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1. Introduction

In these proceedings we provide a consistency proof (ngt polver counting, but a proof
that proves that there are enough Wilson coefficients) ofigigaormalizability in SMEFT. Theory
deals with the well founded theoretical results obtainednfifirst principles, while phenomenol-
ogy deals with not so well founded effective models with a Bnalomain of application. For a
definition see Ref[]1].

Mathematics suffers from some of the same inherent diffe=iths theoretical physics: great
successes during the 20th century, increasing difficutbedo better, as the easier problems get
solved. The lesson of experiments 1973 - today: it is extherdificult to find a flaw in the
Standard Model (SM): maybe the SM includes elements of & furiddamental theory. But then
how can one hope to make progress without experimental gcgfaOne should pay close attention
to what we do not understand precisely about the SM even #tradard prejudice is “that’s a hard
technical problem, and solving it won't change anything”.

There is a conventional vision: some very different physiosurs at Planck scale, SM is just
an effective field theory. What about the next SM? A new weaklypled renormalizable model?
A tower of EFTs? A different vision: is the SM close to a fundantal theory?

Itis possible that at some very large energy scale, all mmmrealizable interactions disappear.
This seems unlikely, given the difficulty with gravity. Itj@ssible that the rules change drastically,
it may even be possible that there is no end, simply more amd smales. This prompts the impor-
tant question whether there is a last fundamental theohjisrtawer of EFTs which supersede each
other with rising energies. Some people conjecture thatdbeper theory could be a string theory,
i.e. atheory which is not a field theory any more. Or should dltienately expect from physics
theories that they are only valid as approximations and imidd domain [[IL[]2]? Alternatively,
one should not resort to arguments involving gravity: lebasish further thoughts about gravity
and the damage it could do to the weak scile [3].

When looking for ultraviolet (UV) completions of the SM thallbwing remarks are relevant:
there are 45 spin/R2 and 27 spin 1 dof, only one spin 0? If there are more the présenviedge
requires a hierarchy of VEVs which, once again, is a seriques-tlining problem. Why are all
mixings small? Is it accidental or systematic (i.e. a new reyimy)? The real problem when
dealing with UV completions is that one model is falsifialidat an endless stream of them is not.

2. Theoretical framework

Back to the “more and more scales” scenario. Let's undergsiom (SMEFT) but it is an
error to believe that rigour is the enemy of simplicity. O ttontrary we find it confirmed by
numerous examples that the rigorous method is at the sameghiensimpler and the more easily
comprehended. To summarize: there is a need for a constbtemtetical framework in which
deviations from the SM (or NextSM) predictions can be catad, every 20 bogus hypotheses you
test, one of them will give you a of < 0.05. Such a framework should be applicable to compre-
hensively describe measurements in all sectors of papfgfsics: LHC Higgs measurements, past
EWPD, etc. Consider the SM augmented with the inclusion ghéi dimensional operators and
call it Tq; it is not strictly renormalizable. Although workable td atders, T; fails above a certain
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scale,A1. Consider any BSM model that is strictly renormalizable sespects unitarity (3); its
parameters can be fixed by comparison with data, while maddesavy states are presently un-
known. Note that T+ T, in the UV but must have the same IR behavior. Consider now traev
set of data belowA;: T1 should be able to explain them by fitting Wilson coefficiefisadjusting
the masses of heavy states (as SM did with the Higgs mass gtdieRId be able to explain the
data. Goodness of both explanations are crucial in unaetistg how well they match and how
reasonable is to use; Tnstead of the full 3. Does b explain everything? Certainly not, but it
should be able to explain something more thanWe could now define Jas T, augmented with
(its own) higher dimensional operators; it is valid up to alsé\,. Etc.

21 SMEFT

The construction of the SMEFT, to all orders, is not based ssumptions on the size of
the Wilson coefficients of the higher dimensional operatdRgstricting to a particular UV case
is not an integral part of a general SMEFT treatment and uaritases can be chosen once the
general calculation is performed. If the value of Wilsonfioents in broad UV scenarios could
be inferred in general this would be of significant scientifitue.

