nally, these independent DTW distances are added to
compute the overall distance between the given pair of multi-variate series.
An alternative approach to the above techniques is to extract features from the given time series

and use these features to compute similarity/distance instead of the original series. We provided a

detailed discussion of the related work on global and local features in the previous section. [18], for ex-
ample, proposed a feature-extraction algorithm that extracts minimal distinguishing subsequences
that can be used as features. Morchen in [36] proposed using DFT (Discrete Fourier Transform) and
DWT (Discrete Wavelet Transform) for feature extraction. PCA-Similarity Factor [25] and EROS
(Extended Frobenius norm) [53], that use matrix factorization techniques, such as singular vector
decomposition (SVD) and principle component analysis, have also been proposed to transform the
input multi-variate time series into equal length and then apply cosine similarity over them. Ap-
plications of SVD and DTW for various multimedia tasks, such as similarity search, classi�cation,
recognition, and watermarking, include [19, 22, 26, 32, 46].
As we discussed earlier, in [51], we proposed to extract and use SIFT [30, 31]-like robust multi-

variate temporal features to determine similarity between time series. In this paper, we extend
the approach in [51] with more general scale-space construction and pruning techniques to obtain
be�er classi�cation performances. �e general framework is named RMT for both papers, but the
underlying techniques here are signi�cant extensions of [51]: In particular, [51] utilizes a special
case of our proposed generalized scale-space construction and pruning techniques, where only di-
agonal scale space is considered. In this submission, however, we argue (and experimentally show)
that, in general, using amore complete scale-space can bemore e�ective. Indeed, as the experimen-
tal results reported in Section 11 show, we achieve be�er accuracy using a complete scale-space
(enabling time and variate scales to be di�erent) rather than using a diagonal scale space (where
the time and variate scales are constrained to be identical). In addition, while [51] considers only
one scheme for time series matching using RMT features, this paper introduces several alignment
measures (including for alignment of features pairs and measuring feature signi�cance) and pro-
vides a detailed study of the impact of these measures on the classi�cation accuracies.

3 DATA MODEL AND OVERVIEW OF THE PROPOSED APPROACH

Before describing the process through which we extract RMT features, we �rst introduce the
metadata-enriched, multi-variate time series model underlying the proposed approach.

3.1 Metadata-Enriched Multi-Variate Time Series (MMTS) Model

In this section, we present a metadata-enriched multi-variate time series (MMTS) model which
minimizes the assumptions that need to be made about the structure of the data:

De�nition 3.1 (Metadata-Enriched Multi-Variate Time Series (MMTS)). A metadata-enriched
multi-variate (MM) time series is a four-tuple Y = (V,M,Y,D), where

• V is a set of variates,
• M = {M1, . . . ,Mm } is a set of metadata modalities, where eachmodalityMi describes how
the corresponding subset Vi ⊆ V of variates are related to each other,
• Y is a (d1 + d2 + . . . + dm ) × l data matrix, where

– l is the temporal length of the multi-variate time series,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication

date: January 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Robust Multi-variate Temporal (RMT) Features of Multi-variate Time 1:5

!
"
#$"

%&
'
(

)*&(

!"#$%&'()*+'%

,-"+)%&'()*+'%

!"#$

%
&
'(&

)#
*
$

!"#$%&"'

()$*'#'+#&,"'-#&)#$"'."$'

!"#$%&"'

()$*'#'./#++'-#&)#$"'."$'

(a) Di�erent lengths (b) Di�erent numbers of variates

Fig. 2. Multi-variate features can be of di�erent sizes (in this example, the multi-variate series represent

temperature readings in a floor split into zones)

– di = |Vi |, and
– cells of the matrix Y take values from the data domain D. ⋄

As de�ned above, each variate is associated with a modality metadata describing how it is related
with other variates. In this paper, without loss of generality, we consider graph-organized (G)
representation of variate modalities: Each modality, i , has an associated graph Gi (Vi , Ei ,Wi ) that
relates the variatesVi of the given mode. Depending on the application, the graph maybe directed
or undirected and weights may have distance or similarity semantics. If the underlying graph is
unweighted, then for all ek ∈ Ei ,Wi (ek ) = 1.
Note that graph-based description of variate relationships is a commonway of modeling tempo-

ral dynamics of multi-variate time series [12, 16, 47]. Note also that, while the metadata describes
the relationship between the variates, this relationship may or may not have causal impact on the
observed temporal characteristics of the data:

De�nition 3.2 (Metadata-De�ned Variate Causality Model). Let us assume that we have metadata
M that describe the relationship between the variates in the data. Given M, under the variate

causality model, we have Y[t] = RMY[t − 1]+ ~E(t ),where Y[t] is a column vector extracted from
Y and corresponds to the observations at time t , RM is a (row-normalized) matrix de�ning how

the values of Y at time t − 1 impact the values of Y at time t , and ~E is a multi-variate time series
denoting independent, external inputs. ⋄

Intuitively, RM is a matrix describing how the values of one variate are impacted by the past values
of the variates in the data. Alternatively, RM may be a matrix describing the relationships among
simultaneous observations:

De�nition 3.3 (Metadata-De�ned Variate Correlation Model). Let us assume that we have meta-
dataM that describe the relationship between the variates in the data. GivenM, under the variate
correlation model, we have a matrix RM such that RM[i, j] = Φ(Y[∗, i],Y[∗, j]) ∈ [0, 1]. Here
Y[∗, i] and Y[∗, j] are rows corresponding to observations for variates i and j , respectively, and Φ
is an application speci�c similarity function. ⋄

Here, Φ may be computed by comparing (recent) historical data of the time series or may re�ect
available domain knowledge, such as the distance of the sensors recording the variates or known
relationships parameters.
It is important to note that the algorithms presented in the paper are applicable under both of

the above models1 and we use the matrix RM to denote both relationships.

1�us, without loss of generality, we sometimes focus on the dependency model and, other times, use the correlation

model.
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3.2 Overview: Extracting Local, Robust Multivariate Temporal (RMT) Features

In this paper, we propose algorithms to extract robust multi-variate temporal (RMT) features from
metadata-enriched multi-variate time series (MMTS) data sets. Intuitively, as already visualized in
Figure 1, an RMT feature is a fragment of a multi-variate time series that is maximally di�erent
from its immediate neighborhood (both in time and across variate relationships speci�ed by the
metadata). As in [31], we rely on a four step process to identify such RMT features and extract their
feature descriptors: (Step 1): Scale-space construction: As shown in Figure 2, multi-variate temporal
features of interest can be of di�erent lengths and may cover di�erent number of variates. In order
to be able to locate such features of di�erent sizes, the RMT features are extracted from a scale-
space we construct for the given multi-variate time series through iterative smoothing2. Iterative
smoothing of the multi-variate data in time and variates creates di�erent resolution versions of the
input data and, thus, helps identify features with di�erent amount of details in time and in terms of
the number of variates involved. While iterative smoothing techniques are well understood for uni-
variate data [4, 48], this is not the case for multi-variate time series. �erefore, in Sections 4 and 5,
we describe how to construct a scale-space by smoothing a multi-variate time series, leveraging
available metadata that describe known relationships among variates. (Step 2): Identifying feature
candidates: Next, the process identi�es candidate features of interest across multiple scales of the
given multi-variate time series by searching over multiple scales and variates of the given series.
Each candidate RMT feature has a temporal-scope (a beginning and an end in time) and a variate-
scope (a set of variates involved in the feature). �ese candidate features of interest are those with
the largest variations with respect to their neighbors in time, variates, and scale. We describe this
process in Section 6. (Step 3): Eliminating poor candidates: At the following step, those candidate
features identi�ed in the previous step that are sensitive to noise are eliminated. �ese include
features that are poorly localized (and hence are di�cult to match). �is is described in Section 7.
(Step 4): RMT feature descriptor creation: In the �nal step, for each RMT feature, a local descriptor
is extracted using the information obtained in the previous steps. More speci�cally, the algorithm
computes and samples gradients within the scope of the RMT feature. To avoid sudden changes in
the descriptor with small changes in the position and to give less emphasis to gradients that are far
from the center of the descriptor, a weighing function is used to assign a weight to the magnitude
of each sample point based on its distance from the center of the feature. Note that while gradient
computation is well understood for uni-variate data [4, 48], this is not the case for multi-variate
time series. We describe how this is achieved in Section 8.
�e above approach has three key advantages: Advantage 1: First of all, the identi�ed

salient features are robust against noise and common transformations, such as temporal shi�s
or dropped/missing variates. Advantage 2: Scale invariance enables the extracted salient fea-
tures to be robust against variations in speed and enables multi-resolution searches. Advantage
3: �e temporal and relationship scales at which a multi-variate feature is located give an indi-
cation about the scope (both in terms of duration and the number of variates involved) of the
multi-variate feature.

