AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Homological interpretation of extensions and biextensions of 1-motives

This is a pre print version of the following article:
Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/102290
since 2018-03-23T12:29:40Z

Published version:
DOI:10.1016/j.jnt.2012.04.005
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
(Article begins on next page)

HOMOLOGICAL INTERPRETATION OF EXTENSIONS AND BIEXTENSIONS OF 1-MOTIVES

CRISTIANA BERTOLIN

Abstract

Let k be a separably closed field. Let $K_{i}=\left[A_{i} \xrightarrow{u_{i}} B_{i}\right]$ (for $i=$ $1,2,3)$ be three 1-motives defined over k. We define the geometrical notions of extension of K_{1} by K_{3} and of biextension of $\left(K_{1}, K_{2}\right)$ by K_{3}. We then compute the homological interpretation of these new geometrical notions: namely, the group Biext ${ }^{0}\left(K_{1}, K_{2} ; K_{3}\right)$ of automorphisms of any biextension of $\left(K_{1}, K_{2}\right)$ by K_{3} is canonically isomorphic to the group $\operatorname{Ext}^{0}\left(K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}, K_{3}\right)$, and the group $\operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right)$ of isomorphism classes of biextensions of $\left(K_{1}, K_{2}\right)$ by K_{3} is canonically isomorphic to the group $\operatorname{Ext}^{1}\left(K_{1} \stackrel{\mathbb{Q}}{\otimes} K_{2}, K_{3}\right)$.

Contents

Introduction 1
Notation 3

1. Extensions and biextensions of 1-motives 4
2. Review on strictly commutative Picard stacks 11
3. Proof of theorem 0.1 (b) 15
4. The category $\Psi_{\mathrm{L} \cdot \cdot}(G)$ and its homological interpretation 16
5. Geometrical description of $\Psi_{\mathrm{L} . .}(G)$ 22
6. Proof of theorem 0.1 (a) 28
References 29

Introduction

Let k be a separably closed field and let $S=\operatorname{Spec}(k)$. A 1-motive $K=[u: A \rightarrow$ $B]$ over S consists of an S-group scheme A which is locally for the étale topology a constant group scheme defined by a finitely generated free \mathbb{Z}-module, an extension B of an abelian S-scheme by an S-torus, and a morphism $u: A \rightarrow B$ of S-group schemes. Since the field k is separably closed, remark that $A=\mathbb{Z}^{r}$ with $r \geq 0$.

Let \mathbf{S} be the big fppf site over S. A 1-motive $K=[u: A \rightarrow B]$ can be viewed also as a complex of abelian sheaves on \mathbf{S} concentrated in two consecutive degrees. A morphism of 1-motives is a morphism of complexes of commutative S-group schemes (see [R], in particular Lemma 2.3.2)

Let $K_{i}=\left[u_{i}: A_{i} \rightarrow B_{i}\right]$ (for $i=1,2,3$) be three 1-motives defined over S. In this paper we introduce the geometrical notions of extension of K_{1} by K_{3} and of biextension of (K_{1}, K_{2}) by K_{3}. We then compute the homological interpretation of

[^0]these new geometrical notions. More precisely, if $\operatorname{Biext}^{0}\left(K_{1}, K_{2} ; K_{3}\right)$ is the group of automorphisms of any biextension of $\left(K_{1}, K_{2}\right)$ by $K_{3}, \operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right)$ is the group of isomorphism classes of biextensions of $\left(K_{1}, K_{2}\right)$ by $K_{3}, \mathcal{E} x t^{0}\left(K_{1}, K_{3}\right)$ is the group of automorphisms of any extension of K_{1} by K_{3}, and $\mathcal{E} x t^{1}\left(K_{1}, K_{3}\right)$ is the group of isomorphism classes of extensions of K_{1} by K_{3}, then we prove

Theorem 0.1. We have the following canonical isomorphisms
(a) $\operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right) \cong \operatorname{Ext}^{1}\left(K_{1} \stackrel{\mathrm{~L}}{\otimes} K_{2}, K_{3}\right)=\operatorname{Hom}_{\mathcal{D}(S)}\left(K_{1} \stackrel{\mathrm{~L}}{\otimes} K_{2}, K_{3}[1]\right)$,
(b) $\operatorname{Biext}^{0}\left(K_{1}, K_{2} ; K_{3}\right) \cong \operatorname{Ext}^{0}\left(K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}, K_{3}\right)=\operatorname{Hom}_{\mathcal{D}(S)}\left(K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}, K_{3}\right)$,
(c) $\mathcal{E x t} t^{1}\left(K_{1}, K_{3}\right) \cong \operatorname{Ext}^{1}\left(K_{1}, K_{3}\right)=\operatorname{Hom}_{\mathcal{D}(S)}\left(K_{1}, K_{3}[1]\right)$,
(d) $\mathcal{E x t} t^{0}\left(K_{1}, K_{3}\right) \cong \operatorname{Ext}^{0}\left(K_{1}, K_{3}\right)=\operatorname{Hom}_{\mathcal{D}(S)}\left(K_{1}, K_{3}\right)$,
where $K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}$ is the derived functor of the functor $K_{2} \rightarrow K_{1} \otimes K_{2}$ in the derived category $\mathcal{D}(\boldsymbol{S})$ of complexes of abelian sheaves on \boldsymbol{S}.

The homological interpretation (c)-(d) of extensions of 1-motives is a special case of the homological interpretation (a)-(b) of biextensions of 1-motives: in fact, if $K_{2}=[0 \rightarrow \mathbb{Z}]$
(1) the category of biextensions of $\left(K_{1},[0 \rightarrow \mathbb{Z}]\right)$ by K_{3} is equivalent to the category of extensions of K_{1} by K_{3}, and
(2) in the derived category $\operatorname{Ext}^{i}\left(K_{1} \stackrel{\mathbb{L}}{\otimes}[0 \rightarrow \mathbb{Z}], K_{3}\right) \cong \operatorname{Ext}^{i}\left(K_{1}, K_{3}\right)$ for $i=0,1$. Applications of Theorem 0.1 are given by the isomorphism

$$
\begin{equation*}
\operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right) \cong \operatorname{Ext}^{1}\left(K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}, K_{3}\right)=\operatorname{Hom}_{\mathcal{D}(\mathcal{C})}\left(K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}, K_{3}[1]\right) \tag{0.1}
\end{equation*}
$$

which makes explicit the link between biextensions and bilinear morphisms. A classical example of this link is given by the Poincaré biextension of an abelian variety which defines the Weil pairing on the Tate modules. Other examples are furnished by [B08] and [BM], where we prove that

- the group of isomorphism classes of biextensions of $\left(K_{1}, K_{2}\right)$ by K_{3} is isomorphic to the group of morphisms of the category $\mathcal{M H S}$ of mixed Hodge structures from the tensor product $\mathrm{T}_{\mathrm{H}}\left(K_{1}\right) \otimes \mathrm{T}_{\mathrm{H}}\left(K_{2}\right)$ of the Hodge realizations of K_{1} and K_{2} to the Hodge realization $\mathrm{T}_{\mathrm{H}}\left(K_{3}\right)$ of K_{3} :

$$
\operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right) \cong \operatorname{Hom}_{\mathcal{M H S}}\left(\mathrm{T}_{\mathrm{H}}\left(K_{1}\right) \otimes \mathrm{T}_{\mathrm{H}}\left(K_{2}\right), \mathrm{T}_{\mathrm{H}}\left(K_{3}\right)\right)
$$

- modulo isogenies the group of isomorphism classes of biextensions of $\left(K_{1}, K_{2}\right)$ by K_{3} is isomorphic to the group of morphisms of the category $\mathcal{M} \mathcal{R}_{\mathbb{Z}}(k)$ of mixed realizations with integral structure from the tensor product $\mathrm{T}\left(K_{1}\right) \otimes$ $\mathrm{T}\left(K_{2}\right)$ of the realizations of K_{1} and K_{2} to the realization $\mathrm{T}\left(K_{3}\right)$ of K_{3} :

$$
\operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right) \otimes \mathbb{Q} \cong \operatorname{Hom}_{\mathcal{M} \mathcal{R}_{\mathbb{Z}}(k)}\left(\mathrm{T}\left(K_{1}\right) \otimes \mathrm{T}\left(K_{2}\right), \mathrm{T}\left(K_{3}\right)\right)
$$

Following Deligne's philosophy of motives described in [D89] 1.11, this isomorphism means that the notion of biextensions of 1-motives furnishes the geometrical origin of the morphisms of $\mathcal{M} \mathcal{R}_{\mathbb{Z}}(k)$ from the tensor product of the realizations of two 1-motives to the realization of another 1-motive, which are therefore motivic morphisms.

- modulo isogenies the group of isomorphism classes of biextensions of (K_{1}, K_{2}) by K_{3} is isomorphic to the group of morphisms of Voevodsky's triangulated category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}$ of effective geometrical motives with rational coefficients
from the tensor product $\mathcal{O}\left(K_{1}\right) \otimes \mathcal{O}\left(K_{2}\right)$ of the images of K_{1} and K_{2} in the category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}$ to the image $\mathcal{O}\left(K_{3}\right)$ of K_{3} in $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}$:
$\operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right) \otimes \mathbb{Q} \cong \operatorname{Hom}_{\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(k, \mathbb{Q})}\left(\mathcal{O}\left(K_{1}\right) \otimes \mathcal{O}\left(K_{2}\right), \mathcal{O}\left(K_{3}\right)\right)$.
In [BM] we have used Theorem 0.1 (a) in order to show the above isomorphism.
In Be11 and Be we have introduced the notions of extension and biextension for arbitrary length 2 complexes of abelian sheaves and we have computed their homological interpretation. The definitions and the results of Be 11] and Be are a generalization of the definitions and the results of this paper (in particular of Theorem 0.1) to arbitrary length 2 complexes of abelian sheaves.

The idea of the proof of Theorem 0.1 is the following one: Let $K=[A \xrightarrow{u} B]$ be a 1-motives and let L.. be a complex of 1-motives $R \rightarrow Q \rightarrow P \rightarrow 0$. To the complex K and to the bicomplex L.. we associate a category $\Psi_{\mathrm{L} . .}(K)$ which has the following homological description:

$$
\begin{equation*}
\Psi_{\mathrm{L} . .}^{i}(K) \cong \operatorname{Ext}^{i}(\operatorname{Tot}(\mathrm{~L} . .), K) \quad(i=0,1) \tag{0.2}
\end{equation*}
$$

where $\Psi_{\mathrm{L} . .}^{0}(K)$ is the group of automorphisms of any object of $\Psi_{\mathrm{L} . .}(K)$ and $\Psi_{\mathrm{L} . .}^{1}(K)$ is the group of isomorphism classes of objects of $\Psi_{\mathrm{L} . .}(K)$. Then, to any 1-motive $K=[A \xrightarrow{u} B]$ we associate a canonical flat partial resolution L..(K) whose components are direct sums of objects of the kind $\mathbb{Z}[A]$ and $\mathbb{Z}[B]$. Here "partial resolution" means that we have an isomorphism between the homology groups of K and of this partial resolution only in degree 1 and 0 . This is enough for our goal since only the groups Ext ${ }^{1}$ and Ext ${ }^{0}$ are involved in the statement of Theorem 0.1. Consider now three 1-motives K_{i} (for $i=1,2,3$). The categories $\Psi_{\mathrm{L} . .\left(K_{1}\right)}\left(K_{3}\right)$ and $\Psi_{\mathrm{L} . .\left(K_{1}\right) \otimes \mathrm{L} . .\left(K_{2}\right)}\left(K_{3}\right)$ admit the following geometrical description:

$$
\begin{align*}
\Psi_{\mathrm{L} . .\left(K_{1}\right)}\left(K_{3}\right) & \simeq \operatorname{Ext}\left(K_{1}, K_{3}\right) \tag{0.3}\\
\Psi_{\mathrm{L} . .\left(K_{1}\right) \otimes \mathrm{L} . .\left(K_{2}\right)}\left(K_{3}\right) & \simeq \operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right)
\end{align*}
$$

Putting together this geometrical description (0.3) with the homological description (0.2), we get the proof of Theorem 0.1.