To summarizeconstructing SMEFT is based on the fact that experimerdsrat finite energy
and “measure” an effective actio™A); whatever QFT should give low energ§™A), VA < c.
One also assumes that there is no fundamental scale aboub &fi") is not defined[[4] and
S*f(A) loses its predictive power if a processEat= A requirese renormalized parameterg [5]. It
is remarkable that when constructive proofs are providesly simplicity always seems to detract
from their originality.

2.2 The UV connection
The SMEFT approach is based on the following Lagrandibfi.[8, [, [Z0]:

=5 A+ 9o, o 7 (2.1)
Zw Z%l “Z 42k D

where we use the “Warsaw” bas[sJ11]. Heres theSU(2) coupling constant and
a2k = 1/ (V2Ge ) = g, (2.2)

Gk is the Fermi coupling constant amdis the scale around which new physics (NP) must be
resolved. For each procebBkdefines the dim= 4 leading order (LO) (e.gN =1 for H — VV
etc. butN = 3 for H — yy). Ng = N for tree initiated processes ahll— 2 for loop initiated ones.
Single insertions of dire= 6 operators defines next-to-leading (NLO) SMEFT. Exytree) vertex
generated bﬁé,w = (oT®) FRHVFR by ﬁ( = ®TFHF2 DPD, O etc.

A simple SMEFT ordertable for tree |n|t|ated—l 2 processes is as follows (N.Bg denotes
a singlec'® insertion,gZ denotes two, distinc?® insertions):

g/dim —
! gﬂff“: +0%67 5, +9GA5,
934273 ) +9 9642731>1 +9 9642732>1
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0 9964271(7?1 defines LO SMEFT. There is also RG-improved LO and missindpdrigorders
uncertainty (MHOU) for LO SMEFT;

0 g6y, defines NLO SMEFT;

O 9o, G 0% 443, give MHOU for NLO SMEFT.

The interplay between integrating out heavy scalars an8khdecoupling limit has been discussed
in Ref. [[2]. In the very general case the SM decoupling livaitnot be obtained by making only
assumptions about one parameter.

Working in a spontaneously broken gauge theories has coasegs related to the duality
H—VEV. We recall the concept of (haive) power counting (for agl formulation of power
counting see Ref[[13]): any local operator in the Lagramgseschematically of the form

dim

Ne

O—=N\" |V|| acwawb (q)’r)d q)eAf

codim

3
5(@tb)+ctdiet+ftlfn=4. (2.3)

where Lorentz, flavor and group indices have been suppregsastinds for a generic fermion
fields, ® for a generic scalar and A for a generic gauge field. All liglatsses are scaled in units of
the (bare) W mashl. We define dimensions according to

codim& = g(a+ b)+c+d+e+f, dim& = codim+1 . (2.4)

One loop renormalization is controlled by: din6, codim= 4, Ng > 2. The hearth of the prob-
lem: a large number of operators implodes into a small nurobepefficients, e.g. there are 92
SM vertices, 28 CP even operators (1 flavog, N0, 2).

Debate topic for SMEFT is the choice of a “basis” for din6 operators. Clearly all bases
are equivalent as long as they are a “basis”, containing tingmal set of operators after the use
of equations of motion[J31] and respecting ®6(3) x SU(2) x U(1) gauge invariance. From a
more formal point of view a basis is characterized by its wleswith respect to renormalization.
Equivalence of bases should always be understood as a statéanthe S-matrix and not for the
Lagrangian, as dictated by the equivalence theorem, see Rdf[1b]. Any phenomenological
approach that misses one of these ingredients is still alglepfor a preliminar analysis, as long
as it does not pretend to be an EFT. Strictly speaking we arsidering here the virtual part of
SMEFT; of course, the real (emission) part of SMEFT shoulihbrided, see Secti.5.