4 TEMPORAL AND VARIATE SMOOTHING OF MULTI-VARIATE TIME SERIES

Let Y = (V,M,Y,D) be a metadata-enriched multi-variate time series, as de�ned in Section 3.1.
�e �rst step in identifying multi-variate features ofY is to generate a scale-space representing ver-
sions of the given multi-variate series with di�erent amounts of details. As shown in Figure 3, the

2�is is di�erent from what is known as “multi-variate exponential smoothing”, a forecasting technique where the multi-

variate models include the so-called “smoothing parameters” and these are learned to obtain models with a be�er �t to the

data [47].
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Fig. 3. Scale-space construction through iterative smoothing in time and variates

scale-space, Y, of Y is obtained through iterative smoothing across both time and variate relation-
ships, starting with an initial smoothing parameter Σ0 = 〈σtime,0,σvar ,0〉 and iteratively increas-
ing the smoothing degree up to Σmax = 〈σtime,max ,σvar ,max〉, obtaining di�erently smoothed
versions of the time series.

�e values of Σ0 and Σmax control the sizes of the smallest and largest features sought in the data
(see Section 9). In the rest of this section, we will �rst describe temporal and variate smoothing
techniques. We will then describe optimizations to reduce the cost of the scale-space construction
step of the process. For each of the techniques, we will also discuss the relationship among Σ0,
Σmax , and the sizes of the features identi�ed.

4.1 Temporal Smoothing

Let Y = (V,M,Y,D) be a metadata-enriched multi-variate time series and let Yv = Y[∗,v]
be a uni-variate time series corresponding to one of its variates. Let Y

(σ )
v indicate a version

of the uni-variate time series, Yv , smoothed through convolution with the Gaussian function,

G (t ,σ ) = 1√
2πσ

e
−t2
2σ 2 , with temporal smoothing parameter σ (Figure 4). Given this, Y(time,σ )

=

(V,M,Y(time,σ ),D), is a version of the multi-variate time series, Y, where each row of Y(time,σ )

is a uni-variate time series smoothed with temporal smoothing parameter σ , independently of the
other uni-variate series.

4.1.1 Temporal Scope. Let us consider a time instant t on which we are applying Gaussian
smoothing with parameter σ . Since, under Gaussian smoothing, 3 standard deviations (i.e. 3σ
both directions) would cover ∼ 99.73% of the contributions to the smoothed values, we can de�ne
the corresponding temporal scope as a time interval, centered at t , of length 6σ ; in other words, we
have scopeT (t ,σ ) = [t − 3σ , t + 3σ ). Consequently, if the temporal length of a multi-variate time
series is L, then we must have σtime,max ≤ L/6. Similarly, since we expect that the smallest feature
should involve a time instant and at least its two immediate neighbors, we also have σtime,0 ≥ 2/6.

4.1.2 Octaves of Temporal Smoothing. Let σ1 and σ2 be two smoothing parameters. �e param-
eter σ2 is said to be an octave larger than σ1 if σ2 = 2σ1. Intuitively, σ2 de�nes features twice as
large as σ1 by using a Gaussian smoothing parameter twice as large.

4.2 Variate Smoothing

As described above, the temporal smoothing process relies on a convolution operation that lever-
ages the temporal ordering of the time instants in the series. �e challenge is that a similar total
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t-3 t-2 t-1 t t+1 t+2 t+3

Fig. 4. Gaussian smoothing of a uni-variate se-

ries for time instant, t
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Fig. 5. Graph smoothing for a node

order does not necessarily exist among the variates – therefore, the de�nition of variate smoothing
is not as straightforward.

4.2.1 Gaussian Smoothing of Graph-Organized Variates. Let Y = (V,M,Y,D) be a metadata-
enriched multi-variate time series, where the metadata M is graph-structured; i.e., there is a
graph G (V , E,W ) that relates the variates, V , of the data. Let us further de�ne f rwdG (vl , δ ) and
bkwdG (vl , δ ), as the forward and backward neighbors of variate vl ∈ V at a distance ≥ (δ − 0.5)
and < (δ + 0.5) on G . Intuitively, f rwdG () and bkwdG () functions order all the variates into a
partial order relative to the variate vl .
Given the partial order de�ned by the f rwdG () and bkwdG () functions and a non-negative

smoothing parameter σ , we then obtain the Gaussian smoothed version, Y(var ,σ ) of the matrix
Y as follows: Let Y[t] be a column vector extracted from Y corresponding to the observations at
time t . �en, for all vl , we have Y

(var ,σ )[t , l] equal to

*.....,
AVG

vh ∈
f rwdG (vl ,0)

∪
bkwdG (vl ,0)

Y[t ,h]

+/////-
+

∞
∑

δ=1

G (δ , σ )

(

AVG
vh ∈f rwdG (vl ,δ )

Y[t ,h]

)

+

∞
∑

δ=1

G (δ ,σ )

(

AVG
vh ∈bkwdG (vl ,δ )

Y[t ,h]

)

.

Figure 5 shows how we apply Gaussian smoothing over a relationship graph. �e lower half
of the �gure shows a variate a and its forward and backward k-hop neighbors in the relationship
graph. As shown in the upper half of the �gure, when identifying the contributions of the variate
on a, Gaussian smoothing is applied along the hop distance. Since at a given hop distance theremay
bemore than one variate, all the variates at the same distance have the same degree of contribution
and the degree of contribution gets progressively smaller as we get away from the variate forwhich
the smoothing is performed.

4.2.2 Variate Scope under Gaussian Smoothing. Similarly to the temporal scope, we de�ne the
variate scope corresponding to variate vl at smoothing level σ as

scopeV (vl ,σ ) = {vl } ∪
*.,

⋃

δ ≤3σ
f rwdG (vl , δ )

+/- ∪
*.,

⋃

δ ≤3σ
bkwdG (vl ,δ )

+/- .
�e variate smoothing parameters, σvar ,0 and σvar ,max , must be selected such that for each
variate vl , σvar ,0 includes its immediate (one hop) graph neighbors, f orward neiдhbors (vl ) and
backward neiдhbors (vl ) onG , and the value of δ corresponding to σvar ,max should be compatible
with the diameter of the graphG .
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Robust Multi-variate Temporal (RMT) Features of Multi-variate Time 1:9

4.2.3 Octaves of Gaussian Variate Smoothing. Let σ1 and σ2 be two Gaussian graph smoothing
parameters. Under Gaussian smoothing, the graph smoothing parameter σ2 is said to be an octave

larger than σ1 if σ2 = 2σ1.

4.3 Combined Time and Variate Smoothing

Given the above de�nitions of temporal and variate smoothing functions, we now de�ne combined
time and variate smoothing of metadata-enriched multi-variate time series:

De�nition 4.1 (TV-Smoothing of a Multi-Variate Time Series). Let Y = (V,M,Y,D) be a
metadata-enriched multi-variate (MM) time series. Recall that Y is a (d1 + d2 + . . . + dm ) × l data
matrix, where l is the temporal length of the multi-variate time series, di = |Vi |, andY takes values
from the data domain D. For a given smoothing parameter, Σ = 〈σtime ,σvar 〉, the TV-smoothed

version, Y{Σ}, of the multi-variate time series, Y, is de�ned as Y{Σ} =
(

Y
(time,σt ime )

) (var ,σvar )

,

where,

• Y(time,σt ime ) is a version of Y where each row (i.e., each uni-variate time series) is tempo-
rally smoothed with smoothing parameter σtime , independently from the rest; and
• X(var ,σvar ) is a version of X where each column (i.e., time instant) is smoothed with
smoothing parameter σvar , using the variable relationships and modalities described by
the metadataM. ⋄

5 STEP 1: SCALE-SPACE CONSTRUCTION FOR MULTI-VARIATE TIME SERIES

As we have seen in Section 4, given a metadata-enriched multi-variate time series, Y =

(V,M,Y,D), �rst step in identifying multi-variate features of Y is to generate a scale-space rep-
resenting versions of the multi-variate series with di�erent amounts of details. In this paper, we
consider two types of scale-spaces: diagonal and full scale-spaces, described below.

