
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Anomalies in scheduling control applications and design complexity

Publisher:

Published version:

DOI:10.23919/DATE.2017.7927247

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1662770 since 2018-03-19T09:51:09Z

Anomalies in Scheduling Control Applications and Design Complexity
Amir Aminifar1, Enrico Bini2

1Embedded Systems Laboratory (ESL), EPFL, Switzerland
2University of Turin, Italy

amir.aminifar@epfl.ch, bini@di.unito.it

Abstract—Today, many control applications in cyber-
physical systems are implemented on shared platforms. Such
resource sharing may lead to complex timing behaviors
and, in turn, instability of control applications. This paper
highlights a number of anomalies demonstrating complex
timing behaviors caused as a result of resource sharing.
Such anomalous scenarios, then, lead to a dramatic increase
in design complexity, if not properly considered. Here, we
demonstrate that these anomalies are, in fact, very improba-
ble. Therefore, design methodologies for these systems should
mainly be devised and tuned towards the majority of cases,
as opposed to anomalies, but should also be able to handle
such anomalous scenarios.

Keywords- control applications, resource sharing, stability
analysis, time delay, latency, jitter, anomalies, design method-
ologies.

I. INTRODUCTION AND RELATED WORK

Today, we are observing a shift from federated archi-
tectures to integrated architectures in automotive domain,
where several applications are sharing the same platform
[1]. As a result, the majority of control applications
in such domains are implemented as software tasks on
shared platforms (see Figure 1). This resource sharing
leads to complex timing behaviors, which may jeopardize
the stability of the control applications if not taken into
account. This problem, known as control–scheduling co-
design, has been studied in the last two decades [2]–[13].

Such complex timing behaviors, however, may lead to
complexity of design methodologies. One of the main
contributing factors in design complexity is the notion of
anomaly resulted from these complex timing behaviors.
These anomalies are simply due to the fact that important
properties, e.g., the monotonicity property, do not hold
anymore. Let us consider a simple abstract example, where
we would like to find the maximum value of a certain
parameter x, which satisfies a constraint f(x) ≤ 0.
Assuming f(x) is a monotonic function with respect to
parameter x, we can easily use a simple and efficient
binary search algorithm and obtain the optimal solution.
By checking the constraint for one value of x, we can find
out if the optimum solution y satisfies y < x or y > x.
Hence efficient pruning of the search space.

Let us now consider a concrete example in the cyber-
physical systems area. It is well know that a control
application can provide satisfactory performance within a
range of sampling periods [14]. Therefore the opportunity
of optimizing control performance with respect to sam-
pling period. It is widely believed that a controller that is
allocated more computing resource (such as shorter sam-
pling period, longer computation time, or higher priority)
provides a better control quality. In this paper, instead,

plantplant

processing unit

task
control

task
control

Figure 1. Resource sharing among control applications.

we demonstrate that this is actually not true. For instance,
the standard quadratic control cost of a control application
[14] with respect to its sampling period is shown in Figure
2. We highlight three interesting aspects of this result.
First, for certain pathological sampling periods the control
cost tends to infinity [15]. Secondly, allocating more
resources (shorter sampling period) to a controller does not
necessarily lead to a better performance (smaller control
cost). Thus, ignoring this non-monotonicity can lead to
unsafe and invalid design solutions. Thirdly, even though
allocating more resources does not always lead to a better
performance, there does exist a clear trend for control
cost with respect to sampling period. That is, allocating
more resources to a controller often leads to a better
performance. Hence, ignoring this clear trend may result in
a highly complex design process. This paper demonstrates
that a correct design methodology should mainly target
the majority of cases (i.e., exploit general trends such as
monotonicity even though they do not always hold), but
should also be able to handle the anomalies.