Notation

In this paper, k is a separably closed field, $S=\operatorname{Spec}(k)$ and \mathbf{S} is the big fppf site over S. If I is a sheaf on \mathbf{S}, we denote by $\mathbb{Z}[I]$ the free \mathbb{Z}-module generated by I (see [D73] Exposé IV 11).

Denote by $\mathcal{K}(\mathbf{S})$ the category of complexes of abelian sheaves on the site \mathbf{S} : all complexes that we consider in this paper are cochain complexes. Let $\mathcal{K}^{[-1,0]}(\mathbf{S})$ be the subcategory of $\mathcal{K}(\mathbf{S})$ consisting of complexes $K=\left(K^{i}\right)_{i}$ such that $K^{i}=0$ for $i \neq-1$ or 0 . The good truncation $\tau_{\leq n} K$ of a complex K of $\mathcal{K}(\mathbf{S})$ is the following complex: $\left(\tau_{\leq n} K\right)^{i}=K^{i}$ for $i<n,\left(\tau_{\leq n} K\right)^{n}=\operatorname{ker}\left(d^{n}\right)$ and $\left(\tau_{\leq n} K\right)^{i}=0$ for $i>n$. For any $i \in \mathbb{Z}$, the shift functor $[i]: \overline{\mathcal{K}}(\mathbf{S}) \rightarrow \mathcal{K}(\mathbf{S})$ acts on a complex $K=\left(K^{n}\right)_{n}$ as $(K[i])^{n}=K^{i+n}$ and $d_{K[i]}^{n}=(-1)^{i} d_{K}^{n+i}$.

Denote by $\mathcal{D}(\mathbf{S})$ the derived category of the category of abelian sheaves on \mathbf{S}, and let $\mathcal{D}^{[-1,0]}(\mathbf{S})$ be the subcategory of $\mathcal{D}(\mathbf{S})$ consisting of complexes K such that $\mathrm{H}^{i}(K)=0$ for $i \neq-1$ or 0 . If K and K^{\prime} are complexes of $\mathcal{D}(\mathbf{S})$, the group $\operatorname{Ext}^{i}\left(K, K^{\prime}\right)$ is by definition $\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(K, K^{\prime}[i]\right)$ for any $i \in \mathbb{Z}$. Let $\operatorname{RHom}(-,-)$ be
the derived functor of the bifunctor $\operatorname{Hom}(-,-)$. The cohomology groups $\mathrm{H}^{i}\left(\operatorname{RHom}\left(K, K^{\prime}\right)\right)$ of $\operatorname{RHom}\left(K, K^{\prime}\right)$ are isomorphic to $\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(K, K^{\prime}[i]\right)$.

1. Extensions and biextensions of 1-motives

Let G be abelian sheaf on \mathbf{S}. A G-torsor is a sheaf on \mathbf{S} endowed with an action of G, which is locally isomorphic to G acting on itself by translation.

Let P, G be abelian sheaves on \mathbf{S}. An extension of P by G is an exact sequence

$$
0 \longrightarrow G \longrightarrow E \longrightarrow P \longrightarrow 0 .
$$

Since in this paper we consider only commutative extensions, E is in fact an abelian sheaf on \mathbf{S}. We denote by $\operatorname{Ext}(P, G)$ the category of extensions of P by G. It is a classical result that the Baer sum of extensions defines a group law for the objects of the category $\operatorname{Ext}(P, G)$, which is therefore a strictly commutative Picard category.

Let P, G be abelian sheaves on \mathbf{S}. Denote by $m: P \times P \rightarrow P$ the group law of P and by $p r_{i}: P \times P \rightarrow P$ with $i=1,2$ the two projections of $P \times P$ in P. According to [G Exposé VII 1.1.6 and 1.2, the category of extensions of P by G is equivalent to the category of 4-tuples (P, G, E, φ), where E is a G_{P}-torsor over P, and $\varphi: p r_{1}^{*} E \wedge p r_{2}^{*} E \rightarrow m^{*} E$ is an isomorphism of torsors over $P \times P$ satisfying some associativity and commutativity conditions (see [G] Exposé VII diagrams (1.1.4.1) and (1.2.1)):

$$
\begin{align*}
\operatorname{Ext}(P, G) \simeq & \left\{(P, G, E, \varphi) \mid E=G_{P}-\text { torsor over } P\right. \text { and } \\
& \left.\varphi: p r_{1}^{*} E \wedge p r_{2}^{*} E \cong m^{*} E \text { with ass. and comm. conditions }\right\} \tag{1.1}
\end{align*}
$$

Here $p r_{i}^{*} E$ is the pull-back of E via the projection $p r_{i}: P \times P \rightarrow P$ for $i=1,2$ and $p r_{1}^{*} E \wedge p r_{2}^{*} E$ is the contracted product of $p r_{1}^{*} E$ and $p r_{2}^{*} E$ (see 1.3 Chapter III G71]). It will be useful in what follows to look at the isomorphism of torsors φ as an associative and commutative group law on the fibres:

$$
+: E_{p} E_{p^{\prime}} \longrightarrow E_{p+p^{\prime}}
$$

where p, p^{\prime} are points of $P(U)$ with U an S-scheme.
Let I be a sheaf on \mathbf{S} and let G be an abelian sheaf on \mathbf{S}. Concerning extensions of free commutative groups, by [G] Exposé VII 1.4 the category of extensions of $\mathbb{Z}[I]$ by G is equivalent to the category of G_{I}-torsors over I :

$$
\begin{equation*}
\operatorname{Ext}(\mathbb{Z}[I], G) \simeq \operatorname{Tors}\left(I, G_{I}\right) \tag{1.2}
\end{equation*}
$$

Let P, Q and G be abelian sheaves on \mathbf{S}. A biextension of (P, Q) by G is a $G_{P \times Q}$-torsor B over $P \times Q$, endowed with a structure of commutative extension of Q_{P} by G_{P} and a structure of commutative extension of P_{Q} by G_{Q}, which are compatible one with another (for the definition of compatible extensions see G] Exposé VII Définition 2.1). If $m_{P}, p_{1}, p_{2}\left(\right.$ resp. $\left.m_{Q}, q_{1}, q_{2}\right)$ denote the three morphisms $P \times P \times Q \rightarrow P \times Q$ (resp. $P \times Q \times Q \rightarrow P \times Q$) deduced from the three morphisms $P \times P \rightarrow P$ (resp. $Q \times Q \rightarrow Q$) group law, first and second projection, the equivalence of categories (1.1) furnishes the following equivalent definition: a
 isomorphisms of torsors

$$
\varphi: p_{1}^{*} E p_{2}^{*} E \longrightarrow m_{P}^{*} E \quad \psi: q_{1}^{*} E q_{2}^{*} E \longrightarrow m_{Q}^{*} E
$$

over $P \times P \times Q$ and $P \times Q \times Q$ respectively, satisfying some associativity, commutativity and compatible conditions (see G] Exposé VII diagrams (2.0.5),(2.0.6),(2.0.8), (2.0.9), (2.1.1)). As for extensions, we will look at the isomorphisms of torsors φ and ψ as two associative and commutative group laws on the fibres which are compatible with one another:

$$
+_{1}: E_{p, q} E_{p^{\prime}, q} \longrightarrow E_{p+p^{\prime}, q} \quad+_{2}: E_{p, q} E_{p, q^{\prime}} \longrightarrow E_{p, q+q^{\prime}}
$$

where p, p^{\prime} (resp. q, q^{\prime}) are points of $P(U)$ (resp. of $Q(U)$) with U any sheaf on \mathbf{S}.
Let $K_{i}=\left[u_{i}: A_{i} \rightarrow B_{i}\right]$ (for $\left.i=1,2\right)$ be two 1-motives defined over S.
Definition 1.1. An extension (E, β, γ) of K_{1} by K_{2} consists of
(1) an extension E of B_{1} by B_{2};
(2) a trivialization β of the extension $u_{1}^{*} E$ of A_{1} by B_{2} obtained as pull-back of the extension E via $u_{1}: A_{1} \rightarrow B_{1}$;
(3) a trivial extension $T=(T, \gamma)$ of A_{1} by A_{2} (i.e. an extension T of A_{1} by A_{2} endowed with a trivialization γ) and an isomorphism of extensions $\Theta: u_{2}{ }^{*} T \rightarrow u_{1}^{*} E$ between the push-down via $u_{2}: A_{2} \rightarrow B_{2}$ of T and $u_{1}^{*} E$. Through this isomorphism the trivialization $u_{2} \circ \gamma$ of $u_{2 *} T$ is compatible with the trivialization β of $u_{1}^{*} E$.
Condition (3) can be rewritten as
(3') an homomorphism $\gamma: A_{1} \rightarrow A_{2}$ such that $u_{2} \circ \gamma$ is compatible with β. Note that to have a trivialization $\beta: A_{1} \rightarrow u_{1}^{*} E$ of $u_{1}^{*} E$ is the same thing as to have a lifting $\widetilde{\beta}: A_{1} \rightarrow E$ of $u_{1}: A_{1} \rightarrow B_{1}$. In fact, if we denote $p: E \rightarrow B_{1}$ the canonical surjection of the extension E, a morphism $\widetilde{\beta}: A_{1} \rightarrow E$ such that $p \circ \widetilde{\beta}=u_{1}$ induces a splitting $\beta: A_{1} \rightarrow u_{1}^{*} E$ that composes with $u_{1}^{*} E \rightarrow E \xrightarrow{p} B_{1}$ to $u_{1}: A_{1} \rightarrow B_{1}$, and vice versa.
Remark 1.2. We can summarize the above definition with the following diagram with exact rows:

In particular, we observe that the short sequence of complexes in $\mathcal{K}(\mathbf{S})$

$$
0 \longrightarrow K_{2} \longrightarrow[T \rightarrow E] \longrightarrow K_{1} \longrightarrow 0
$$

is exact. On the other hand if $0 \rightarrow K_{2} \rightarrow G \rightarrow K_{1} \rightarrow 0$ is a short exact sequence of $\mathcal{K}(\mathbf{S})$, then the complex G is an extension of 1-motives of K_{1} by K_{2} as defined in Definition [1.1 i.e. G is a complex of the kind $[T \rightarrow E]$, with T a trivial extension of A_{1} by A_{2} and E an extension of B_{1} by B_{2}. In fact, over a separably closed field the groups $\operatorname{Ext}^{1}\left(A_{1}, A_{2}\right)$ and $\operatorname{Ext}^{1}\left(A_{1}, B_{2}\right)$ are trivial.

Let $K_{i}=\left[A_{i} \xrightarrow{u_{i}} B_{i}\right]$ and $K_{i}^{\prime}=\left[A_{i}^{\prime} \xrightarrow{u_{i}^{\prime}} B_{i}^{\prime}\right]$ (for $i=1,2$) be 1-motives defined over S. Let (E, β, γ) be an extension of K_{1} by K_{2} and let $\left(E^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ be an extension of K_{1}^{\prime} by K_{2}^{\prime}.