5.1 Diagonal Scale-Spaces

Let Σ0 = 〈σtime,0,σvar ,0〉 be the user provided smallest temporal and variate smoothing parameters
and let l indicate the total number of layers in the scale space. An l-layer diagonal state space,
Ydiaд , is de�ned as a set of data matrices {Y0, . . . ,Yl }, where Yi = Y{〈σtime,0 × ki ,σvar ,0 × ki 〉},
for some scaling parameter k > 1. Note that, in this case, we have σtime,max = σtime,0 × kl and
σvar ,max = σvar ,0 × kl . �is will generate only the diagonal entries in the scale-space shown in
Figure 3.

5.2 Full Scale-Spaces

In contrast, the complete scale-space shown in Figure 3 is generated as follows: Let

• Σ0 = 〈σtime,0,σvar ,0〉 be the smallest temporal and variate smoothing parameters,
• L = 〈ltime , lvar 〉 indicate the number of temporal and variate smoothing layers, and
• K = 〈ktime, ,kvar 〉 be scaling parameters for temporal and variate smoothings.

AnL-layer full state space,Yf ul l , is de�ned as a set of datamatrices 〈Y0,0, . . . ,Yi, j , . . . ,Ylt ime,lvar 〉,
where Yi, j = Y{〈σtime,0 ×kitime ,σvar ,0 ×k

j
var 〉}. In this case, we have σtime,max = σtime,0 ×klt ime

time

and σvar ,max = σvar ,0 × klvarvar .

5.3 Optimization: Time and Variate Subsampling

In the process described above, the multi-variate time series is incrementally smoothed both in
time and relationships, halving details at each octave. We note that, once the details have been
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1:10 S.Liu et al.

halved at an octave boundary, performing the feature extraction operation at the same level detail
is going to be wasteful. To avoid such waste, we subsample the multi-variate time series at octave
boundaries (Figure 3). More speci�cally, at temporal octave boundaries (where temporal details
have been halved) we drop one out of every two consecutive temporal observations, reducing the
size of the data by half. Similarly, at variate octave boundaries (where variate relationship details
have been halved) we reduce the numbers of variates by half by applying a variate clustering
algorithm3.

6 STEP 2: IDENTIFYING MULTI-VARIATE TEMPORAL FEATURE CANDIDATES

Building on the observation [4, 31] that robust localized features are o�en located where the di�er-
ences between neighboring regions (possibly in di�erent scales) are large, we seek RMT features of
the given multi-variate time series at the local extrema of the scale space de�ned by the di�erence-
of-smoothing (DoS) series. Naturally, the DoS generation and feature identi�cation process will
be slightly di�erent depending on whether a diagonal or full scale-space is used.

6.1 Local Extrema in Diagonal Scale-Spaces

An l-layer diagonal state space of a metadata-enriched multi-variate time series, Y =

(V,M,Y,D), is de�ned as a set of data matrices {Y0, . . . ,Yl }, whereYi = Y{〈σtime,0×ki ,σvar ,0×
ki 〉}, for some scaling parameterk > 1. Given this, we create the correspondingDoS by considering
a sequence of di�erence matrices {D0, . . . ,Dl−1}, where Di = |Yi+1 − Yi | .We detect RMT feature
candidates by seeking the local maxima and minima of the resulting DoS: each variate-time-scale
(VTS) triple, 〈v, t , s〉, is compared to its neighbors (both in time and variate relationships) in the
same scale as well as the scales above and below, and the triple is selected as a candidate only if
it is close to being an extremum; i.e., each 〈v, t , s〉 is compared against its 26 (= 33 − 1) neighbors
in time, scale, and variate relationships4 . More speci�cally, for each 〈v, t , s〉, we compare Ds [v, t]
against

max



Ds−1[v, t − 1] Ds [v, t − 1] Ds+1[v, t − 1]
Ds−1[v, t ] Ds+1[v, t ]
Ds−1[v, t + 1] Ds [v, t + 1] Ds+1[v, t + 1]
FDs−1[v, t − 1] FDs [v, t − 1] FDs+1[v, t − 1]
FDs−1[v, t ] FDs [v, t ] FDs+1[v, t ]
FDs−1[v, t + 1] FDs [v, t + 1] FDs+1[v, t + 1]
BDs−1[v, t − 1] BDs [v, t − 1] BDs+1[v, t − 1]
BDs−1[v, t ] BDs [v, t ] BDs+1[v, t ]
BDs−1[v, t + 1] BDs [v, t + 1] BDs+1[v, t + 1]



,

where FDs [v, t] =
(

FDs

)

[v, t], BDs [v, t] =
(

BDs

)

[v, t], and F and B are two matrices describing

forward and backward relationships among variates. Intuitively, FD accounts for the combined
DoS values of the forward neighbors and BD accounts for the combined DoS values of the back-
ward neighbors of v . We declare the triple, 〈v, t , s〉, a candidate if the corresponding DoS value,
Ds [v, t], is greater than Θ% of the maximum of its 26 scale-neighbors in DoS, for some user pro-
vided Θ ∼ 100.

6.2 Local Extrema in Full Scale-Spaces

As seen earlier, an L-layer full state space, Yf ul l , is de�ned as a set of data matrices

〈Y0,0, . . . ,Yi, j , . . . ,Ylt ime,lvar 〉, where Yi, j = Y{〈σtime,0 × kitime ,σvar ,0 × k
j
var 〉}. Given this, for

3In the experiments reported in Section 11, we use a k-means algorithm, where k is equal to the half of the number of

variates, based on the distances among sensors on the underlying sensor-distance graph
4�e number of neighboring triples may be less than 26 if the triple is at the boundary in terms of time, scale, or variate

relationship graph.
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Robust Multi-variate Temporal (RMT) Features of Multi-variate Time 1:11

each s = 〈i, j〉 pair, we can de�ne three di�erences:

D
t
i, j =

���Yi+1, j − Yi, j ��� , Dvi, j = ���Yi, j+1 − Yi, j ��� , and Dt,vi, j =
���Yi+1, j+1 − Yi, j ��� .

Local extrema are then identi�ed by considering each variate-time-scale (VTS) triple, 〈v, t , s〉, and
comparingmax (Dti, j,D

v
i, j ,D

t,v
i, j ) to 78 (= 3 × 26) neighboring triples5 of 〈v, t , s〉 in time, scale, and

relationships for each of the Dt , Dv , and Dt,v . We �nally declare the triple, 〈v, t , s〉, a candidate if
the corresponding DoS value, Ds [v, t], is greater than Θ% of the maximum of its 78 neighbors in
DoS, for some user provided Θ ∼ 100.

7 STEP 3: ELIMINATING POOR RMT FEATURE CANDIDATES

Local extrema of DoS can include candidate triples that are poorly localized. In order to identify
whether a triple 〈v, t , s〉 is well or poorly localized in the scale-space, we can consider the principal
curvatures at the point 〈v, t , s〉 of the scale-space generated earlier: a poorly de�ned peek in the
di�erence-in-smoothing will have a large principal curvature in the scale space in one direction,
but a small one in the perpendicular direction. Consequently, as was observed in [15, 31], we can
search for well-localized candidates by considering the ratio of the eigenvalues of the 2×2 Hessian
matrix, which describes the local curvature of the scale-space in terms of the second-order partial
derivatives.
Given the above observation, the major challenge, in this case, is to de�ne and compute the

partial derivatives for metadata enhanced multi-variate time series to obtain the Hessian matrix
we seek. More speci�cally, for each VTS triple, 〈v, t , s〉, we need to construct a 2 × 2 time/variates

Hessian matrix,DTVv,t,s =

[
DT ,T DT ,V

DV ,T DV ,V

]
, where

• DT ,T = DTDT is the second derivate along time for the triple 〈v, t , s〉,
• DV ,V = DVDV is the second derivative along “variate relationships” for 〈v, t , s〉,
• DT ,V = DTDV is the partial derivative along time of the partial derivate along variate
relationships of the triple 〈v, t , s〉, and
• DV ,T = DVDT is the partial derivative along variate relationships of the partial derivate
along time of the triple 〈v, t , s〉.