The existing optimal priority assignment, e.g., [16], and
efficient sensitivity analysis, e.g., [17], in the real-time
systems area are examples of exploiting the monotonicity
property. However, if the monotonicity property does not
hold or is ignored, often such problems cannot be solved
safely and efficiently using traditional approaches. That is,
in such scenarios, the majority of design methodologies
(1) suffer from extreme complexity, or (2) provide invalid
solutions. On the one hand, if such important properties,
e.g., monotonicity, are not exploited at all, the design
and optimization process becomes extremely complex. On
the other hand, an approach which uses such properties
without any consideration, even though they do not always
hold, may produce unsafe and invalid solutions.

The anomalies in real-time task scheduling are dis-
cussed thoroughly. For example, in [18], it is shown that
a shorter computation time for one task of a task chain,
mapped on a multi-core platform, may lead to a longer
end-to-end delay for the same task chain. Another relevant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling Period (s)

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

C
o

n
tr

o
l
C

o
s
t
(l
o
g
)

Figure 2. General increasing trend of control cost with sampling period,
despite non-monotonicity.

concept is the notion of sustainability in the real-time
scheduling area. In short, a real-time schedulability test is
sustainable if any task set deemed schedulable by the test
remains also schedulable with “better” parameters [19].

The anomalies in scheduling control applications are
discussed in [20]. The authors show, using simple ex-
amples, that increasing the priority of a task (under the
fixed-priority scheduling policy) may lead to an increased
amount of jitter and, in turn, instability of the control
application. Similarly, increasing the sampling period of
a higher priority task may lead to instability of a lower
priority task. These results, while valid, are counter-
intuitive. That is, in both cases, the interference of other
tasks are reduced for the task under analysis, but this leads
to worse stability results.

In this paper, we discuss the anomalies in scheduling
control applications and their impacts on design complex-
ity. We show, experimentally, that these anomalies occur
extremely rarely in practice. Further, we demonstrate that
a correct design methodology should target the majority
of cases (i.e., to exploit properties such as monotonicity),
while taking the anomalies into consideration. This is
illustrated for the priority assignment problem, as a case
study.

II. SYSTEM MODEL

In this paper, we assume a uniprocessor platform which
is shared among n control applications. While the platform
can also host other real-time tasks, for the simplicity of
presentation, we only consider control applications.

A. Task Model

Given is a set of independent tasks, where each task
is denoted by τi. The computation time (execution time),
sampling period, and priority of task τi are denoted by
ci, hi, and ρi, respectively. The computation time ci is
bounded from below by cbi and from above by cwi . The
set of higher priority tasks for task τi is denoted by hp (τi).
Task τi has higher priority than task τj if ρi > ρj . Each
instance of a task is referred to as a job.

B. Plant Model

The plant associated with a control task τi is modeled
by a continuous-time system of differential equations [14],

ẋi = Aixi +Biui, (1)

R
wb

Rk
1
h k

2
h

JL

t

Figure 3. Graphical interpretation of the latency and worst-case
response-time jitter [20].

where xi and ui are the plant state and the control signal,
respectively. The sampling is done periodically and the
control signal is updated with some delay, which depends
on task scheduling.

III. STABILITY ANALYSIS

In this section, we investigate the dependency between
the stability of the controlled plant and the latency and
jitter experienced by the control task. Therefore, in order
to apply stability analysis, the values of the nominal delay
(Li) and worst-case response-time jitter (Ji) of control
task τi should be computed. The latency Li is defined as
the constant part of the delay experienced by the control
task. The jitter Ji is defined as the variation in the delay
experienced by the control task. The two metrics are
defined based on the worst-case and best-case response
times as follows (see Figure 3),

Li = Rb
i ,

Ji = Rw
i −Rb

i ,
(2)

where Rw
i and Rb

i denote the worst-case and best-case
response times, respectively. In the following, we give
a brief overview on computing the worst-case and best-
case response times, assuming fixed-priority preemptive
scheduling, implicit deadlines, and an independent task
set.