Definition 1.3. A morphism of extensions

$$
(\underline{F}, \underline{\Upsilon}, \underline{\Phi}):(E, \beta, \gamma) \longrightarrow\left(E^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)
$$

consists of
(1) a morphism $\underline{F}=\left(F, f_{1}, f_{2}\right): E \rightarrow E^{\prime}$ from the extension E to the extension E^{\prime}. In particular, $F: E \rightarrow E^{\prime}$ is a morphism of the sheaves underlying E and E^{\prime}, and

$$
f_{1}: B_{1} \longrightarrow B_{1}^{\prime} \quad f_{2}: B_{2} \longrightarrow B_{2}^{\prime}
$$

are morphisms of abelian sheaves on \mathbf{S};
(2) a morphism of extensions $\underline{\Upsilon}=\left(\Upsilon, g_{1}, f_{2}\right): u_{1}^{*} E \rightarrow u_{1}^{\prime *} E^{\prime}$ compatible with the morphism $\underline{F}=\left(F, f_{1}, f_{2}\right)$ and with the trivializations β and β^{\prime}. In particular, $\Upsilon: u_{1}^{*} E \rightarrow u_{1}^{\prime *} E^{\prime}$ is a morphism of the sheaves underlying $u_{1}^{*} E$ and $u_{1}^{\prime *} E^{\prime}$, and

$$
g_{1}: A_{1} \longrightarrow A_{1}^{\prime}
$$

is an morphism of abelian sheaves on \mathbf{S};
(3) a morphism of extensions $\underline{\Phi}=\left(\Phi, g_{1}, g_{2}\right): T \rightarrow T^{\prime}$ compatible with the morphism $\Upsilon=\left(\Upsilon, g_{1}, f_{2}\right)$ and with the trivializations γ and γ^{\prime}. In particular, $\Phi: T \rightarrow T^{\prime}$ is a morphism of the sheaves underlying T and T^{\prime}, and

$$
g_{2}: A_{2} \longrightarrow A_{2}^{\prime}
$$

is an morphism of abelian sheaves on \mathbf{S}.
Condition (3) can be rewritten as
(3') an morphism $g_{2}: A_{2} \rightarrow A_{2}^{\prime}$ of abelian sheaves on \mathbf{S} compatible with u_{2} and u_{2}^{\prime} (i.e. $u_{2}^{\prime} \circ g_{2}=f_{2} \circ u_{2}$) and such that

$$
\gamma^{\prime} \circ g_{1}=g_{2} \circ \gamma
$$

Explicitly, the compatibility of \subseteq with \underline{F}, β and β^{\prime} means that the following diagram is commutative:

The compatibility of $\underline{\Phi}$ with $\underline{\Upsilon}, \gamma$ and γ^{\prime} means that the following diagram is commutative:

We denote by $\operatorname{Ext}\left(K_{1}, K_{2}\right)$ the category of extensions of K_{1} by K_{2}. As for extensions of abelian sheaves, it is possible to define the Baer sum of extensions of 1-motives. This notion of sum furnishes a group law for the objects of the category $\operatorname{Ext}\left(K_{1}, K_{2}\right)$ which is therefore a strictly commutative Picard category (see [G] Exposé VII 2.5). The zero object $\left(E_{0}, \beta_{0}, \gamma_{0}\right)$ of $\operatorname{Ext}\left(K_{1}, K_{2}\right)$ with respect to this group law consists of

- the trivial extension $E_{0}=B_{1} \times B_{2}$ of B_{1} by B_{2}, i.e. the zero object of $\boldsymbol{\operatorname { E x t }}\left(B_{1}, B_{2}\right)$, and
- the trivialization $\beta_{0}=\left(i d_{A_{1}}, 0\right)$ of the extension $u_{1}^{*} E_{0}=A_{1} \times B_{2}$ of A_{1} by B_{2}. We can consider β_{0} as the lifting $\left(u_{1}, 0\right): A_{1} \rightarrow B_{1} \times B_{2}$ of $u_{1}: A_{1} \rightarrow$ B_{1}.
- the trivial extension T_{0} of A_{1} by A_{2} (i.e. $T_{0}=\left(T_{0}, \gamma_{0}\right)$ with $T_{0}=A_{1} \times A_{2}$ and $\left.\gamma_{0}=\left(i d_{A_{1}}, 0\right)\right)$ and the isomorphism of extension $\Theta_{0}=\left(i d_{A_{1}}, i d_{B_{2}}\right)$: $u_{2}{ }^{*} T_{0} \rightarrow u_{1}^{*} E_{0}$.
Denote by $\mathcal{E} x t^{0}\left(K_{1}, K_{2}\right)$ the group of automorphisms of any object (E, β, γ) of $\operatorname{Ext}\left(K_{1}, K_{2}\right)$. It is canonically isomorphic to the group of automorphisms $\operatorname{Aut}\left(E_{0}, \beta_{0}, \gamma_{0}\right)$ of the zero object $\left(E_{0}, \beta_{0}, \gamma_{0}\right)$ of $\operatorname{Ext}\left(K_{1}, K_{2}\right)$: to an automorphism $(\underline{F}, \underline{\Upsilon}, \underline{\Phi})$ of $\left(E_{0}, \beta_{0}, \gamma_{0}\right)$ the canonical isomorphism associates the automorphism $(\underline{F}, \underline{\Upsilon}, \underline{\Phi})+$ $i d_{(E, \beta, \gamma)}$ of $\left(E_{0}, \beta_{0}, \gamma_{0}\right)+(E, \beta, \gamma) \cong(E, \beta, \gamma)$. Explicitly, $\mathcal{E} x t^{0}\left(K_{1}, K_{2}\right)$ consists of the couple $\left(f_{0}, f_{1}\right)$ where
- $f_{0}: B_{1} \rightarrow B_{2}$ is an automorphism of the trivial extension E_{0} (i.e. $f_{0} \in$ $\left.\operatorname{Aut}\left(E_{0}\right)=\operatorname{Ext}^{0}\left(B_{1}, B_{2}\right)\right)$, and
- $f_{1}: A_{1} \rightarrow A_{2}$ is an automorphism of the trivial extension T_{0} (i.e. $f_{1} \in$ $\left.\operatorname{Aut}\left(T_{0}\right)=\operatorname{Ext}^{0}\left(A_{1}, A_{2}\right)\right)$ such that, via the isomorphism of extensions $\Theta_{0}: u_{2} T_{0} \rightarrow u_{1}^{*} E_{0}$, the push-down $u_{2 *} f_{1}$ of the automorphism f_{1} of T_{0} is compatible with the pull-back $u_{1}^{*} f_{0}$ of the automorphism f_{0} of E_{0}, i.e. $u_{2} \circ f_{1}=f_{0} \circ u_{1}$.
We have therefore the canonical isomorphism

$$
\mathcal{E} x t^{0}\left(K_{1}, K_{2}\right) \cong \operatorname{Hom}_{\mathcal{K}(\mathbf{S})}\left(K_{1}, K_{2}\right)
$$

The group law of the category $\operatorname{Ext}\left(K_{1}, K_{2}\right)$ induces a group law on the set of isomorphism classes of objects of $\operatorname{Ext}\left(K_{1}, K_{2}\right)$ which we denote by $\mathcal{E} x t^{1}\left(K_{1}, K_{2}\right)$.

Let $K_{i}=\left[u_{i}: A_{i} \rightarrow B_{i}\right]$ (for $i=1,2,3$) be three 1-motives defined over S.
Definition 1.4. A biextension $\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \lambda\right)$ of $\left(K_{1}, K_{2}\right)$ by K_{3} consists of
(1) a biextension \mathcal{B} of $\left(B_{1}, B_{2}\right)$ by B_{3};
(2) a trivialization

$$
\Psi_{1}: A_{1} \times B_{2} \longrightarrow\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}
$$

of the biextension $\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}$ of $\left(A_{1}, B_{2}\right)$ by B_{3} obtained as pull-back of \mathcal{B} via $\left(u_{1}, i d_{B_{2}}\right): A_{1} \times B_{2} \rightarrow B_{1} \times B_{2}$, and a trivialization

$$
\Psi_{2}: B_{1} \times A_{2} \longrightarrow\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}
$$

of the biextension $\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}$ of $\left(B_{1}, A_{2}\right)$ by B_{3} obtained as pull-back of \mathcal{B} via $\left(i d_{B_{1}}, u_{2}\right): B_{1} \times A_{2} \rightarrow B_{1} \times B_{2}$. These two trivializations Ψ_{1} and Ψ_{2} have to coincide over $A_{1} \times A_{2}$;
(3) a trivial biextension $\mathcal{T}_{1}=\left(\mathcal{T}_{1}, \lambda_{1}\right)$ of $\left(A_{1}, B_{2}\right)$ by A_{3}, an isomorphism of biextensions

$$
\Theta_{1}: u_{3 *} \mathcal{T}_{1} \longrightarrow\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}
$$

between the push-down via $u_{3}: A_{3} \rightarrow B_{3}$ of \mathcal{T}_{1} and $\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}$, a trivial biextension $\mathcal{T}_{2}=\left(\mathcal{T}_{2}, \lambda_{2}\right)$ of $\left(B_{1}, A_{2}\right)$ by A_{3} and an isomorphism of biextensions

$$
\Theta_{2}: u_{3 *} \mathcal{T}_{2} \longrightarrow\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}
$$

between the push-down via $u_{3}: A_{3} \rightarrow B_{3}$ of \mathcal{T}_{2} and $\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}$. Through the isomorphism Θ_{1} the trivialization $u_{3} \circ \lambda_{1}$ of $u_{3} * \mathcal{T}_{1}$ is compatible with the trivialization Ψ_{1} of $\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}$, and through the isomorphism Θ_{2} the trivialization $u_{3} \circ \lambda_{2}$ of $u_{3 *} \mathcal{T}_{2}$ is compatible with the trivialization Ψ_{2} of
$\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}$. The two trivializations λ_{1} and λ_{2} have to coincide over $A_{1} \times$ A_{2}, i.e. $\left(i d_{A_{1}}, u_{2}\right)^{*} \mathcal{T}_{1}=\left(u_{1}, i d_{A_{2}}\right)^{*} \mathcal{T}_{2}$ (we will denote this biextension by $\mathcal{T}=(\mathcal{T}, \lambda)$ with λ the restriction of the trivializations λ_{1} and λ_{2} over $A_{1} \times A_{2}$). Moreover, we require an isomorphism of biextensions

$$
\Theta: u_{3 *} \mathcal{T} \longrightarrow\left(u_{1}, u_{2}\right)^{*} \mathcal{B}
$$

which is compatible with the isomorphisms Θ_{1} and Θ_{2} and through which the trivialization $u_{3} \circ \lambda$ of $u_{3 *} \mathcal{T}$ is compatible with the restriction Ψ of the trivializations Ψ_{1} and Ψ_{2} over $A_{1} \times A_{2}$.

Condition (3) can be rewritten as
(3') an morphism $\lambda: A_{1} \otimes A_{2} \rightarrow A_{3}$ such that $u_{3} \circ \lambda$ is compatible with Ψ.
Let $K_{i}=\left[u_{i}: A_{i} \rightarrow B_{i}\right]$ and $K_{i}^{\prime}=\left[u_{i}^{\prime}: A_{i}^{\prime} \rightarrow B_{i}^{\prime}\right]$ (for $\left.i=1,2,3\right)$ be 1-motives defined over S. Let $\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \lambda\right)$ be a biextension of $\left(K_{1}, K_{2}\right)$ by K_{3} and let $\left(\mathcal{B}^{\prime}, \Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \lambda^{\prime}\right)$ be a biextension of $\left(K_{1}^{\prime}, K_{2}^{\prime}\right)$ by K_{3}^{\prime}.