In this paper, we propose to estimate the derivatives along time and variate relationships by taking
di�erences of neighboring sample points:

DT (v, t , s ) = Ys [v, t + 1] − Ys [v, t − 1],

DV (v, t , s ) =

{

(FYs [v, t] − BYs [v, t]) for directed relationships
(FYs [v, t] − Ys [v, t]) for undirected relationships

Here, FYs and BYs , account for the (weighted) averages of the forward and backward variate

neighbors at the corresponding scale: i.e., FYs [v, t] =
(

FYs

)

[v, t] and BYs [v, t] =
(

FYs

)

[v, t],

where (as was discussed in the previous section) F and B are two matrices describing forward and
backward relationships among variates.
Once the Hessian matrix,DTVv,t,s , is constructed for the triple 〈v, t , s〉, whether the triple is poorly

localized can be checked using eigenvalue-based techniques [15, 31]. Note that derivatives (with
respect to time) will be high at the boundaries of time (i.e., the beginning and end of the time series).
Similarly, in directed variate relationship graphs, source and sink nodes are likely to have large
derivatives with respect to the relationship space. Since many of these triples at the boundary of

5�e number of neighboring triples may be less than 78 if the triple is at the boundary in terms of time, scale, or variate

relationship graph.
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1:12 S.Liu et al.

time and relationship do not correspond to real features of the data, but are essentially boundary
noises, such candidate triples are removed even if they are well-localized.

8 STEP 4: RMT FEATURE DESCRIPTOR CREATION

For data objects that can be represented as 2D matrices (such as images), [31] proposed that a gra-
dient histogram based descriptor around the given point 〈x ,y〉 on the matrix could be constructed
by computing a gradient for each element in the neighborhood of the point [31]. �e resulting
gradients are then quantized into c orientations. Finally a 2a × 2b grid is superimposed on the
neighborhood region centered around the point and the gradients for the elements that fall into
each cell are aggregated into a c-bin gradient histogram. �is process leads to a feature descriptor
vector of length 2a × 2b × c . In [4], we have shown that gradient histograms (created from data
vectors instead of data matrices) are also e�ective in describing temporal features of uni-variate
time series. In the case of multi-variate time series, however, we cannot directly apply the above
techniques. Instead, we �rst need to construct an extractor matrix to enable the gradient extraction
process.

8.1 Extractor Matrix

Let Y be a scale space de�ned over the given metadata-enriched multi-variate time series and
the VTS triple, 〈v, t , s〉, be an RMT feature identi�ed from Y. �e multi-variate feature de�ned
by a variate-time-scale triple, 〈v, t , s〉, has an associated scope, de�ned by the scale, s , in which
it is identi�ed. �e pair, 〈v, t〉, forms the center of the feature in time and variates. Given this
feature center, under scale, s , which corresponds to temporal and variate smoothing parameter
pair, Σ = 〈σtime ,σvar 〉, the temporal and variate scopes of the feature are computed as described
in Sections 4.1.1 and 4.2.2, respectively.
As we have also seen in Section 4, observations closer in time and relationships to the triple will

have signi�cantly larger contributions to the feature than the points closer to the boundaries of
the scope. �erefore, to identify gradients across time and variate relationships, we �rst construct
an N -step aggregation series:

De�nition 8.1 (N -Step Aggregation Series). For directed variate relationships, we de�ne the N -
step aggregation series corresponding to scale s as follows: For −N < a ≤ N ,

Ws [a] =



if a > 0
(

F aYs

)

if a = 0 Ys

if a < 0
(

BaYs

)

,

where, as before, F and B are two matrices describing forward and backward relationships among
variates. Similarly, in the case of undirected variate relationships, we de�ne theN -step aggregation
series, such that for 0 ≤ a ≤ N we have

Ws [a] =


if a > 0

(

F aYs

)

if a = 0 Ys . ⋄

Once the N -step aggregation series are obtained, we can then construct the extractor matrices
from which the feature descriptors will be obtained:

De�nition 8.2 (Extractor Matrix). Let 〈v, t , s〉 be a VTS triple on the scale space. In the case of
directed variate relationships, we de�ne the corresponding extractor matrix as a 2N × 2M matrix,

Xv,t,s , such that for −N < a ≤ N and −M < b ≤ M , we have Xv,t,s[a,b] =
(

Ws[a]
)

[v, t + b].

In the case of undirected variate relationships, we de�ne the extractor matrix as a (N + 1) × 2M
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Robust Multi-variate Temporal (RMT) Features of Multi-variate Time 1:13

matrix, Xv,t,s , such that for −N < a ≤ N and 0 ≤ b ≤ M , we have Xv,t,s[a,b] =
(

Ws [a]
)

[v, t +b].

⋄

�e values of N andM should be selected to roughly cover the scope of the feature.

8.2 Descriptor Extraction

Given this extractor matrix, Xv,t,s , the feature descriptor is created as a c-directional gradient
histogram of this matrix, sampling the gradientmagnitudes around the salient point using a 2a×2b
grid (or 2a×b grid for undirected relationship graphs) superimposed on the matrix, Xv,t,s . To give
less emphasis to gradients that are far from the point 〈v, t〉, a Gaussian weighting function is used
to reduce the magnitude of elements further from 〈v, t〉.
�is process leads to a feature descriptor vector of length 2a×2b ×c (or 2a×b ×c for undirected

graphs). �e descriptor size must be selected in a way that re�ects the temporal characteristics
of the time series; if a multi-variate time series contains many similar features, it might be more
advantageous to use large descriptors that can be�er discriminate: these large descriptors would
not only include information that describe the corresponding features, but would also describe the
temporal contexts in which these features are located.

9 RMT FEATURE SET OF A MULTI-VARIATE TIME SERIES

Given the above, the RMT features of a metadata-enriched multi-variate (MM) time series, Y =
(V,M,Y,D), with respect to the parameters

• Σ0 = 〈σtime,0,σvar ,0〉; i.e., the smallest temporal and variate smoothing parameters,
• L = 〈ltime , lvar 〉; i.e., the number of temporal and variate smoothing layers, and
• K = 〈ktime, ,kvar 〉; i.e., the scaling parameters for temporal and variate smoothings,

is de�ned as a set, F , where each feature, f ∈ F , extracted from Y, is a pair of the form, f =

〈pos, ~d〉:

• pos = 〈v, t , s〉 is a VTS triple denoting the position of the feature in the scale-space of
the multi-variate time series, where v is the index of the variate at which the feature is
centered, t is the time instant around which the duration of the feature is centered, and s

is the temporal/variate smoothing scale in which the feature is identi�ed. Note that this
triple also de�nes the temporal and variates scopes of the RMT feature.

• ~d is a vector of length 2a×2b×c for directed relationship graphs and 2a×b×c for undirected
graphs, as described in the previous section.

Note that this set contains RMT features of potentially di�erent sizes. In particular, we have

σtime,min = σtime,0, σvar ,min = σvar ,0, σtime,max = σtime,0 × k
lt ime

time , σvar ,max = σvar ,0 × k
lvar
var ,

and these de�ne the minimum and maximum temporal and variate scopes of the features identi-
�ed from the given multi-variate time series.

10 TIME SERIES MATCHING USING RMT FEATURES

�is feature set can be used for various applications, including alignment, indexing, and classi�ca-
tion of multi-variate series. Let us be given two metadata-enriched multi-variate (MM) time series,
Y1 and Y2, and their feature sets F1 and F2. We rely on the alignments of the feature pairs in F1
and F2 to measure how well these two series match each other.
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10.1 Alignment of Feature Pairs

Let f1 = 〈〈v1, t1, s1〉, ~d1〉 and f2 = 〈〈v2, t2, s2〉, ~d2〉 be two RMT features in F1 and F2, respectively.
When matching f1 and f2, we consider how well aligned as well as how important these two
features are.

10.1.1 Temporal Alignment of a Pair of Features. Two features are said to be temporally aligned
if their temporal scopes overlap signi�cantly and temporal centers are close.