Under the aforementioned assumptions, the exact worst-
case response time of a task τi can be computed by the
following equation [21],

Rw
i = cwi +

∑
τj∈hp(τi)

⌈
Rw
i

hj

⌉
cwj . (3)

Similarly, the exact best-case response time of a task τi
is given by the following equation [22],

Rb
i = cbi +

∑
τj∈hp(τi)

⌈
Rb
i

hj
− 1

⌉
cbj . (4)

For a given controller and latency, the Jitter Margin
toolbox computes the jitter margin (similar to the phase
margin and gain margin concepts of control theory). That
is, the Jitter Margin toolbox provides the stability curve
that determines the maximum tolerable response-time jitter
Ji, based on the experienced latency Li.

The solid curve in Figure 4 is an example of the stability
curves generated by the Jitter Margin toolbox, where the
area below the curve is the stable area. This solid curve
is generated for a DC servo process with transfer func-
tion 1000

s2+s and a discrete-time Linear-Quadratic-Gaussian
(LQG) controller, with a sampling period of 6 ms. The
stability curve can safely be approximated by a linear
function of the latency and worst-case response-time jitter,

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Nominal delay L

R
es

po
ns

e−
tim

e
jit

te
r

J

Stability curves
Linear lower bounds

Figure 4. The stability curve generated by Jitter Margin and the linear
lower bound (the area below the curve is the stable area) [20].

as shown in Figure 4. The stability condition, hence, can
be formulated as,

Li + ai · Ji ≤ bi, (5)

where ai ≥ 1 and bi ≥ 0 are constant coefficients.

IV. ANOMALIES AND DESIGN COMPLEXITY

The anomalies in scheduling control applications are
discussed in [20]. In the rest of this paper, we focus on the
anomalies in the priority assignment problem for control
applications, as a case study. In the case of the priority as-
signment problem, it is shown that increasing the priority
of a task, under the fixed-priority scheduling policy, may
lead to an increased amount of jitter and, in turn, instability
of the control application [20]. Such anomalies, if not
properly taken into account, may dramatically increase
the complexity of the design methodology. Given that
the monotonicity and commutativity properties [20] hold,
the complexity of the priority assignment algorithm is
polynomial1 in the number of tasks [16], [23]. Ignoring
the monotonicity property, however, it is possible to show
that the number of cases which needs to be enumerated is
exponential in the number of tasks.

Thus far, it has been discussed that anomalies may dra-
matically increase the complexity of the design method-
ology. However, as it will be shown experimentally in
the next section, such anomalous scenarios occur only
extremely rarely. Motivated by this, we believe that design
methodologies should be devised for the majority of cases,
as opposed to anomalies, but should also be able to handle
the anomalous scenarios. Algorithm 1 is one such correct
design methodology for the priority assignment problem.

Algorithm 1 is a backtracking algorithm for priority
assignment, inspired by [24]. It identifies a task which
can be assigned the lowest priority and assigns the lowest
priority to this task. Then, it tries, recursively, to assign the
higher priorities to the remaining set of tasks (Line 12). If
there does not exist any valid priority assignment for the
remaining task set, then the algorithm assigns the lowest
priority to another task, which can be assigned the lowest
priority. And, it again tries to assign the higher priorities
to the remaining set of tasks (Line 12).

1The complexity of the priority assignment algorithm in [16] is
quadratic in the number of tasks, if we ignore the complexity of the
evaluation function.

Algorithm 1 Priority Assignment
1: % T: task set;
2: % S: remaining task set;
3: Initialize: S = T;
4: Initialize: ρi =∞, i = 1 . . . n;
5: Initialize: ρ = 1;
6: function BACKTRACK(S, ρ)
7: if S == ∅ then
8: return % Terminate!
9: end if

10: for τi ∈ S do
11: Set ρi = ρ;
12: if Li + aiJi ≤ bi then
13: BACKTRACK(S \ τi, ρ+ 1);
14: end if
15: Set ρi =∞;
16: end for
17: end function

This algorithm exploits the fact that the monotonicity
property holds almost all the time, by finding the task
that can be assigned the lowest priority at each recursion.
However, it also takes the anomalies into consideration by
backtracking and trying alternative solutions.