Definition 1.5. A morphism of biextensions

$$
\left(\underline{F}, \Upsilon_{1}, \underline{\Upsilon}_{2}, \underline{\Phi}\right):\left(\mathcal{B}, \Psi_{1}, \Psi_{2}, \lambda\right) \longrightarrow\left(\mathcal{B}^{\prime}, \Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \lambda^{\prime}\right)
$$

consists of
(1) a morphism $\underline{F}=\left(F, f_{1}, f_{2}, f_{3}\right): \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ from the biextension \mathcal{B} to the biextension \mathcal{B}^{\prime}. In particular, $F: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ is a morphism of the sheaves underlying \mathcal{B} and \mathcal{B}^{\prime}, and

$$
f_{1}: B_{1} \longrightarrow B_{1}^{\prime} \quad f_{2}: B_{2} \longrightarrow B_{2}^{\prime} \quad f_{3}: B_{3} \longrightarrow B_{3}^{\prime}
$$

are morphisms abelian sheaves on \mathbf{S}.
(2) a morphism of biextensions

$$
\underline{\Upsilon}_{1}=\left(\Upsilon_{1}, g_{1}, f_{2}, f_{3}\right):\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B} \longrightarrow\left(u_{1}^{\prime}, i d_{B_{2}^{\prime}}\right)^{*} \mathcal{B}^{\prime}
$$

compatible with the morphism $\underline{F}=\left(F, f_{1}, f_{2}, f_{3}\right)$ and with the trivializations Ψ_{1} and Ψ_{1}^{\prime}, and a morphism of biextensions

$$
\underline{\Upsilon}_{2}=\left(\Upsilon_{2}, f_{1}, g_{2}, f_{3}\right):\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B} \longrightarrow\left(i d_{B_{1}^{\prime}}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}
$$

compatible with the morphism $\underline{F}=\left(F, f_{1}, f_{2}, f_{3}\right)$ and with the trivializations Ψ_{2} and Ψ_{2}^{\prime}. In particular, $\Upsilon_{1}:\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B} \rightarrow\left(u_{1}^{\prime}, i d_{B_{2}^{\prime}}\right)^{*} \mathcal{B}^{\prime}$ is a morphism of the sheaves underlying $\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}$ and $\left(u_{1}^{\prime}, i d_{B_{2}^{\prime}}\right)^{*} \mathcal{B}^{\prime}$, $\Upsilon_{2}:\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B} \rightarrow\left(i d_{B_{1}^{\prime}}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}$ is a morphism of the sheaves underlying $\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}$ and $\left(i d_{B_{1}^{\prime}}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}$, and

$$
g_{1}: A_{1} \longrightarrow A_{1}^{\prime} \quad g_{2}: A_{2} \longrightarrow A_{2}^{\prime}
$$

are morphisms abelian sheaves on \mathbf{S}. By pull-back, the two morphisms $\underline{\Upsilon}_{1}=$ $\left(\Upsilon_{1}, g_{1}, f_{2}, f_{3}\right)$ and $\Upsilon_{2}=\left(\Upsilon_{2}, f_{1}, g_{2}, f_{3}\right)$ define a morphism of biextensions

$$
\underline{\Upsilon}=\left(\Upsilon, g_{1}, g_{2}, f_{3}\right):\left(u_{1}, u_{2}\right)^{*} \mathcal{B} \longrightarrow\left(u_{1}^{\prime}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}
$$

compatible with the morphism $\underline{F}=\left(F, f_{1}, f_{2}, f_{3}\right)$ and with the trivializations Ψ (restriction of Ψ_{1} and Ψ_{2} over $A_{1} \times A_{2}$) and Ψ^{\prime} (restriction of Ψ_{1}^{\prime} and Ψ_{2}^{\prime} over $A_{1}^{\prime} \times A_{2}^{\prime}$).
(3) a morphism of biextensions

$$
\underline{\Phi}_{1}=\left(\Phi_{1}, g_{1}, f_{2}, g_{3}\right): \mathcal{T}_{1} \longrightarrow \mathcal{T}_{1}^{\prime}
$$

compatible with the morphism $\Upsilon_{1}=\left(\Upsilon, g_{1}, f_{2}, f_{3}\right)$ and with the trivializations λ_{1} and λ_{1}^{\prime}, and a morphism of biextensions

$$
\underline{\Phi}_{2}=\left(\Phi_{2}, f_{1}, g_{2}, g_{3}\right): \mathcal{T}_{2} \longrightarrow \mathcal{T}_{2}^{\prime}
$$

compatible with the morphism $\underline{\Upsilon}_{2}=\left(\Upsilon_{2}, f_{1}, g_{2}, f_{3}\right)$ and with the trivializations λ_{2} and λ_{2}^{\prime}. In particular, $\Phi_{1}: \mathcal{T}_{1} \rightarrow \mathcal{T}_{1}^{\prime}$ is a morphism of the sheaves underlying \mathcal{T}_{1} and $\mathcal{T}_{1}^{\prime}, \Phi_{2}: \mathcal{T}_{2} \rightarrow \mathcal{T}_{2}^{\prime}$ is a morphism of the sheaves underlying \mathcal{T}_{2} and \mathcal{T}_{2}^{\prime}, and

$$
g_{3}: A_{3} \longrightarrow A_{3}^{\prime}
$$

is an morphism abelian sheaves on \mathbf{S}. By pull-back, the two morphisms $\underline{\Phi}_{1}=\left(\Phi_{1}, g_{1}, f_{2}, g_{3}\right)$ and $\underline{\Phi}_{2}=\left(\Phi_{2}, f_{1}, g_{2}, g_{3}\right)$ define a morphism of biextensions

$$
\underline{\Phi}=\left(\Phi, g_{1}, g_{2}, g_{3}\right): \mathcal{T} \longrightarrow \mathcal{T}^{\prime}
$$

compatible with the morphism $\Upsilon=\left(\Upsilon, g_{1}, g_{2}, f_{3}\right)$ and with the trivializations λ (restriction of λ_{1} and λ_{2} over $A_{1} \times A_{2}$) and λ^{\prime} (restriction of λ_{1}^{\prime} and λ_{2}^{\prime} over $\left.A_{1} \times A_{2}\right)$.
Condition (3) can be rewritten as
$\left(3^{\prime}\right)$ an morphism $g_{3}: A_{3} \rightarrow A_{3}^{\prime}$ abelian sheaves on \mathbf{S} compatible with u_{3} and u_{3}^{\prime} (i.e. $u_{3}^{\prime} \circ g_{3}=f_{3} \circ u_{3}$) and such that

$$
\lambda^{\prime} \circ\left(g_{1} \times g_{2}\right)=g_{3} \circ \lambda
$$

Explicitly, the compatibility of $\underline{\Upsilon}_{1}$ with \underline{F}, Ψ_{1} and Ψ_{1}^{\prime} means that the following diagram is commutative:

$$
\begin{array}{ccccc}
A_{1} \times B_{2} & \xrightarrow{\Psi_{1}} & \left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B} & \longrightarrow & \mathcal{B} \\
g_{1} \times f_{2} \downarrow & & \Upsilon_{1} \downarrow & & \downarrow F \\
A_{1}^{\prime} \times B_{2}^{\prime} & \xrightarrow{\Psi_{1}^{\prime}} & \left(u_{1}^{\prime}, i d_{B_{2}^{\prime}}\right)^{*} \mathcal{B}^{\prime} & \longrightarrow & \mathcal{B}^{\prime} .
\end{array}
$$

The compatibility of $\underline{\Upsilon}_{2}$ with \underline{F}, Ψ_{2} and Ψ_{2}^{\prime} means that the following diagram is commutative:

$$
\begin{array}{ccccc}
B_{1} \times A_{2} & \xrightarrow{\Psi_{2}} & \left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B} & \longrightarrow & \mathcal{B} \\
f_{1} \times g_{2} \downarrow & & \Upsilon_{2} \downarrow & & \downarrow F \\
B_{1}^{\prime} \times A_{2}^{\prime} & \xrightarrow{\Psi_{2}^{\prime}} & \left(i d_{B_{1}^{\prime}}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime} & \longrightarrow & \mathcal{B}^{\prime} .
\end{array}
$$

The compatibility of $\underline{\Upsilon}$ with \underline{F}, Ψ and Ψ^{\prime} means that the following diagram is commutative:

$$
\begin{array}{ccccc}
A_{1} \times A_{2} & \xrightarrow{\Psi} & \left(u_{1}, u_{2}\right)^{*} \mathcal{B} & \longrightarrow & \mathcal{B} \\
g_{1} \times g_{2} \downarrow & & \Upsilon \downarrow & & \downarrow F \\
A_{1}^{\prime} \times A_{2}^{\prime} & \xrightarrow{\Psi^{\prime}} & \left(u_{1}^{\prime}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime} & \longrightarrow & \mathcal{B}^{\prime} .
\end{array}
$$

The compatibility of $\underline{\Phi}_{1}$ with $\underline{\Upsilon}_{1}, \lambda_{1}$ and λ_{1}^{\prime} means that the following diagram is commutative:

$$
\begin{array}{ccccccc}
A_{1} \times B_{2} & \xrightarrow{\lambda_{1}} & \mathcal{T}_{1} & \longrightarrow & \longrightarrow \\
g_{1} \times f_{2} \downarrow & & \mathcal{T}_{1} & \stackrel{\Theta_{1}}{\cong} & \left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B} \\
\Phi_{1} \downarrow & & & & \\
A_{1}^{\prime} \times B_{2}^{\prime} & \xrightarrow[\lambda_{1}^{\prime}]{\longrightarrow} & \mathcal{T}_{1}^{\prime} & \longrightarrow & u_{3 *}^{\prime} \mathcal{T}_{1}^{\prime} & \stackrel{\Theta_{1}^{\prime}}{\cong} & \left(u_{1}^{\prime}, i d_{B_{2}^{\prime}}\right)^{*} \mathcal{B}^{\prime}
\end{array}
$$

The compatibility of $\underline{\Phi}_{2}$ with $\underline{\Upsilon}_{2}, \lambda_{2}$ and λ_{2}^{\prime} means that the following diagram is commutative:

$$
\begin{array}{cccccc}
B_{1} \times A_{2} & \xrightarrow{\lambda_{2}} & \mathcal{T}_{2} & \longrightarrow u_{3 *} \mathcal{T}_{2} & \stackrel{\Theta_{2}}{\cong} & \left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B} \\
f_{1} \times g_{2} \downarrow & & \Phi_{2} \downarrow & & & \\
B_{1}^{\prime} \times A_{2}^{\prime} & \xrightarrow{\lambda_{2}^{\prime}} & \mathcal{T}_{2}^{\prime} & \longrightarrow & u_{3 *}^{\prime} \mathcal{T}_{2}^{\prime} & \stackrel{\Theta_{2}^{\prime}}{\cong} \\
\left(i d_{B_{1}^{\prime}}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}
\end{array}
$$

Finally, the compatibility of $\underline{\Phi}$ with $\underline{\Upsilon}, \lambda$ and λ^{\prime} means that the following diagram is commutative:

$$
\begin{array}{cccccc}
A_{1} \times A_{2} & \xrightarrow{\longrightarrow} \mathcal{T} & \longrightarrow & u_{3 *} \mathcal{T} & \stackrel{\Theta}{\cong} & \left(u_{1}, u_{2}\right)^{*} \mathcal{B} \\
g_{1} \times g_{2} \downarrow & & \Phi \downarrow & & & \downarrow \Upsilon \\
A_{1}^{\prime} \times A_{2}^{\prime} & \xrightarrow{\lambda^{\prime}} & \mathcal{T}^{\prime} & \longrightarrow & u_{3 *}^{\prime} \mathcal{T}^{\prime} & \stackrel{\Theta^{\prime}}{\cong} \\
\left(u_{1}^{\prime}, u_{2}^{\prime}\right)^{*} \mathcal{B}^{\prime}
\end{array}
$$