De�nition 10.1 (Temporal Overlap). Let [ts1, te1) denote the temporal scope of the �rst feature de-
�ned by t1 and the temporal smoothing parameter corresponding to the feature scale s1. Similarly,
let [ts2, te2) denote the temporal scope of the �rst feature de�ned by t2 and the feature scale s2. We

de�ne the temporal overlap score of the two features asOverlapT ( f1, f2) =
min (te1,te2 )−max (ts1,ts2 )
max (te1,te2 )−min (ts1,ts2 )

.

⋄
De�nition 10.2 (Temporal Center Proximity). We de�ne the temporal proximity score as

ProxT ( f1, f2) = 1 − |t1−t2 |
maxLenдth , wheremaxLenдth is the length of the time series. ⋄

Given these, we de�ne temporal alignment score as follows:

De�nition 10.3 (Temporal Alignment). We de�ne the temporal alignment score of the two fea-

tures as AliдnT ( f1, f2) =
Over lapT (f1, f2 )+ProxT (f1, f2 )

2 . ⋄
10.1.2 Variate Alignment of a Pair of Features. Two features are said to be variate aligned if

their variate scopes overlap signi�cantly:

De�nition 10.4 (Variate Alignment). Let scope (v1,σvar ,1) denote the variate scope of the �rst fea-
ture de�ned by parameter σvar ,1 corresponding to feature scale s1. Similarly, let scope (v2,σvar ,2)
be the variate scope of the second feature. We de�ne the variate alignment score of the two features

as AliдnV ( f1, f2) =
scope (v1,σvar ,1)∩scope (v2,σvar ,2)

scope (v1,σvar ,1)∪scope (v2,σvar ,2)
. ⋄

10.1.3 Descriptor Alignment of a Pair of Features. Two features are said to be descriptor aligned
if their descriptor vectors are similar to each other:

De�nition 10.5 (Descriptor Alignment). We de�ne the descriptor alignment score of the two fea-

tures as AliдnD ( f1, f2) = sim(~d1, ~d2) or as AliдnD ( f1, f2) =
(

1 + ∆(~d1, ~d2)
)−1

for a given similarity,

sim(), or distance, ∆(), function. ⋄
10.1.4 Amplitude Alignment of a Pair of Features. Two features are said to be amplitude aligned

if the average amplitudes of the time series within the corresponding feature scopes are similar to
each other:

De�nition 10.6 (Amplitude Alignment). We de�ne the amplitude alignment score as

AliдnA( f1, f2) =
(

1 + |ampl1 − ampl2 |
)−1
, where ampl1 and ampl2 are the average amplitudes

of the time series, Y1 and Y2, within the scopes of f1 and f2. ⋄

10.2 Feature Significance

10.2.1 Scope Significance of a Given Pair of Features. �e size of the temporal and/or variate
scopes may impact the signi�cance of a feature.

De�nition 10.7 (Temporal Scope Signi�cance). �e combined temporal scope signi�cance of f1
and f2 is de�ned as SiдT ( f1, f2) =

σt ime,1+σt ime,2

2 , where σtime,1 and σtime,2 are the two temporal
smoothing parameters corresponding to temporal scales, s1 and s2. ⋄
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Fig. 6. Example scope boundary conflicts: blue lines mark corresponding starting points of the matching

scopes, whereas red lines mark the corresponding end points

De�nition 10.8 (Variate Scope Signi�cance). �e combined variate scope signi�cance of f1 and

f2 is de�ned as SiдV ( f1, f2) =
σvar ,1+σvar ,2

2 , where σvar ,1 and σvar ,2 are the two variate smoothing
parameters corresponding to feature scales, s1 and s2. ⋄

10.2.2 Contextual Significance of Features. In many applications, we also need to consider how
discriminating or contextually important a feature is. For example, in a classi�cation scenario,
when comparing features f1 and f2 from these time series, we may also consider how representa-
tive (frequent and discriminating) f1 and f2 are as the contextual importance measure, SiдC ( f1, f2).

10.3 Overall Feature Matching Score

Given the above, the overall matching score of two features is a combination of the individual
measures of alignment and importance:

De�nition 10.9 (Overall Feature Matching Score). We de�ne the overall matching score,
match( f1, f2), of the two features as

µ

(

AliдnD ( f1, f2),AliдnT ( f1, f2),AliдnV ( f1, f2),AliдnA( f1, f2),

SiдT ( f1, f2), SiдV ( f1, f2), SiдC ( f1, f2)

)

,

where µ is a merge function that combines the individual scores. ⋄

While there exist di�erent merge functions (such asmin,max , sum, avд, product ), in the experi-
ments reported in Section 11 we use product , which approximates the boolean operator and when
individual scores are zeros and ones [5].

10.4 Identifying Candidate Matching Pairs

Given a query time series, Yq , and a data series, Yd , and their feature sets Fq and Fd , the next step
is to identify a set P ⊆ Fq × Fd of candidate feature pairs, such that

• ∀fq,i ∈ Fq ∃ fd, j ∈ Fd s .t . 〈fq,i , fd, j〉 ∈ P (i.e., for each query RMT feature on the query
object, at least one matching feature on the data object is located),
• ∀〈fq,i , fd, j〉, 〈fq,h, fd,k 〉 ∈ P ( fq,i = fq,h ) → ( fd, j = fd,k ) (i.e., for each query RMT feature
on the query object, at most one matching feature on the data object is located), and
• ∑

〈fq, i, fd, j 〉∈Pmatch( fq,i , fd, j ) is maximized.

It is easy to see that, since, for each query feature, P contains one and only one matching
data feature and since we aim to maximize the overall matching score, the set P can be obtained
by considering each feature fq,i ∈ Fq and selecting the feature fd, j ∈ Fd with the maximum
match( fq,i , fd, j ) value. However, the feature pairs in P obtained this way may not be mutually
consistent and such inconsistencies need to be eliminated.
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(a) Pairs of matching RMT features (b) Remaining pairs of matches

Fig. 7. (a) Candidate RMT feature pairs for two multi-variate time series, and (b) the remaining subset of

matching RMT feature pairs a�er inconsistency pruning

10.5 Inconsistency Pruning of Candidate Pairs

Intuitively, we call a set of feature matchings temporally consistent if the corresponding features are
similarly ordered in both time series. Figure 6 shows several temporal inconsistencies, where tem-
poral scope boundaries of matching features are not similarly ordered in two time series. Formally,
we de�ne temporal consistency as follows:

De�nition 10.10 (Temporal Consistency). Let us be given two metadata-enriched multi-variate
(MM) time series, Y1 and Y2, and their feature sets F1 and F2. Let p1 = 〈f 11 , f 12 〉,p2 ∈ 〈f 21 , f 22 〉 ∈ P
be two candidate feature pairs and boundsa

b
= {tsa

b
, tea

b
} be the start and end points of the temporal

scope of feature f a
b
for a,b ∈ {1, 2}. We call p1 and p2 temporally consistent if and only if

• for all pairs of end points t1i , t
1
j ∈ bounds11 ∪ bounds12 in the �rst pair, we have

(
(

t1i > t1j

)

→
(

t2i ≮ t2j

)

) ∧ (
(

t1i < t1j

)

→
(

t2i ≯ t2j

)

),

where t2i , t
2
j ∈ bounds21 ∪ bounds22 are the two end points in the second pair corresponding

to t1i and t
1
j ; and

• for all pairs of end points t2i , t
2
j ∈ bounds21 ∪ bounds22 in the second pair, we have

(
(

t2i > t2j

)

→
(

t1i ≮ t1j

)

) ∧ (
(

t2i < t2j

)

→
(

t1i ≯ t1j

)

),

where t1i , t
1
j ∈ bounds11 ∪ bounds12 are the two end points in the �rst pair corresponding to

t2i and t
2
j . ⋄

Figure 7 provides an example with inconsistent matches: here we see that the matching pro-
cess identi�ed some very distant pairs of RMT features as matches. Note also that there are many
matching pairs that cross each other in time, implying temporal features that are di�erently or-
dered in time in two time series. To improve the accuracy of the matching process, we need to
eliminate such inconsistencies. �e outline of the process to eliminate inconsistencies is as follows

(1) For each pair, 〈f1, f2〉 ∈ P of matching features, we compute a dominance score,
dom( f1, f2), as

ρ

(

AliдnD ( f1, f2),AliдnT ( f1, f2),AliдnV ( f1, f2),AliдnA( f1, f2),

SiдT ( f1, f2), SiдV ( f1, f2), SiдC ( f1, f2)

)

.