While, in the worst case, this priority assignment algo-
rithm has an exponential time complexity, as it will be
shown in the next section, it has quadratic complexity on
average. This is because the anomalies occur extremely
rarely and the monotonicity property often holds.

V. EXPERIMENTAL RESULTS

To support the previous discussions, in this section,
we shall perform two experiments. We generate 10000
benchmarks with a set of 4–20 control applications. The
plants are chosen from [4], [14]. We use the UUniFast
algorithm [25] to generate a set of random control tasks
for a given utilization.

First, we demonstrate that anomalies actually occur
extremely rarely. To show this, we assign priorities based
on the algorithm proposed in [20], modified to use the
exact response times. In this way, this modified algorithm
ignores the lack of monotonicity and may produce invalid
solutions, for which stability cannot be guaranteed. Hence
referred to as “Unsafe Quadratic”. The results are sum-
marized in Table I. In the worst case, only for 0.38% of
the benchmarks, the priority assignments produced by this
algorithm, Unsafe Quadratic, are not valid. This clearly
demonstrates that anomalies occur extremely rarely in
practice.

Table I
PERCENTAGE OF INVALID SOLUTIONS BY UNSAFE QUADRATIC

PRIORITY ASSIGNMENT.

Number of tasks (#) 4 8 12 16 20
Invalid solutions (%) 0.38 0.04 0.00 0.01 0.00

The second experiment shows that the time complexity
of the proposed backtracking algorithm is, on average,
quadratic with the number of tasks. To show this, we
compare our algorithm, in terms of time complexity, with
the algorithm in [20], Unsafe Quadratic, modified to use
the exact response times for fair comparison. Figure 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 4 6 8 10 12 14 16 18 20

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Number of Tasks

Unsafe Quadratic
Backtracking

Figure 5. Execution time of our backtracking algorithm against the
Unsafe Quadratic priority assignment.

shows the runtime of these algorithms on a PC with a
quad-core CPU running at 3.6 GHz with 32 GB of RAM
and Linux. Note that the number of all possible design
solutions are 20!, which takes more than 20 years to enu-
merate on current GHz processors. However, Algorithm 1
finds a valid solution in less than 2 seconds.

To sum up, Algorithm 1 exploits the fact that anomalies
occur very rarely and the monotonicity property almost
always holds. It provides valid priority assignments in
reasonable time, and in the presence of anomalies.

VI. CONCLUSIONS

In this paper, we considered anomalies in scheduling
control applications. On the one hand, such anomalies,
while can jeopardize stability, are extremely rare. On the
other hand, these anomalies, if not properly considered,
may lead to complex design methodologies or unstable
design solutions. We demonstrate that a correct design
methodology should target the majority of cases, but
should also be able to handle such anomalous scenarios.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Prof. Anton
Cervin and Dr. Bo Lincoln for providing us with the Jitter
Margin toolbox.

REFERENCES

[1] M. D. Natale and A. L. Sangiovanni-Vincentelli, “Moving
from federated to integrated architectures in automotive:
The role of standards, methods and tools,” Proceedings of
the IEEE, vol. 98, no. 4, pp. 603–620, 2010.

[2] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task
schedulability in real-time control systems,” in Proceedings
of the 17th IEEE Real-Time Systems Symposium, 1996, pp.
13–21.

[3] H. Rehbinder and M. Sanfridson, “Integration of off-line
scheduling and optimal control,” in Proceedings of the 12th

Euromicro Conference on Real-Time Systems, 2000, pp.
137–143.

[4] A. Cervin, B. Lincoln, J. Eker, K. E. Årzén, and G. But-
tazzo, “The jitter margin and its application in the de-
sign of real-time control systems,” in Proceedings of the
10th International Conference on Real-Time and Embedded
Computing Systems and Applications, 2004, pp. 1–10.