We denote by $\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right)$ the category of biextensions of $\left(K_{1}, K_{2}\right)$ by K_{3}. The Baer sum of extensions defines a group law for the objects of this category which is therefore a strictly commutative Picard category (see [G] Exposé VII 2.5). The zero object $\left(\mathcal{B}_{0}, \Psi_{01}, \Psi_{02}, \lambda_{0}\right)$ of $\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right)$ with respect to this group law consists of

- the trivial biextension $\mathcal{B}_{0}=B_{1} \times B_{2} \times B_{3}$ of $\left(B_{1}, B_{2}\right)$ by B_{3}, i.e. the zero object of $\operatorname{Biext}\left(B_{1}, B_{2} ; B_{3}\right)$, and
- the trivialization $\Psi_{01}=\left(i d_{A_{1}}, i d_{B_{2}}, 0\right)$ (resp. $\left.\Psi_{02}=\left(i d_{B_{1}}, i d_{A_{2}}, 0\right)\right)$ of the biextension $\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}_{0}=A_{1} \times B_{2} \times B_{3}$ of $\left(A_{1}, B_{2}\right)$ by B_{3} (resp. of the biextension $\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}_{0}=B_{1} \times A_{2} \times B_{3}$ of $\left(B_{1} \times A_{2}\right)$ by $\left.B_{3}\right)$,
- the trivial biextension \mathcal{T}_{10} of $\left(A_{1}, B_{2}\right)$ by A_{3} (i.e. $\mathcal{T}_{10}=\left(\mathcal{T}_{10}, \lambda_{10}\right)$ with $\mathcal{T}_{10}=A_{1} \times B_{2} \times A_{3}$ and $\left.\lambda_{10}=\left(i d_{A_{1}}, i d_{B_{2}}, 0\right)\right)$, the isomorphism of biextensions $\Theta_{10}=\left(i d_{A_{1}}, i d_{B_{2}}, i d_{B_{3}}\right): u_{3 *} \mathcal{T}_{10} \rightarrow\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}_{0}$, the trivial biextension \mathcal{T}_{01} of $\left(B_{1}, A_{2}\right)$ by A_{3} (i.e. $\mathcal{T}_{01}=\left(\mathcal{T}_{01}, \lambda_{01}\right)$ with $\mathcal{T}_{10}=B_{1} \times A_{2} \times A_{3}$ and $\left.\lambda_{01}=\left(i d_{B_{1}}, i d_{A_{2}}, 0\right)\right)$ and the isomorphism of biextensions $\Theta_{01}=$ $\left(i d_{B_{1}}, i d_{A_{2}}, i d_{B_{3}}\right): u_{3 *} \mathcal{T}_{10} \rightarrow\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}_{0}$. In particular the restriction of λ_{10} and λ_{01} over $A_{1} \times A_{2}$ is $\lambda_{0}=\left(i d_{A_{1}}, i d_{A_{2}}, 0\right)$

We denote by $\operatorname{Biext}^{0}\left(K_{1}, K_{2} ; K_{3}\right)$ the group of automorphisms of any object of $\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right)$. It is canonically isomorphic to the group of automorphisms of the zero object $\left(\mathcal{B}_{0}, \Psi_{01}, \Psi_{02}, \lambda_{0}\right)$. Explicitly, $\operatorname{Biext}^{0}\left(K_{1}, K_{2} ; K_{3}\right)$ consists of the couple $\left(f_{0},\left(f_{10}, f_{01}\right)\right)$ where

- $f_{0}: B_{1} \otimes B_{2} \rightarrow B_{3}$ is an automorphism of the trivial biextension \mathcal{B}_{0} (i.e. $\left.f_{0} \in \operatorname{Biext}^{0}\left(B_{1}, B_{2} ; B_{3}\right)\right)$, and
- $f_{10}: A_{1} \otimes B_{2} \rightarrow A_{3}$ is an automorphism of the trivial biextension \mathcal{T}_{10} (i.e. $\left.f_{10} \in \operatorname{Biext}^{0}\left(A_{1}, B_{2} ; A_{3}\right)\right)$ and $f_{01}: B_{1} \otimes A_{2} \rightarrow A_{3}$ is an automorphism of the trivial biextension \mathcal{T}_{01} (i.e. $f_{01} \in \operatorname{Biext}^{0}\left(B_{1}, A_{2} ; A_{3}\right)$) such that, via the isomorphisms of biextensions $\Theta_{10}: u_{3 *} \mathcal{T}_{10} \rightarrow\left(u_{1}, i d_{B_{2}}\right)^{*} \mathcal{B}_{0}$ and $\Theta_{01}: u_{3 *} \mathcal{T}_{01} \rightarrow\left(i d_{B_{1}}, u_{2}\right)^{*} \mathcal{B}_{0}$, the push-down $u_{3 *} f_{10}$ of f_{10} is compatible with the pull-back $\left(u_{1}, i d_{B_{2}}\right)^{*} f_{0}$ of f_{0}, and the push-down $u_{3 *} f_{01}$ of f_{01} is compatible with the pull-back $\left(i d_{B_{1}}, u_{2}\right)^{*} f_{0}$ of f_{0}, i.e. such that the
following diagram commute

We have therefore the canonical isomorphism

$$
\operatorname{Biext}^{0}\left(K_{1}, K_{2} ; K_{3}\right) \cong \operatorname{Hom}_{\mathcal{K}(\mathbf{S})}\left(K_{1} \stackrel{\mathbb{Q}}{\otimes} K_{2}, K_{3}\right)
$$

The group law of the category $\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right)$ induces a group law on the set of isomorphism classes of objects of $\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right)$, that we denote by $\operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right)$.

Remark 1.6. According to the above geometrical definitions of extensions and biextensions of 1-motives, we have the following equivalence of categories

$$
\operatorname{Biext}\left(K_{1},[0 \rightarrow \mathbb{Z}] ; K_{3}\right) \simeq \operatorname{Ext}\left(K_{1}, K_{3}\right)
$$

Moreover we have also the following isomorphisms

$$
\operatorname{Biext}^{i}\left(K_{1},[\mathbb{Z} \rightarrow 0] ; K_{3}\right)= \begin{cases}\operatorname{Hom}\left(B_{1}, A_{3}\right), & i=0 \\ \operatorname{Hom}\left(K_{1}, K_{3}\right), & i=1\end{cases}
$$

Note that we get the same results applying the homological interpretation of biextensions furnished by our main Theorem 0.1

2. Review on strictly commutative Picard stacks

Let \mathbf{S} be a site. For the notions of \mathbf{S}-pre-stack, \mathbf{S}-stack and morphisms of \mathbf{S} stacks we refer to G71 Chapter II 1.2.

A strictly commutative Picard S-stack is an \mathbf{S}-stack of groupoids \mathcal{P} endowed with a functor $+: \mathcal{P} \times_{\mathbf{S}} \mathcal{P} \rightarrow \mathcal{P},(a, b) \mapsto a+b$, and two natural isomorphisms of associativity σ and of commutativity τ, which are described by the functorial isomorphisms

$$
\begin{align*}
\sigma_{a, b, c} & : \quad(a+b)+c \xrightarrow{\cong} a+(b+c) \quad \forall a, b, c \in \mathcal{P} \tag{2.1}\\
\tau_{a, b} & : a+b \xrightarrow{\cong} b+a \quad \forall a, b \in \mathcal{P} \tag{2.2}
\end{align*}
$$

such that for any object U of $\mathbf{S},(\mathcal{P}(U),+, \sigma, \tau)$ is a strictly commutative Picard category (i.e. it is possible to make the sum of two objects of $\mathcal{P}(U)$ and this sum is associative and commutative, see [D73] 1.4.2 for more details). Here "strictly" means that $\tau_{a, a}$ is the identity for all $a \in \mathcal{P}$. Any strictly commutative Picard S-stack admits a global neutral object e and the sheaf of automorphisms of the neutral object Aut (e) is abelian.

Let \mathcal{P} and \mathcal{Q} be two strictly commutative Picard \mathbf{S}-stacks. An additive functor $\left(F, \sum\right): \mathcal{P} \rightarrow \mathcal{Q}$ between strictly commutative Picard \mathbf{S}-stacks is a morphism of \mathbf{S} stacks (i.e. a cartesian S-functor, see G71 Chapter I 1.1) endowed with a natural isomorphism \sum which is described by the functorial isomorphisms

$$
\sum_{a, b}: F(a+b) \xrightarrow{\cong} F(a)+F(b) \quad \forall a, b \in \mathcal{P}
$$

and which is compatible with the natural isomorphisms σ and τ of \mathcal{P} and \mathcal{Q}. A morphism of additive functors $u:\left(F, \sum\right) \rightarrow\left(F^{\prime}, \sum^{\prime}\right)$ is an S-morphism of
cartesian S -functors (see G71 Chapter I 1.1) which is compatible with the natural isomorphisms \sum and \sum^{\prime} of F and F^{\prime} respectively.

An equivalence of strictly commutative Picard S-stacks between \mathcal{P} and \mathcal{Q} is an additive functor $\left(F, \sum\right): \mathcal{P} \rightarrow \mathcal{Q}$ with F an equivalence of \mathbf{S}-stacks. Two strictly commutative Picard \mathbf{S}-stacks are equivalent as strictly commutative Picard S-stacks if there exists an equivalence of strictly commutative Picard Sstacks between them.

To any strictly commutative Picard \mathbf{S}-stack \mathcal{P}, we associate the sheaffification $\pi_{0}(\mathcal{P})$ of the pre-sheaf which associates to each object U of \mathbf{S} the group of isomorphism classes of objects of $\mathcal{P}(U)$, and the sheaf $\pi_{1}(\mathcal{P})$ of automorphisms Aut (e) of the neutral object of \mathcal{P}.