Note that this dominance score may, but is not required to, be the same as the overall
matching score discussed in Section 10.3.

(2) We next initialize an empty set (R) to collect the commi�ed consistent feature pairs and
two empty lists (list1 and list2) to keep track of their temporal scopes: i.e., we set R = ∅,
list1 = ⊥, and list2 = ⊥.

(3) Next, we consider all pairs of matching features in P in descending order of their domi-
nance scores. Let 〈f1, f2〉 ∈ P be the pair we are currently considering.
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(a) Temporal consistency veri�cation: Let 〈ts1, te1〉 and 〈ts2, te2〉 be the temporal scopes of
f1 and f2, respectively
(i) We a�empt to insert the ts1 and te1 into list1 ordered in increasing order of

time; similarly we a�empt to insert ts2 and te2 into the list, list2, also ordered in
increasing order of time.

(ii) Let rank (ts1), rank (ts2), rank (te1), and rank (te2) be the corresponding ranks of
the time points in their respective time ordered lists.

(iii) If rank (ts1) = rank (ts2) and rank (te1) = rank (te2), then we con�rm the inser-
tion and we keep the pair6.

(iv) Else, we drop the pair 〈f1, f2〉 and eliminate the corresponding scope boundaries
from the lists list1 and list2.

(b) If the candidate pair 〈f1, f2〉 has not been dropped due to temporal inconsistency, then
insert the pair in R: i.e., R → R ∪ {〈f1, f2〉}.

Note that the reason why the feature pairs are considered in descending order of dominance scores
is that, when an inconsistency is identi�ed, the most recently considered pair –which is less dom-
inant (relatively less aligned, smaller, and less similar) –can be eliminated without a�ecting the
already commi�ed boundaries.

10.6 RMT-Based Multi-variate Time Series Matching Score

Given two metadata-enriched multi-variate (MM) time series, Y1 and Y2, and their feature sets F1
and F2, the above process results in a set R (F1,F2) = {〈f1,i , f2,i〉}, where f1,i ∈ F1 and f2,i ∈ F2,
respectively. We de�ne the overall matching score, score (Y1,Y2), of the two multi-variate series,
using this set of matching feature pairs:

∑

〈f1, f2〉∈R (F1,F2 )
ϕ

(

AliдnD ( f1, f2),AliдnT ( f1, f2),AliдnV ( f1, f2),AliдnA( f1, f2),

SiдT ( f1, f2), SiдV ( f1, f2), SiдC ( f1, f2)

)

,

where ϕ is a combined scoring function.
While there exist di�erent merge functions (such asmin,max , sum, avд, product ), in the experi-

ments reported in Section 11 we use product , which approximates the boolean operator and when
individual scores are zeros and ones [5].

11 EVALUATION

In this section, we present experiment results that assess the e�ciency and e�ectiveness of the
robust multi-variate temporal (RMT7) feature extraction algorithms. In our preliminary work [51],
we had shown that the diagonal scale-space based RMT features (Section 5.1) are more e�ective
in partial time series search and classi�cation tasks than alternative techniques, including SVD,
where we created a single �ngerprint for each multi-variate time series using the SVD transfor-
mation; and DTW, where distances were computed directly using dynamic time warping [9]. In
the appendix, we also consider SAX[28] DTW, which provides time savings over DTW, possibly
at the expense of accuracy. �erefore, instead of replicating the experiments reported in [51], we
focus on the impact of full scale-space based RMT (Section 5.2) features with respect to the use of
diagonal scale space based RMT (Section 5.1) and also investigate the impacts of the alternative
matching and inconsistency removal strategies described in Section 10, within the context of a
motion recognition task.

6�e process is slightly more complex in that there can be exceptions where the ranks are di�erent, but time values are

the same. We also con�rm the insertion in these special cases.
7RMT source code is available at [13].
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Table 1. (a) Default configuration and (b) alternative matching/pruning strategies

(a) Default con�guration

RMT

# iterations, L 6
# of octaves, o 3
initial smoothing for time, σt ime,0 2.8
initial smoothing for relationships,σvar ,0 0.5
candidate pruning threshold, ω⊤ 10
descriptor size, 2a × 2b × c (4 × 4 × 8 =) 128
relationship reduction algorithm k-means

SVD

degree of energy preservation 95%

(b) Matching/pruning strategies
TO Temporal overlap (De�nition 10.1)
TP Temporal proximity (De�nition 10.2)
TA Temporal alignment (De�nition 10.3)
VA Variate alignment (De�nition 10.4)
DA Descriptor alignment (De�nition 10.5)
AA Amplitude alignment (De�nition 10.6)
TS Temporal scope signi�cance (De�ni-

tion 10.7)
VS Variate scope signi�cance (De�ni-

tion 10.7)

11.1 Se�ings

11.1.1 Hardware/So�ware. In order to ensure results are comparable to those reported in [51],
all experiments were run on the identical set up, including 4-core Intel Core i5-2400 3.10GHz
machines with 8GB memory, running 64-bit Windows 7 Enterprise, using Matlab.

11.1.2 Data Set. For the experiments in this section, we use theMocap time series data set [34]:
�e data set consists ofmovement records frommarkers placed on subjects’ bodies as they perform
8 types of tasks. We use ASF/AMC format where the original coordinate readings are converted
into 62 joint angles data. We treat readings for each joint angle as a di�erent uni-variate time series.
�e hierarchical spatial distribution (e.g. le� foot, right foot, le� leg, etc.) of the joint angles on
the body is used to create the underlying correlation matrix used as metadata8.
We consider additional data sets in the online appendix.

11.1.3 Evaluation Metrics. For evaluating accuracy, we use take-one-out methodologywith the
following criteria: (a) top-5 precision: the number of series, among the nearest 5 results, that are
of the same class of movement as the query series, and (b) top-‖c‖ precision: the number of series,
among the nearest ‖c‖ results (where ‖c‖ is the size of the movement class containing the query
series) that are of the same class as the query series. �e �rst measure re�ects how e�ective a
particular approach is for nearest-neighbor classi�cation, whereas the second measure re�ects
how well de�ned the classes.
In addition, we also report pairwise matching times for the alternative approaches. Note that

since we are using top-5 and top-‖c‖ classi�cation, the classi�cation time is a function of the value
of ‖c‖, the number of labeled data in the training data set, and the pairwise matching time. To
ensure that the e�ciency di�erent algorithms can be compared independently of the value of ‖c‖
and the training data set, in the paper, we report the pairwise matching time as an indicator of the
classi�cation cost.

11.1.4 Alternative RMT Features. We consider di�erent types of RMT features:

• diagonal scale-space based RMT (DIA):�is is the version of the RMT features studied in our
prior work. As described in Section 5.1, these features are extracted only by considering
the diagonal scales of the scale space; in other words, the features’ temporal and variate
scopes grow in synch to each other.
• full scale-space based RMT (FULL):�is is the version of the RMT features proposed in this
paper. As described in Section 5.2, these are extracted by considering all scales of the scale

8Note that this provides an intentionally roughmetadata, enabling us to observe accuracy of RMT features under imperfect

domain knowledge
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(a) Average top-5 precision (%)

Average Pairwise Matching Time

Non-paired Paired
RMT SVD [51] RMT DTW [51]

0.18s 0.003s 0.19s 0.38s

(c) Matching time (in seconds)

Average Top-5 Precision (%)

Non-paired Paired
Class num RMT SVD

[51]
RMT DTW

[51]

climb 18 58.9 52.2 85.6 68.9
dribble 14 32.9 28.6 87.1 84.3
jumping 30 100 82.0 100 100
running 19 100 100 100 100
salsa 30 50.0 59.3 100 87.1
soccer 6 43.3 30.0 93.3 96.7
walk 36 100 89.4 100 100
walk (un-
even)

76.1 100 58.7 100 98.7

Average 184 76.9 69.0 97.4 93.3
Con�dence
Interval

72.8-
80.8%

65.2-
72.8%

96.5-
98.3%

91.7-
94.9%

(b) Per-class top-5 precision

Fig. 8. Top-5 matching accuracy andmatching time – default configuration: descriptor alignment (DA) based

feature matching and DA based inconsistency pruning and overall score computation

space; consequently, the features’ temporal and variate scopes grow independently from
each other, enabling heterogeneously shaped features.
• hybrid RMT (HYB): We also consider hybrid feature sets, where diagonal scale-space fea-
tures and full scale-space features are combined. Note that due to the feature candidate
elimination strategy described in Section 7, feature set obtained using the full scale-space
is not necessarily the superset of the features obtained using the diagonal scale-space. �is
hybrid strategy re-introduces the diagonal scale-space features which may have been elim-
inated due to some features in the non-diagonal scales of the space.
• diagonal scale-space based RMT - alt. 2 (DIA2): Note that diagonal scale-space based RMT
features can be obtained either by using only the diagonal scales of the scale-space as
described in Section 5.1, or can be obtained by selecting the subset of the full scale-space
based RMT features such that the temporal and variate scales are the same. We refer to
this second alternative as DIA2.