2.3 Sdf energies

2
Our first step deals with renormalization of self-energiesteAyy = 7%= — y—Inm—In %
nis space-time dimension, the loop measurg4s"d"q andr is the renormalization scale.

o o (4 6)
S = o7 T = Tz (S HO62)
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Sha :%;ZKX San =Maa T,
SRS AT A R T
Dw = DS/A'\)/ +06 DS/G\)/ ) Py = PS/A'\)/ + 06 PS/G\)/
%X:%ZQX‘FQGT“VaAZa Shn =NzaTH +Pza pHp”,
ST_WZZ[Af"F(Vf—AfV'S)i ] (2.5)
We introduce counterterms:
Zi—1+ 132 , (dz< +gedZi(6>> Aoy - (2.6)

With field/parameter counterterms we can makg Flaa,Dvv,Mza, Vi, A and the correspond-

ing Dyson resummed propagators UV finiteatg® ge) , which is enough when working under the
assumption that gauge bosons couple to conserved curr&rgauge-invariant description turns
out to be mandatory.

24 Morelegs

However, field/parameter counterterms are not enough te td&kfinite the Green’s functions
with more than two legs. A mixing matrix among Wilson coeffitis is needed:

a = Zz A 7V = 5+ 13 S dZ! Auy 2.7)

Define the following combinations of Wilson coefficients (@vh $(c,) denotes the sine(cosine) of
the renormalized weak-mixing angle):

9z = Sgama‘f‘cga(pw_sgcga(pwm
Ban = C28gp + S gw + S, Cy Agus »
8z =26, S, (Bow —8gs) + (2¢ — 1) Ague (2.8)

and compute the (on-shell) decay®) — A, (p1)A, (p2) where the amplitude is

Alpr = Tona THY, M ETHY = pz py — p1- p2OHY . (2.9)
This amplitude is made UV finite by mixing,, With @, asz, 8,z andagy

Compute the (on-shell) decay(P) — Au(pl)Zv(pg). After adding 1PI and 1PR components we
obtain

AﬁXz = %AZ THY M TIJV pz pl —P1-P2 oY (2-10)
This amplitude is made UV finite by mixing,, with a,a,a.,,8;; andagy.

Compute the (on-shell) decay(P) — Zu(pl)Zv(pz). How to use it has been explained in R§f] [16].
The amplitude contains @,,,, part proportional t&*¥ and a#?,,, part proportional tcpg py.
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Remark Mixing of a,, with other Wilson coefficients make®,,, UV finite, while the mixing of
agn MmakesZ,,; UV finite.

Compute the (on-shell) decay(P) — W*u(pl)wﬂ,(pz). This process follows the same decom-
position of H— ZZ and it is UV finite in the dim= 4 part. However, for the dim:- 6 one, there are
no Wilson coefficients left free i,y SO that its UV finiteness follows from gauge cancellations
(H— AA AZ, ZZ WW = 6 Lorentz structures controlled by 5 coefficients).

Proposition 2.1. This is the first part in proving closure of NLO SMEFT underaemalization.
Remark Mixing of ay, makesZ,ww UV finite.

Remark Compute the (on-shell) decay(P) — b(p1)b(p2). It is dim = 4 UV finite and mixing
of ag, makes it UV finite also at dira- 6.

Remark Compute the (on-shell) decay ) — f(p1)f(pz). Itis dim= 4 UV finite and we intro-
duce

Aw =S, qws +C; Apw g =S;Asw — CyAws,

Agw = Sy Adws +Cg Adw
auw = S, duwe + Cy Ausw

1
a((p?)_a((p}) — E(a(ph/‘i‘a(plA)v
aguy = &) + gy + 2l
Bady = B —Bgd — 8lg

adB :SeadBW_CeadW87

Ayg = Cy Auws — S, Ausw (2.11)
1
Al = é(atplA —alv),
Boun = Byq — Bgu-+ By
By = By + Bgd — g (2.12)

and obtain that
Z — Il requires mixing ofa sw, gl o @Nday, With other coefficients,
Z — Tu requires mixing 08w, agua andagyy With other coefficients,

Z — dd requires mixing 084w, 8pda aNdaygy With other coefficients,

Z — Vv requires mixing o, = 2(afp}) + afj)) with other coefficients.