In [D73] §1.4 Deligne associates to each complex K of $\mathcal{K}^{[-1,0]}(\mathbf{S})$ a strictly commutative Picard S-stack $s t(K)$ and to each morphism of complexes $g: K \rightarrow L$ an additive functor $s t(g): s t(K) \rightarrow s t(L)$. Moreover, if Picard(S) denotes the category whose objects are small strictly commutative Picard \mathbf{S}-stacks and whose arrows are isomorphism classes of additive functors, Deligne proves the following equivalence of category

$$
\begin{align*}
& s t: \mathcal{D}^{[-1,0]}(\mathbf{S}) \longrightarrow \operatorname{Picard}(\mathbf{S}) \tag{2.3}\\
& K \mapsto \\
& \operatorname{st}(K) \\
& K \xrightarrow{f} L \mapsto \\
& \operatorname{st}(K) \xrightarrow{s t(f)} \operatorname{st}(L) .
\end{align*}
$$

constructing explicitly the inverse equivalence of $s t$, that we denote by [].
Example 2.1. Let \mathcal{P}, \mathcal{Q} and \mathcal{G} be three strictly commutative Picard \mathbf{S}-stacks.
I) Let

$$
\operatorname{HOM}(\mathcal{P}, \mathcal{Q})
$$

be the strictly commutative Picard S-stack defined as followed: for any object U of \mathbf{S}, the objects of the category $\operatorname{HOM}(\mathcal{P}, \mathcal{Q})(U)$ are additive functors from $\mathcal{P}_{\mid U}$ to $\mathcal{Q}_{\mid U}$ and its arrows are morphisms of additive functors. According D73 1.4.18 we have the equality $[\operatorname{HOM}(\mathcal{P}, \mathcal{Q})]=\tau_{\leq 0} \operatorname{RHom}([\mathcal{P}],[\mathcal{Q}])$ in the derived category $\mathcal{D}^{[-1,0]}(\mathbf{S})$.
II) A biadditive functor $(F, l, r): \mathcal{P} \times \mathcal{Q} \rightarrow \mathcal{G}$ is a morphism of \mathbf{S}-stacks F : $\mathcal{P} \times \mathcal{Q} \rightarrow \mathcal{G}$ endowed with two natural isomorphisms, which are described by the functorial isomorphisms

$$
\begin{aligned}
& l_{a, b, c}: F(a+b, c) \xrightarrow{\cong} F(a, c)+F(b, c) \quad \forall a, b \in \mathcal{P}, \forall c \in \mathcal{Q} \\
& r_{a, c, d}: F(a, c+d) \xrightarrow{\cong} F(a, c)+F(a, d) \quad \forall a \in \mathcal{P}, \forall c, d \in \mathcal{Q},
\end{aligned}
$$

such that

- for any fixed $a \in \mathcal{P}, F(a,-)$ is compatible with the natural isomorphisms σ and τ of \mathcal{P} and \mathcal{G},
- for any fixed $c \in \mathcal{Q}, F(-, c)$ is compatible with the natural isomorphisms σ and τ of \mathcal{Q} and \mathcal{G},
- for any fixed $a, b \in \mathcal{P}$ and $c, d \in \mathcal{Q}$ is the following diagram commute

A morphism of biadditive functors $\alpha:(F, l, r) \Rightarrow\left(F^{\prime}, l^{\prime}, r^{\prime}\right)$ is a morphism of morphisms of \mathbf{S}-stacks $\alpha: F \Rightarrow F^{\prime}$ which is compatible with the natural isomorphisms l, r and l^{\prime}, r of F and F^{\prime} respectively. Let

$$
\operatorname{HOM}(\mathcal{P}, \mathcal{Q} ; \mathcal{G})
$$

be the strictly commutative Picard \mathbf{S}-stack defined as followed: for any object U of \mathbf{S}, the objects of the category $\operatorname{HOM}(\mathcal{P}, \mathcal{Q} ; \mathcal{G})(U)$ are biadditive functors from $\mathcal{P}_{\mid U} \times \mathcal{Q}_{\mid U}$ to $\mathcal{G}_{\mid U}$ and its arrows are morphisms of biadditive functors.
III) Let

$$
\mathcal{P} \otimes \mathcal{Q}
$$

be the strictly commutative Picard \mathbf{S}-stack endowed with a biadditive functor $\otimes: \mathcal{P} \times \mathcal{Q} \rightarrow \mathcal{P} \otimes \mathcal{Q}$ such that for any strictly commutative Picard S -stack \mathcal{G}, the biadditive functor \otimes defines the following equivalence of strictly commutative Picard S-stacks:

$$
\begin{equation*}
\operatorname{HOM}(\mathcal{P} \otimes \mathcal{Q}, \mathcal{G}) \cong \operatorname{HOM}(\mathcal{P}, \mathcal{Q} ; \mathcal{G}) \tag{2.4}
\end{equation*}
$$

According to D73 1.4.20, in the derived category $\mathcal{D}^{[-1,0]}(\mathbf{S})$ we have the equality $[\mathcal{P} \otimes \mathcal{Q}]=\tau_{\geq-1}\left([\mathcal{P}] \otimes^{\mathbb{L}}[\mathcal{Q}]\right)$.

By $\S 2$ Be11] we have the following operations on strictly commutative Picard S-stacks:
(1) The product of two strictly commutative Picard S-stacks \mathcal{P} and \mathcal{Q} is the strictly commutative Picard S-stack $\mathcal{P} \times \mathcal{Q}$ defined as followed:

- for any object U of \mathbf{S}, an object of the category $\mathcal{P} \times \mathcal{Q}(U)$ is a pair (p, q) of objects with p an object of $\mathcal{P}(U)$ and q an object of $\mathcal{Q}(U)$;
- for any object U of \mathbf{S}, if (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are two objects of $\mathcal{P} \times \mathcal{Q}(U)$, an arrow of $\mathcal{P} \times \mathcal{Q}(U)$ from (p, q) to $\left(p^{\prime}, q^{\prime}\right)$ is a pair (f, g) of arrows with $f: p \rightarrow p^{\prime}$ an arrow of $\mathcal{P}(U)$ and $g: q \rightarrow q^{\prime}$ an arrow of $\mathcal{Q}(U)$.
(2) Let $G: \mathcal{P} \rightarrow \mathcal{Q}$ and $F: \mathcal{P}^{\prime} \rightarrow \mathcal{Q}$ be additive functors between strictly commutative Picard \mathbf{S}-stacks. The fibered product of \mathcal{P} and \mathcal{P}^{\prime} over \mathcal{Q} via F and G is the strictly commutative Picard \mathbf{S}-stack $\mathcal{P} \times{ }_{\mathcal{Q}} \mathcal{P}^{\prime}$ defined as followed:
- for any object U of \mathbf{S}, the objects of the category $\left(\mathcal{P} \times{ }_{\mathcal{Q}} \mathcal{P}^{\prime}\right)(U)$ are triplets $\left(p, p^{\prime}, f\right)$ where p is an object of $\mathcal{P}(U), p^{\prime}$ is an object of $\mathcal{P}^{\prime}(U)$ and f : $G(p) \xlongequal{\cong} F\left(p^{\prime}\right)$ is an isomorphism of $\mathcal{Q}(U)$ between $G(p)$ and $F\left(p^{\prime}\right)$;
- for any object U of \mathbf{S}, if $\left(p_{1}, p_{1}^{\prime}, f\right)$ and $\left(p_{2}, p_{2}^{\prime}, g\right)$ are two objects of $(\mathcal{P} \times \mathcal{Q}$ $\left.\mathcal{P}^{\prime}\right)(U)$, an arrow of $\left(\mathcal{P} \times_{\mathcal{Q}} \mathcal{P}^{\prime}\right)(U)$ from $\left(p_{1}, p_{1}^{\prime}, f\right)$ to $\left(p_{2}, p_{2}^{\prime}, g\right)$ is a pair (f, g) of arrows with $\alpha: p_{1} \rightarrow p_{2}$ of arrow of $\mathcal{P}(U)$ and $\beta: p_{1}^{\prime} \rightarrow p_{2}^{\prime}$ an arrow of $\mathcal{P}^{\prime}(U)$ such that $g \circ G(\alpha)=F(\beta) \circ f$.
The fibered product $\mathcal{P} \times{ }_{\mathcal{Q}} \mathcal{P}^{\prime}$ is also called the pull-back $F^{*} \mathcal{P}$ of \mathcal{P} via $F: \mathcal{P}^{\prime} \rightarrow \mathcal{Q}$ or the pull-back $G^{*} \mathcal{P}^{\prime}$ of \mathcal{P}^{\prime} via $G: \mathcal{P} \rightarrow \mathcal{Q}$.
(3) Let $G: \mathcal{Q} \rightarrow \mathcal{P}$ and $F: \mathcal{Q} \rightarrow \mathcal{P}^{\prime}$ be additive functors between strictly commutative Picard \mathbf{S}-stacks. The fibered sum of \mathcal{P} and \mathcal{P}^{\prime} under \mathcal{Q} via F and G is the
strictly commutative Picard S-stack $\mathcal{P}+{ }^{\mathcal{Q}} \mathcal{P}^{\prime}$ generated by the following strictly commutative Picard S-pre-stack \mathcal{D} :
- for any object U of \mathbf{S}, the objects of the category $\mathcal{D}(U)$ are pairs $\left(p, p^{\prime}\right)$ with p an object of $\mathcal{P}(U)$ and p^{\prime} an object of $\mathcal{P}^{\prime}(U)$;
- for any object U of \mathbf{S}, if $\left(p_{1}, p_{1}^{\prime}\right)$ and $\left(p_{2}, p_{2}^{\prime}\right)$ are two objects of $\mathcal{D}(U)$, an arrow of $\mathcal{D}(U)$ from $\left(p_{1}, p_{1}^{\prime}\right)$ to $\left(p_{2}, p_{2}^{\prime}\right)$ is an equivalence class of triplets (q, α, β) with q an object of $\mathcal{Q}(U), \alpha: p_{1}+G(q) \rightarrow p_{2}$ an arrow of $\mathcal{P}(U)$ and $\beta: p_{1}^{\prime}+F(q) \rightarrow p_{2}^{\prime}$ an arrow of $\mathcal{P}^{\prime}(U)$. Two triplets $\left(q_{1}, \alpha_{1}, \beta_{1}\right)$ and $\left(q_{2}, \alpha_{2}, \beta_{2}\right)$ are equivalent it there is an arrow $\gamma: q_{1} \rightarrow q_{2}$ in $\mathcal{Q}(U)$ such that $\alpha_{2} \circ(i d+G(\gamma))=\alpha_{1}$ and $(F(\gamma)+i d) \circ \beta_{1}=\beta_{2}$.

The fibered sum $\mathcal{P}+{ }^{\mathcal{Q}} \mathcal{P}^{\prime}$ is also called the push-down $F_{*} \mathcal{P}$ of \mathcal{P} via $F: \mathcal{Q} \rightarrow \mathcal{P}^{\prime}$ or the push-down $G_{*} \mathcal{P}^{\prime}$ of \mathcal{P}^{\prime} via $G: \mathcal{Q} \rightarrow \mathcal{P}$.

We have analogous operations on complexes of $\mathcal{K}^{[-1,0]}(\mathbf{S})$:
(1) The product of two complexes $P=\left[d^{P}: P^{-1} \rightarrow P^{0}\right]$ and $Q=\left[d^{Q}: Q^{-1} \rightarrow Q^{0}\right]$ of $\mathcal{K}^{[-1,0]}(\mathbf{S})$ is the complex $P+Q=\left[\left(d^{P}, d^{Q}\right): P^{-1}+Q^{-1} \rightarrow P^{0}+Q^{0}\right]$. Via the equivalence of category (2.3) we have that $\operatorname{st}(P+Q)=s t(P) \times s t(Q)$.
(2) Let $P=\left[d^{P}: P^{-1} \rightarrow P^{0}\right], Q=\left[d^{Q}: Q^{-1} \rightarrow Q^{0}\right]$ and $G=\left[d^{G}: G^{-1} \rightarrow G^{0}\right]$ be complexes of $\mathcal{K}^{[-1,0]}(\mathbf{S})$ and let $f: P \rightarrow G$ and $g: Q \rightarrow G$ be morphisms of complexes. The fibered product $P \times_{G} Q$ of P and Q over G is the complex $\left[d_{P} \times{ }_{d_{G}} d_{Q}: P^{-1} \times_{G^{-1}} Q^{-1} \rightarrow P^{0} \times{ }_{G^{0}} Q^{0}\right]$, where for $i=-1,0$ the abelian sheaf $P^{i} \times{ }_{G^{i}} Q^{i}$ is the fibered product of P^{i} and of Q^{i} over G^{i} and the morphism of abelian sheaves $d_{P} \times{ }_{d_{G}} d_{Q}$ is given by the universal property of the fibered product $P^{0} \times{ }_{G^{0}} Q^{0}$. The fibered product $P \times_{G} Q$ is also called the pull-back $g^{*} P$ of P via $g: Q \rightarrow G$ or the pull-back $f^{*} Q$ of Q via $f: P \rightarrow G$. Remark that $s t\left(P \times_{G} Q\right)=s t(P) \times s t(G) s t(Q)$ via the equivalence of category (2.3).
(3) Let $P=\left[d^{P}: P^{-1} \rightarrow P^{0}\right], Q=\left[d^{Q}: Q^{-1} \rightarrow Q^{0}\right]$ and $G=\left[d^{G}: G^{-1} \rightarrow G^{0}\right]$ be complexes of $\mathcal{K}^{[-1,0]}(\mathbf{S})$ and let $f: G \rightarrow P$ and $g: G \rightarrow Q$ be morphisms of complexes. The fibered sum $P+{ }^{G} Q$ of P and Q under G is the complex $\left[d_{P}+{ }^{d_{G}} d_{Q}: P^{-1}+{ }^{G^{-1}} Q^{-1} \rightarrow P^{0}+{ }^{G^{0}} Q^{0}\right]$, where for $i=-1,0$ the abelian sheaf $P^{i}+{ }^{G^{i}} Q^{i}$ is the fibered sum of P^{i} and of Q^{i} under G^{i} and the morphism of abelian sheaves $d_{P}+{ }^{d_{G}} d_{Q}$ is given by the universal property of the fibered sum $P^{-1}+{ }^{G^{-1}} Q^{-1}$. The fibered sum $P+{ }^{G} Q$ is also called the push-down $g_{*} P$ of P via $g: G \rightarrow Q$ or the push-down $f_{*} Q$ of Q via $f: G \rightarrow P$. We have $s t\left(P+{ }^{G} Q\right)=s t(P)+{ }^{s t(G)} s t(Q)$ via the equivalence of category (2.3).