Table 1(a) provides the outline of the default parameter con�guration and describes how these
parameters are varied in the experiments.

11.1.5 Alternative Alignment Strategies. In this section, we experiment with the various tempo-
ral and variate alignment metrics presented in Section 10.1 and listed in Table 1(b). When needed,
for combining these measures in Table 1(b), we use multiplication as the merge function. In ad-
dition, we consider two alignment strategies: (a) all octaves alignment (AoA): Under this strategy,
any two pair of features can be considered for alignment irrespective of their scales. (b) same oc-

tave alignment (SoA): Under this strategy, only those pairs of features that have the same time and
variate octaves are considered for alignment.

11.1.6 Alternative Inconsistency Elimination (Pruning) Strategies. In this section, we also con-
sider the impact of the measures presented in Table 1 on inconsistency elimination process (Sec-
tion 10.5). In addition, we consider two pruning strategies: (a) all octaves pruning (AoP): Under
this strategy, any two pairs of features can be considered inconsistent irrespective of their scales.
(b) same octave pruning (SoP): Under this strategy, only those pairs of features that have the same
time and variate octaves can be considered inconsistent.

11.2 Discussion of the Results
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Fig. 9. The impact of the alternative feature matching and inconsistency pruning strategies – full (FULL)

feature set, same octave alignment (SoA), and same octave pruning (SoP)
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Fig. 10. Average number of feature pairs for the alternatives considered in Figure 9. Here TiVj refers to query

features (remaining a�er inconsistency pruning) that are of time octave i and variate octave j

11.2.1 Overview. Figure 8(a) compares the classi�cation accuracy of RMT using the 8 classes
with 184 motions in the Mocap data set against the alternative approaches reported in [51]:

• variate-paired alignment: �is is the default con�guration where we assume that the pair-
ing of the variates in the query and in the database are known in advance. DTW requires
that this pairing is known. In the case of RMT, we leverage the pairing information by
ignoring feature matches during the feature alignment phase unless at least 50% of the
variates are common. As we see in Figure 8, paired RMT provides the best overall accu-
racy.
• non-variate-paired alignment: Both SVD and RMT can operate without requiring pairing
of the variates. Given twomulti-variate time series, SVD uses the decomposed series rather
than the series themselves, thus it does not require the series to be variate paired. Similarly,
RMT can be implemented in such a way that variate alignments are completely ignored
during the matching phase. As we see in Figure 8, non-paired RMTworks be�er than SVD
– and thus is applicable when pairing information is not available. While SVD supports
fast matching, the accuracy is signi�cantly lower to render it a feasible approach.

Note that Figure 8(b) also includes con�dence intervals for the accuracies of various techniques.
As we see here, RMT’s con�dence intervals do not overlap with the other techniques’ accuracy
con�dence intervals, providing additional evidence for the advantage of using RMT features. More-
over, the con�dence intervals of RMT are signi�cantly tighter than the con�dence intervals of
other techniques, again providing evidence that RMT is more robust than the other approaches.
Figure 8(a) shows that, as expected, we obtain highest accuracy when we consider the full scale

space. It is also important to note that in these experiments we have not leverage RMT feature sig-
ni�cance (FS) to boost matching accuracy. Unlike DTW, RMT can further boost accuracy through
relevance feeback and other (semi-)supervised learniing techniques.

11.2.2 Impact of the Alternative Feature Matching and Inconsistency Pruning Strategies. As we
have seen in Section 10 and Table 1, one can use several strategies to match features across multi-
variate time series and prune inconsistencies. For the results above, as the default con�guration,
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Fig. 11. Impact of feature discovery and octave management – using descriptor alignment (DA) for feature

matching, inconsistency pruning, and overall scoring

Table 2. # feature pairs before and a�er inconsistency pruning for the optimal configuration in Figure 11

Before inconsistency pruning A�er inconsistency pruning
DIA 952.2 21.5

FULL 1252.1 48.2
HYB 2204.3 56.3

we considered descriptor alignment (DA) based feature matching, inconsistency, pruning and over-
all score computation. While the best strategy is application dependent, as we see in Figure 9, in
this application, RMT is able to achieve high accuracy by using descriptor alignment (DA) for fea-
ture matching, inconsistency pruning, and overall score computation. �e result also shows that
considering additional criteria, such as temporal or variate alignment, is not necessary (and can,
in fact, be harmful) in this particular application.
�is shows that the RMT feature descriptors are highly informative. �is is further con�rmed

by Figure 10, where we see the average number of (post-pruning) matching feature pairs for the
alternative strategies considered in Figure 9. As we see in this Figure, a higher number of matching
feature pairs does not translate into more accurate matches. �is indicates that the resulting RMT
features are highly informative and a small number of feature pairs at di�erent scales and shapes
are su�cient to characterize di�erent types of motion.

Impact of the Feature Discovery and Octave Management Strategies. For the default results pre-
sented above, we leveraged full (FULL) feature set with same octave alignment (AoA) and same
octave pruning (SoP) strategies. In Figure 11, we study the impact of these strategies in further
detail. As we see in this �gure, the default con�guation indeed leads to highest accuracy: Firstly,
as expected, feature matches and inconsistencies need to be considered at each octave scale sep-
arately. Secondly, the �gure shows that the full scale space provide more information than the
diagonal scale space – in fact, extending the FULL feature set with diagonal features (i.e., using
the HYB strategy) does not lead to any be�er results than just using the FULL or DIA feature sets.
�is is further studied in Table 2, which shows the average matching # feature pairs, before and

a�er inconsistency pruning, for the optimal con�guration in Figure 11. As we see here, inconsis-
tency pruning eliminates a large number of feature pairs. We also see that the hybrid option (HYB),
has more feature pairs than both DIA and FULL, but, as we have seen Figure 11, these additional
feature pairs do not contribute to the accuracy.
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12 CONCLUSIONS

Many time series data sets are (a) multi-variate, (b) interrelated, and (c) multi-resolution. �ese in-
cludemotion and gesture data, as described in this paper, aswell as data fromother domains: In this
paper, we presented a metadata-enriched multi-variate time series model, in which a dependen-
cy/correlation model relates the individual variates to each other. Recognizing that multi-variate
temporal features can be extracted more e�ectively by simultaneously considering, at multiple
scales, di�erences among individual variates along with the dependency/correlation model that
relates them, we further developed algorithms to detect robust multi-variate temporal (RMT) fea-
tures that are multi-resolution, local, and invariant against various types of noise. Experiments
using human motion data, where labeled ground truth is available, con�rmed that the RMT fea-
tures are highly e�ective in multi-variate series search and classi�cation.
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Fig. 12. A multi-variate time series capturing body movement: the structure of the human body relates the

positions of the body sensors during the motion capture [34]