At this point we are left with the universality of the electdharge. In QED there is a Ward identity
telling us thate is renormalized in terms of vacuum polarization and Waia#sbv-Taylor (WST)
identities allow us to generalize the argument to the full. $¥ can give a quantitative meaning
to the the previous statement by saying that the contributiom vertices (at zero momentum
transfer) cancels those from (fermion) wave function reradization factors. Therefore, compute
the vertex Af (at g = 0) and the f wave function factor in SMEFT, proving that the TW@entities
can be extended to dim 6; this is non trivial since there are no free Wilson coeffitsein these
terms (after the previous steps); the (non-trivial) finies of e~ — ff follows.

Proposition 2.2. This is the second part in proving closure of NLO SMEFT undaprmalization.
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2.5 ThelR connection

Consider the decay Z; II, where the amplitude is

Mtree_g%(“ +996«5271(), (2.13)
4 _ 1 e _1
1, =7 Vi+y°), Ay =W Vi+AY), (2.14)
(’]
\Y, _3 4 -7 1+4¢ 4 -3
|_€( o )aAA+CG( + e)aZZ+Se( ‘o )aAZ
1 2
+4—C9(7—S§)a@+ga<p|v,
s 1 2
AI:gaAA+Cgazz+SeaAz_4—cea<pD+ga<pLA- (2.15)

After UV renormalization, i.e. after counterterms and mgihave been introduced, we perform
analytic continuation im (space-time dimensionj,= 4+ € with ¢ positive.

Proposition 2.3. The infrared/collinear part of the one-loop virtual cortéans shows double fac-
torization.

4

M(Z T+ oy = 38%1 My ssz"'”[ r{ (1+g6Ar)+g6rgﬁ>} . (2.16)

Proposition 2.4. The infrared/collinear part of the real corrections showsuttle factorization.

4

MEPP(Z = T+14(y) = 384 3

My .7 bfem[ Y (14 goAT) + gl )} (2.17)

Proposition 2.5. The total = virtual + real is IR/collinear finite at’’(g* ge).

Assembling everything gives (terms in red give the SM anywer

3
I _ 3.0 ) | GeM
Moeo = 570 (1+068Gk0) + To= 24/2m (F+1)

3
® C, 512 v
AQED—2(2—s§)aAA+252aZZ+2< +55 v Ay,

16 1 e
— 5 A+ O
2 V2 1 QFP
O%ep = <1—6v|—v|) c_g (seaAA—Za¢D>
S 2
4+ <l—|—2V| —V|2) <azz+éaAz> +§ (a(p|A + Vi a(plv) (2.18)
]
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2.6 Next steps

The W -decay series is almost completed; next, inclusiorié{quadrupole gauge couplings,
last stop before renormalizability? This brings us to gaagemalies and anomaly cancellation;
d'Hoker-Farhi [If], (Wess-Zumino[][L8]) terms required? tfaxsymmetry? Severe problems
are expected; perhaps, a deeper understanding of SMEFW-ankergy limit of an underlying
anomaly-free theory?

Proposition 2.6. SMEFT anomalies are UV finité is good for renormalizability), restoring gauge
invariance order-by-order by adding finite counterterms, iit is possible to quantize an anoma-
lous theory in a manner that respects WYT1 [5] and loddie latter is good for unitarity, another
tiny step forward.

3. Conclusions

NLO results have already had an important impact on the SM@iyBics program. LEP con-
straints should not be interpreted to mean that effective EIMparameters should be set to zero in
LHC analyses. It is important to preserve the original dadd just the interpretation results, as the
estimate of the missing higher order terms can change ower thodifying the lessons drawn from
the data and projected into the SMEFT. The assignment ofaedheal error for SMEFT analyses
is always important. Considering projections for the e to be reached in LHC Runll analy-
ses, LO results for interpretations of the data in the SMEf€Tchallenged by consistency concerns
and are not sufficient, if the cut off scale is in the féveVrange. If the scale is below experimen-
tal sensitivity we are in trouble, but let's push constraitd the experimental limit consistently.

Unfortunately, ideas that require people to reorganizi gieture of the world provoke hostility.

To conclude, the journey to the next (and next-to-next) SM reguire crossing narrow
straits of precision physics. If that is what nature hasamestor us, we must equip ourselves with
both a range of concrete models as well as a general thebliggever, each paradigm will be
shown to satisfy more or less the criteria that it dictatestéelf and to fall short of a few of those
dictated by its opponent.
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