If \mathcal{P} and \mathcal{G} are strictly commutative Picard \mathbf{S}-stacks, by $\S 3$ Be11 an extension $\mathcal{E}=(\mathcal{E}, I, J)$ of \mathcal{P} by \mathcal{G} consists of a strictly commutative Picard \mathbf{S}-stack \mathcal{E}, two additive functors $I: \mathcal{G} \rightarrow \mathcal{E}$ and $J: \mathcal{E} \rightarrow \mathcal{P}$, and an isomorphism of additive functors $J \circ I \cong 0$, such that the following equivalent conditions are satisfied:
(a) $\pi_{0}(J): \pi_{0}(\mathcal{E}) \rightarrow \pi_{0}(\mathcal{P})$ is surjective and I induces an equivalence of strictly commutative Picard \mathbf{S}-stacks between \mathcal{G} and $\operatorname{ker}(J)$;
(b) $\pi_{1}(I): \pi_{1}(\mathcal{G}) \rightarrow \pi_{1}(\mathcal{E})$ is injective and J induces an equivalence of strictly commutative Picard \mathbf{S}-stacks between $\operatorname{coker}(I)$ and \mathcal{P}.

In terms of complexes of $\mathcal{K}^{[-1,0]}(\mathbf{S})$, an extension $E=(E, i, j)$ of P by G consists of a complex E of $\mathcal{K}^{[-1,0]}(\mathbf{S})$, two morphisms of complexes $i: G \rightarrow E$ and $j: E \rightarrow P$ of $\mathcal{K}^{[-1,0]}(\mathbf{S})$, and an homotopy between $j \circ i$ and 0 , such that the following equivalent conditions are satisfied:
(a) $\mathrm{H}^{0}(j): \mathrm{H}^{0}(E) \rightarrow \mathrm{H}^{0}(P)$ is surjective and i induces a quasi-isomorphism between G and $\tau_{\leq 0}(M C(j)[-1])$;
(b) $\mathrm{H}^{-1}(i): \mathrm{H}^{-1}(G) \rightarrow \mathrm{H}^{-1}(E)$ is injective and j induces a quasi-isomorphism between $\tau_{\geq-1} M C(i)$ and P.

As recalled in the introduction we can see 1-motives as complexes of abelian sheaves on \mathbf{S} concentrated in two consecutive degrees. Hence via (2.3) to each 1motives is associated a strictly commutative Picard \mathbf{S}-stack and in particular, we can apply all what we have recalled in this section to 1-motives. Moreover, since a short exact sequence in $\mathcal{K}^{[-1,0]}(\mathbf{S})$ is an extension of complexes in the above sense (see Be11 Remark 3.6.), extensions of 1-motives are also extensions of complexes in the above sense, i.e. they furnishes extensions of strictly commutative Picard S-stacks (see Remark (1.2).

3. Proof of theorem 0.1 (b)

Proof of Theorem $0.1 \mathbf{~ b . ~ V i a ~ t h e ~ e q u i v a l e n c e ~ o f ~ c a t e g o r y ~ (2 . 3) , ~ t o ~ t h e ~ t r i v i a l ~}$ biextension of $\left(K_{1}, K_{2}\right)$ by K_{3} corresponds the trivial biextension $\mathcal{B}_{0}=s t\left(K_{3}\right) \times$ $s t\left(K_{1}\right) \times s t\left(K_{2}\right)$ of $\left(s t\left(K_{1}\right), s t\left(K_{2}\right)\right)$ by $s t\left(K_{3}\right)$ (see [Be Definition 5.1). In particular \mathcal{B}_{0} is a Picard stack and so the group of isomorphism classes of arrows from \mathcal{B}_{0} to itself is the cohomology group $\mathrm{H}^{0}\left(\left[\operatorname{HOM}\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)\right]\right)$, where $\operatorname{HOM}\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)$ is the strictly commutative Picard stack of additive functors from \mathcal{B}_{0} to itself. Therefore, in order to compute $\operatorname{Biext}^{0}\left(K_{1}, K_{2} ; K_{3}\right)$ it is enough to compute the complex $\left[\operatorname{HOM}\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)\right]$.
Let $F: \mathcal{B}_{0} \rightarrow \mathcal{B}_{0}$ be an additive functor. Since F is first of all an arrow from the $s t\left(K_{3}\right)$-torsor over $s t\left(K_{1}\right) \times s t\left(K_{2}\right)$ underlying \mathcal{B}_{0} to itself, F is given by the formula

$$
F(b)=b+I F^{\prime} J(b) \quad \forall b \in \mathcal{B}_{0}
$$

where $F^{\prime}: \operatorname{st}\left(K_{1}\right) \times s t\left(K_{2}\right) \rightarrow s t\left(K_{3}\right)$ is an additive functor and $J: \mathcal{B}_{0} \rightarrow s t\left(K_{1}\right) \times$ $\operatorname{st}\left(K_{2}\right)$ and $I: s t\left(K_{3}\right) \rightarrow \mathcal{B}_{0}$ are the additive functors underlying the structure of $s t\left(K_{3}\right)$-torsor over $\operatorname{st}\left(K_{1}\right) \times \operatorname{st}\left(K_{2}\right)$ of \mathcal{B}_{0}. Now $F: \mathcal{B}_{0} \rightarrow \mathcal{B}_{0}$ must be compatible with the structures of extension of $s t\left(K_{2}\right)_{s t\left(K_{1}\right)}$ by $s t\left(K_{3}\right)_{s t\left(K_{1}\right)}$ and of extension of $s t\left(K_{1}\right)_{s t\left(K_{2}\right)}$ by $s t\left(K_{3}\right)_{s t\left(K_{2}\right)}$ underlying \mathcal{B}_{0}, and so $F^{\prime}: s t\left(K_{1}\right) \times s t\left(K_{2}\right) \rightarrow s t\left(K_{3}\right)$ must be a biadditive functor, i.e. an object of $\operatorname{HOM}\left(s t\left(K_{1}\right)\right.$, $\left.s t\left(K_{2}\right) ; s t\left(K_{3}\right)\right)$. Hence $\operatorname{HOM}\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)$ is equivalent as Picard stack to $\operatorname{HOM}\left(s t\left(K_{1}\right)\right.$, $\left.s t\left(K_{2}\right) ; s t\left(K_{3}\right)\right)$ via the following additive functor

$$
\begin{aligned}
& \operatorname{HOM}\left(\operatorname{st}\left(K_{1}\right), s t\left(K_{2}\right) ; s t\left(K_{3}\right)\right) \longrightarrow \\
& F^{\prime} \mapsto \\
& \mapsto O M\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right) \\
&\left(b \mapsto b+I F^{\prime} J(b)\right) .
\end{aligned}
$$

By (2.4), $\operatorname{HOM}\left(s t\left(K_{1}\right), s t\left(K_{2}\right) ; s t\left(K_{3}\right)\right) \cong \operatorname{HOM}\left(s t\left(K_{1}\right) \otimes s t\left(K_{2}\right), s t\left(K_{3}\right)\right)$ and so

$$
\begin{equation*}
\left[\operatorname{HOM}\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)\right]=\tau_{\leq 0} \operatorname{RHom}\left(\tau_{\geq-1}\left(K_{1} \otimes^{\mathbb{L}} K_{2}\right), K_{3}\right) \tag{3.1}
\end{equation*}
$$

and in particular the group of isomorphism classes of additive functors from \mathcal{B}_{0} to itself is isomorphic to the group

$$
\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(K_{1} \otimes^{\mathbb{L}} K_{2}, K_{3}\right)
$$

This implies that $\operatorname{Biext}^{0}\left(K_{1}, K_{2} ; K_{3}\right) \cong \operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(K_{1} \otimes^{\mathbb{L}} K_{2}, K_{3}\right)$.

In Section 6 we gives another proof of Theorem 0.1 b. Remark that by (3.1) $\mathrm{H}^{-1}\left(\left[\operatorname{HOM}\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)\right]\right) \cong \operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(K_{1} \otimes^{\mathbb{L}} K_{2}, K_{3}[-1]\right)$. Since $K_{i}=\left[A_{i} \rightarrow B_{i}\right]$ are 1 -motives, $\operatorname{Hom}\left(B_{j}, A_{i}\right)=0$ for $i, j=1,2,3$ (see B09 Lemma 1.1.1), and hence the group $\mathrm{H}^{-1}\left(\left[\operatorname{HOM}\left(\mathcal{B}_{0}, \mathcal{B}_{0}\right)\right]\right)$ is trivial.

4. The category $\Psi_{\mathrm{L} \cdot \cdot}(G)$ and its homological interpretation

Consider the following complex of 1-motives defined over S

$$
\begin{equation*}
R \xrightarrow{D^{R}} Q \xrightarrow{D^{Q}} P \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

Explicitly, $R=\left[d^{R}: R^{-1} \rightarrow R^{0}\right], Q=\left[d^{Q}: Q^{-1} \rightarrow Q^{0}\right], P=\left[d^{P}: P^{-1} \rightarrow P^{0}\right]$ and $D^{R}=\left(d^{R,-1}, d^{R, 0}\right), D^{Q}=\left(d^{Q,-1}, d^{Q, 0}\right)$. This complex is a bicomplex L^{\cdot} of abelian sheaves on \mathbf{S},

where $P^{0}, P^{-1}, Q^{0}, Q^{-1}, R^{0}, R^{-1}$ are respectively in degrees $(0,0),(0,-1),(-1,0)$, $(-1,-1),(-2,0),(-2,-1)$. Denote by $\operatorname{Tot}\left(L^{\cdot}\right)$ its total complex. Let $G=\left[d^{G}\right.$: $G^{-1} \rightarrow G^{0}$] be a 1-motive defined over S.