ONLINE APPENDIX

A- Experiments with Additional Data Sets

Many time series data sets are (a) multi-variate, (b) interrelated, and (c) multi-resolution: For the
experiments reported in this paper, we used several multi-variate data sets that (a) o�er the ability
to leverage supportingmetadata and (b) o�er ground truth that can be used for evaluation purposes.
�e Mocap data sets used in the experiments in Section 11 represented human movement in the
form of multi-variate time series (Figure 12, [34]). In this section, we also consider two additional
multimedia data sets:
�e Australian sign language data9 includes sign gestures captured using a glove-based capture

system. �e capture data includes 100 per second tracking for all �ve �ngers for both hands: each
position tracker provides six degrees of freedom (roll, pitch, yaw, x, y, and z). �e data set contains
95 signs, with 27 examples per sign. �is data set has 22 variates (11 per hand) and contains a
total of 2565 (= 95 × 27) multi-variate time series of average time length, 57. We associated with
this data set a metadata �le that considers the positions of the �ngers within each hand. For this
data set we set σtime,0 to 0.5 (proportional to the average length of the series relative to Mocap
- but su�ciently large that the temporal scope of the smallest feature covers more than one time
instant). Note that ASL data set is selected because it is a relatively synchronized data set where
Euclidean based measures perform well.
�e Bird Song data set10 contains Mel-frequency cepstral coe�cient (MFCC) features for di�er-

ent bird calls. Intuitively, each MFCC coe�cient captures short-term power spectrum of a sound
for a given frequency band. �e MFCC bands are equally spaced on the Mel scale (indicating that
they are judged to be of equal distance from each other by listeners). �e data set contains 13
MFCC coe�cients (i.e., variates) for 154 bird calls of 8 classes, with the average time length of 397
time stamps. We associated with this data set a metadata �le that records whichMFCC co-e�cient
is neighbor to which other MFCC coe�cients. For this data set we set σtime,0 to 1.6 (proportional
to the average length of the series, relative to Mocap).
Figure 13 shows top-5 accuracies and matching times for paired RMT, DTW[2], and SAX[28]

DTW. SAX (Symbolic Aggregate approXimation [28]) is a symbolic representation for time series,
which provides a lower-bound for distance measurements such as dynamic time warping and in
general can be computed faster than traditional DTW. Here we also provide SAX11 as a baseline
competitor. We set the parameters for SAX representation: use 10 symbols11 for representations
and 20 segments for each multi-variate time series. Since DTW can be made faster by consider-
ing narrower bands [20, 43] (rather than the whole sequences), in this �gure, we also consider

9h�ps://archive.ics.uci.edu/ml/datasets/Australian+Sign+Language+signs+(High+�ality)
10h�p://www.xeno-canto.org/explore/taxonomy
11h�p://www.cs.ucr.edu/ eamonn/SAX.htm
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Fig. 13. (a,c,e) top-5 accuracies for RMT of DTW for di�erent bands (note: 0% band length corresponds to

traditional Euclidean distance) and (b,d,f) matching times: for all experiments, the smallest RMT feature is

set to be 5% of the average time series in the data set.

accuracies and execution times for di�erent DTW band sizes. As an approximation method, the
performance of SAX shares a similar behavior as the DTW method.
We can see in this �gure that, while it may help make DTW process faster, placing a signi�cant

band length constraint (≤ 80%) on DTW may reduce accuracy (for Mocap and bird song data
sets, which are less temporally synchronized than the ASL data set). Most importantly, the �gure
shows that while SAX’s accuracy widely �uctuates from one data set to the other, RMT provides
consistently be�er (and overall the best) top-5 accuracies, at a matching time cost comparable to
DTW.�ese results indicate that, whenever (even rough)metadata relating the variates is available,
RMT can leverage this information to improve matching and classi�cation accuracy.

B- Experiments with Additional Algorithms

In the previous sections, we compared the proposed RMT algorithm to approaches that are based
on SVD, DTW, and SAX-based feature extraction. In this section, we consider two recent systems,
namely RPM [52] and STS3 [37], that provide parameter selection and hyper-parameter estima-
tion functionalities for uni-variate time series matching and time-series classi�cation tasks; in
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Data set RPM Acc. (SVM) STS3 Acc. (1-NN) RMT Acc. (1-NN)

MoCap 0.847 0.078 0.989

BirdSong 0.436 0.145 0.481

ASL N/A 0.234 0.715

Table 3. Accuracies for the multi-dimensional extensions of RPM [52] and STS3 [37] algorithms

particular, both use training data to learn feature pa�erns as well as contextually relevant hyper-
parameters.
For both of these techniques, we obtained original code from the authors. However, since both

of these approaches were originally designed for uni-variate time series data, we revised their code
to account for multi-variate series as follows:

• RPM [52] creates SAX sequences and grammar rules for uni-variate time series from each
class. More speci�cally, RPM concatenates all uni-variate time series from the same class
in the training data and then extracts and selects SAX symbol sequences that are most
representative for this given class. RPM then uses Sequitur to learn the context free gram-
mars from the SAX representations as the grammar induction rules to represent this class.
Given the output of this process, it �nally uses SVM classi�er for classi�cation tasks.

Since in this paper, we consider multi-variate time series data, we modi�ed the original
implementation to account for the existence of multiple variates. �e training phase stays
the same: RPM generates a grammar pa�ern for each variate. We concatenate all variate
pa�ern vectors from the same class into one vector and use these concatenated pa�ern
vectors from testing data for the SVM classi�er. In order to ensure that RPM results and
other results presented in our paper are comparable, we set the same SAX parameters as
it was described in our manuscript: 20 SAX segments for each multi-variate time series
data elements and up to 10 symbols for grammar rule-based representations.
• Instead of concatenating all uni-variate time series from the same class together, STS3 [37]
learns pa�erns (sets of cell IDs) for every time series of each class. During testing phase, it
computes sets of cells for testing data and it uses Jaccard similarity between training and
testing data to assign class labels for the testing class.

Once again, the original STS3 algorithm is designed for uni-variate time series. �ere-
fore, we modi�ed the implementation such that it extracts sets of cells for each variate of
class per training data element and aggregates the �nal Jaccard similarities for each pair
of corresponding variates between two multi-variate time series to measure time series
similarity.

RPM [52] provides classi�cation through SVM, whereas the code of STS3 [37] provided by the
authors is designed for 1-NN matching. �erefore, to be fair to STS3, in Table 3, we provide 1-NN
accuracy for RMT (rather than 5-NN and ‖c‖-NN accuracies as reported elsewhere in this paper).
As the results in the table shows, the accuracy of RPM is lower than that of RMT, especially

for the BirdSong data set, which results in signi�caanly lower accurcy, Note that, we are not able
to report RPM accuracy results for the Australian Sign Language (ASL) dataset because there are
multiple variates from various classes with values all zero and these cannot be used to generate
grammar rules for classi�cation. �e table also shows that STS3 performs signi�cantly worse than
both RPM and RMT. While, unlike RPM, STS3 is able to handle the ASL data, it still provides very
low accuracy due to the existence of these highly non-discriminating variates.
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Data set Jaccard SAX Acc. (1-NN) Cosine SAX Acc. (1-NN) RMT Acc. (1-NN)

MoCap 0.826 0.782 0.989

BirdSong 0.357 0.305 0.481

ASL 0.525 0.504 0.715

Table 4. Accuracies for the multi-dimensional extensions of Jaccard and cosine similarity based extensions

of SAX

We note that the reason why STS3 performs rather poorly on multi-variate time series may
be due to the way these algorithms learn pa�erns or the way they compare the series (or both).
In order to be�er understand the underlying reason, we also considered a simple strategy that
creates SAX symbols as in RPM, but uses Jaccard similarity of the resulting SAX term vectors for
similarity computation as in STS3. More speci�cally, we counted the frequencies of each SAX
symbol within an uni-variate vector and summed up the resulting weighted Jaccard similarities
among variate pairs to obtain the similarity between two multi-variate time series: let ~s and ~t

represent the symbol frequency vectors for two time series, S andT ; the corresponding weighted
Jaccard similarity is computed as

sim J acc (S,T ) =
‖~s‖1 + ‖~t ‖1 − ‖~s −~t ‖1
‖~s‖1 + ‖~t ‖1 + ‖~s −~t ‖1

,

where ‖ ∗ ‖1 represents norm-1 for the corresponding vector. Furthermore, as a control scenario,
we also considered the cosine similarity between the two vectors.

�e results under the same evaluation conditions are presented in Table 4. �is rather simple
technique, based on SAX features matched using Jaccard similarity, approaches to that of RPM (on
MoCap and BirdSong data sets where RPM results are available) and signi�cantly improves over
that of STS3; however results are still not as good as the RMT accuracies. Moreover, when using
cosine similarity, matching accuracy slightly drops under that of the Jaccard similarity, indicating
that STS3 is using a goodmeasure for matching, but the core problem is that the underlying pa�ern
extraction scheme cannot be directly expanded for multi-variate series.
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