[5] T. Nghiem, G. J. Pappas, R. Alur, and A. Girard, “Time-
triggered implementations of dynamic controllers,” in Pro-
ceedings of the 6th ACM & IEEE International conference
on Embedded software, 2006, pp. 2–11.

[6] E. Bini and A. Cervin, “Delay-aware period assignment in
control systems,” in Proceedings of the 29th IEEE Real-
Time Systems Symposium, 2008, pp. 291–300.

[7] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task
scheduling for control oriented requirements for cyber-
physical systems,” in Proceedings of the 29th IEEE Real-
Time Systems Symposium, 2008, pp. 47–56.

[8] P. Naghshtabrizi and J. P. Hespanha, “Analysis of dis-
tributed control systems with shared communication and
computation resources,” in Proceedings of the 2009 Amer-
ican Control Conferance (ACC), 2009.

[9] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy,
K. Lampka, and L. Thiele, “A hybrid approach to cyber-
physical systems verification,” in Proceedings of the 49th

Design Automation Conference, 2012.
[10] G. Mancuso, E. Bini, and G. Pannocchia, “Optimal pri-

ority assignment to control tasks,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 5s, p.
161, 2014.

[11] A. Aminifar, P. Eles, and Z. Peng, “Jfair: A scheduling
algorithm to stabilize control applications,” in Proceedings
of the 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, 2015.

[12] A. Aminifar, E. Bini, P. Eles, and Z. Peng, “Analysis and
desing of real-time servers for control applications,” IEEE
Transactions on Computers, 2015.

[13] Y. Xu, K. E. Årzén, A. Cervin, E. Bini, and B. Tanasa,
“Exploiting job response-time information in the co-design
of real-time control systems,” in IEEE 21st International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), 2015, pp. 247–256.

[14] K. J. Åström and B. Wittenmark, Computer-Controlled
Systems, 3rd ed. Prentice Hall, 1997.

[15] R. Kalman, Y. Ho, and K. Narendra., Contributions to
Differential Equations. Interscience, 1963.

[16] N. C. Audsley, “Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times,” Depart-
ment of Computer Science, University of York, Tech. Rep.
YCS 164, December 1991.

[17] R. Racu, A. Hamann, and R. Ernst, “Sensitivity analysis of
complex embedded real-time systems,” Real-Time Systems,
vol. 39, pp. 31–72, 2008.

[18] R. Racu and R. Ernst, “Scheduling anomaly detection and
optimization for distributed systems with preemptive task-
sets,” in Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2006,
pp. 325–334.

[19] S. Baruah and A. Burns, “Sustainable scheduling analysis,”
in Proceedings of the 27th IEEE International Real-Time
Systems Symposium, 2006, pp. 159–168.

[20] A. Aminifar, P. Eles, Z. Peng, and A. Cervin, “Stability-
aware analysis and design of embedded control systems,”
in Proceedings of the 11th ACM International Conference
on Embedded Software, 2013, pp. 23:1–23:10.

[21] M. Joseph and P. Pandya, “Finding response times in a
real-time system,” The Computer Journal, vol. 29, no. 5,
pp. 390–395, 1986.

[22] O. Redell and M. Sanfridson, “Exact best-case response
time analysis of fixed priority scheduled tasks,” in Pro-
ceedings of the 14th Euromicro Conference on Real-Time
Systems, 2002, pp. 165–172.

[23] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns,
“A review of priority assignment in real-time systems,”
Journal of Systems Architecture, vol. 65, no. C, pp. 64–
82, 2016.

[24] A. Aminifar, P. Eles, Z. Peng, and A. Cervin, “Control-
quality driven design of cyber-physical systems with ro-
bustness guarantees,” in Proceedings of the 16th Conference
for Design, Automation and Test in Europe (DATE), 2013.

[25] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Systems, vol. 30, no. 1-2,
pp. 129–154, 2005.