Definition 4.1. Denote by $\Psi_{L \cdot *}(G)$ the category
(1) whose objects are pairs (E, I) with E an extension of 1-motives of P by G and I a trivialization of the extension $\left(D^{Q}\right)^{*} E$ of Q by G obtained as pullback of E by D^{Q}. Moreover we require that the corresponding trivialization $\left(D^{R}\right)^{*} I$ of $\left(D^{R}\right)^{*}\left(D^{Q}\right)^{*} E$ is the trivialization arising from the isomorphism of transitivity $\left(D^{R}\right)^{*}\left(D^{Q}\right)^{*} E \cong\left(D^{Q} \circ D^{R}\right)^{*} E$ and the relation $D^{Q} \circ D^{R}=0$. Note that to have such a trivialization I is the same thing as to have a lifting $I: Q \rightarrow E$ of $D^{Q}: Q \rightarrow P$ such that $I \circ D^{R}=0$;
(2) whose arrows $F:(E, I) \rightarrow\left(E^{\prime}, I^{\prime}\right)$ are morphisms of extensions $F: E \rightarrow$ E^{\prime} of 1-motives compatible with the trivializations I, I^{\prime}, i.e. we have an isomorphism of additive functors $F \circ I \cong I^{\prime}$.

In order to compute the homological interpretation of the category $\Psi_{\mathrm{L} \cdot .}(G)$, the language of Picard stacks will be very useful. Hence now we translate the construction of the category $\Psi_{\text {L. }}(G)$ in terms of Picard stacks : Let $\mathcal{R}=s t(R), \mathcal{Q}=$ $\operatorname{st}(Q), \mathcal{P}=\operatorname{st}(P), \mathcal{G}=\operatorname{st}(G), D^{\mathcal{R}}=\operatorname{st}\left(D^{R}\right)$ and $D^{\mathcal{Q}}=\operatorname{st}\left(D^{Q}\right)$. The complex of 1-motives (4.1) furnishes the following complex of strictly commutative Picard \mathbf{S} stacks

$$
\mathcal{L}: \quad \mathcal{R} \xrightarrow{D^{\mathcal{R}}} \mathcal{Q} \xrightarrow{D^{\mathcal{Q}}} \mathcal{P} \xrightarrow{D^{\mathcal{P}}} 0
$$

with \mathcal{P}, \mathcal{Q} and \mathcal{R} in degrees $0,-1$ and -2 respectively. Via the equivalence of categories (2.3), to the category $\Psi_{\mathrm{L} \cdot}(G)$ is associated the category $\Psi_{\mathrm{L} \cdot}(G) \Psi_{\mathcal{L} \cdot}(\mathcal{G})$
(1) whose objects are pairs (\mathcal{E}, I) with \mathcal{E} an extension of \mathcal{P} by \mathcal{G} and I a trivialization of the extension $\left(D^{\mathcal{Q}}\right)^{*} \mathcal{E}$ of \mathcal{Q} by \mathcal{G} obtained as pull-back of \mathcal{E} by $D^{\mathcal{Q}}$. Moreover we require that the corresponding trivialization $\left(D^{\mathcal{R}}\right)^{*} I$ of $\left(D^{\mathcal{R}}\right)^{*}\left(D^{\mathcal{Q}}\right)^{*} \mathcal{E}$ is the trivialization arising from the isomorphism of transitivity $\left(D^{\mathcal{R}}\right)^{*}\left(D^{\mathcal{Q}}\right)^{*} \mathcal{E} \cong\left(D^{\mathcal{Q}} \circ D^{\mathcal{R}}\right)^{*} \mathcal{E}$ and the relation $D^{\mathcal{Q}} \circ D^{\mathcal{R}} \cong 0$.

Note that to have such a trivialization I is the same thing as to have a lifting $I: \mathcal{Q} \rightarrow \mathcal{E}$ of $D^{\mathcal{Q}}: \mathcal{Q} \rightarrow \mathcal{P}$ such that $I \circ D^{\mathcal{R}} \cong 0 ;$
(2) whose arrows $F:(\mathcal{E}, I) \rightarrow\left(\mathcal{E}^{\prime}, I^{\prime}\right)$ are morphisms of extensions $F: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ compatible with the trivializations I, I^{\prime}, i.e. we have an isomorphism of additive functors $F \circ I \cong I^{\prime}$.
As observed at the end of section 2, extensions of 1-motives furnishes extensions of strictly commutative Picard stacks and so the sum of extensions of strictly commutative Picard stacks introduced in Be11 4.6 defines a group law on the set of isomorphism classes of objects of $\Psi_{\mathrm{L} \cdot \cdot}(G)$. We denote this group by $\Psi_{\mathrm{L} \cdot}^{1}(G)$. The neutral object of $\Psi_{\text {L. }}(G)$ is the object $\left(E_{0}, I_{0}\right)$ where E_{0} is the trivial extension $G \times P$ of P by G and I_{0} is the trivialization $\left(I d_{Q}, 0\right)$ of the extension $\left(D^{Q}\right)^{*} E_{0}=G \times Q$ of Q by G. We can consider I_{0} as the lifting $\left(D^{Q}, 0\right)$ of $D^{Q}: Q \rightarrow P$.

The monoid of automorphisms of an object (E, I) of $\Psi_{\mathrm{L} \cdot *}(G)$ is canonically isomorphic to the monoid of automorphisms of $\left(E_{0}, I_{0}\right)$: to an automorphism $F:\left(E_{0}, I_{0}\right) \rightarrow\left(E_{0}, I_{0}\right)$ the canonical isomorphism associates the automorphism $F+I d_{(E, I)}$ of $\left(E_{0}, I_{0}\right)+(E, I) \cong(E, I)$. The monoid of automorphisms of $\left(E_{0}, I_{0}\right)$ is a commutative group via the composition law $(F, G) \mapsto F+G$ (here $F+G$ is the automorphism of $\left.\left(E_{0}, I_{0}\right)+\left(E_{0}, I_{0}\right) \cong\left(E_{0}, I_{0}\right)\right)$. Hence we can conclude that the set of automorphisms of an object of $\Psi_{\mathrm{L} \cdot \cdot}(G)$ is a commutative group that we denote by $\Psi_{\mathrm{L} . .}^{0}(G)$.

We can now state the homological interpretation of the groups $\Psi_{\mathrm{L} . .}^{i}(G)$.

Theorem 4.2.

$$
\Psi_{\mathrm{L} \cdot \cdot}^{i}(G) \cong \operatorname{Ext}^{i}\left(\operatorname{Tot}\left(\mathrm{~L}^{\cdot}\right), G\right)=\operatorname{Hom}_{\mathcal{D}(S)}\left(\operatorname{Tot}\left(\mathrm{L}^{\cdot \cdot}\right), G[i]\right) \quad i=0,1
$$

Proof of the case $i=0$. For this proof we will work with the category $\Psi_{\mathcal{L} \cdot}(\mathcal{G})$. As observed above, $\Psi_{\mathcal{L}}^{0}(\mathcal{G})$ is canonically isomorphic to the group of isomorphism classes of arrows from the neutral object $\left(\mathcal{E}_{0}, I_{0}\right)$ of $\Psi_{\mathcal{L} \cdot}(\mathcal{G})$ to itself. By definition of arrows in the category $\Psi_{\mathcal{L}}(\mathcal{G})$, the additive functor $F: \mathcal{E}_{0} \rightarrow \mathcal{E}_{0}$ is an arrow from $\left(\mathcal{E}_{0}, I_{0}\right)$ to itself if we have an isomorphism of additive functors $F \circ D^{\mathcal{Q}} \cong 0$, i.e. if F is an object of the strictly commutative Picard \mathbf{S}-stack

$$
\mathcal{K}=\operatorname{ker}\left(\operatorname{HOM}(\mathcal{P}, \mathcal{G}) \xrightarrow{D^{\mathcal{Q}}} \operatorname{HOM}(\mathcal{Q}, \mathcal{G})\right)
$$

Therefore we have the equality

$$
\begin{equation*}
\Psi_{\mathcal{L} \cdot}^{0}(\mathcal{G})=\mathrm{H}^{0}([\mathcal{K}]) \tag{4.2}
\end{equation*}
$$

and in order to conclude, it is enough to compute the complex $[\mathcal{K}]$ of $\mathcal{K}^{[-1,0]}(\mathbf{S})$. By Be11 Lemma 3.4 we have

$$
[\mathcal{K}]=\tau_{\leq 0}\left(M C\left(\tau_{\leq 0} \operatorname{RHom}([\mathcal{P}],[\mathcal{G}]) \xrightarrow{\left(d^{R,-1}, d^{R, 0}\right)} \tau_{\leq 0} \operatorname{RHom}([\mathcal{Q}],[\mathcal{G}])\right)[-1]\right) .
$$

Explicitly, we get

$$
\begin{equation*}
[\mathcal{K}]=\left[\operatorname{Hom}\left(P^{0}, G^{-1}\right) \xrightarrow{\left(\left(d^{G}, d^{P}\right), d^{Q, 0}\right)} K_{1}+K_{2}\right] \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=\operatorname{ker}\left(\operatorname{Hom}\left(P^{0}, G^{0}\right)+\operatorname{Hom}\left(P^{-1}, G^{-1}\right) \xrightarrow{\left(d^{Q, 0,}, d^{Q,-1}\right)} \operatorname{Hom}\left(Q^{0}, G^{0}\right)+\operatorname{Hom}\left(Q^{-1}, G^{-1}\right)\right) \\
& K_{2}=\operatorname{ker}\left(\operatorname{Hom}\left(Q^{0}, G^{-1}\right) \xrightarrow{\left(d^{G}, d^{Q}\right)} \operatorname{Hom}\left(Q^{0}, G^{0}\right)+\operatorname{Hom}\left(Q^{-1}, G^{-1}\right)\right) .
\end{aligned}
$$

In order to simplify notation let $C \cdot C^{-3} \rightarrow C^{-2} \rightarrow C^{-1} \rightarrow C^{0}$ be the total complex $\operatorname{Tot}([\mathcal{L} \cdot])$. In particular $C^{0}=P^{0}, C^{-1}=P^{-1}+Q^{0}$ and $C^{-2}=Q^{-1}+R^{0}$. The stupid filtration of the complexes C. and G furnishes the spectral sequence

$$
\begin{equation*}
\mathrm{E}_{1}^{p q}=\bigoplus_{p_{2}-p_{1}=p} \operatorname{Ext}^{q}\left(C^{p_{1}}, G^{p_{2}}\right) \Longrightarrow \operatorname{Ext}^{*}\left(C^{\cdot}, G\right) \tag{4.4}
\end{equation*}
$$

This spectral sequence is concentrated in the region of the plane defined by $-1 \leq$ $p \leq 3$ and $q \geq 0$. We are interested on the total degrees -1 and 0 . The rows $q=1$ and $q=0$ are

$$
\begin{aligned}
& \operatorname{Ext}^{1}\left(C^{0}, G^{-1}\right) \rightarrow \operatorname{Ext}^{1}\left(C^{0}, G^{0}\right) \oplus \operatorname{Ext}^{1}\left(C^{-1}, G^{-1}\right) \rightarrow \operatorname{Ext}^{1}\left(C^{-1}, G^{0}\right) \oplus \operatorname{Ext}^{1}\left(C^{-2}, G^{-1}\right) \rightarrow \ldots \\
& \operatorname{Hom}\left(C^{0}, G^{-1}\right) \xrightarrow{d_{1}^{-10}} \operatorname{Hom}\left(C^{0}, G^{0}\right) \oplus \operatorname{Hom}\left(C^{-1}, G^{-1}\right) \xrightarrow{d_{1}^{00}} \operatorname{Hom}\left(C^{-1}, G^{0}\right) \oplus \operatorname{Hom}\left(C^{-2}, G^{-1}\right) \rightarrow \ldots
\end{aligned}
$$

Since $\operatorname{Ext}^{1}\left(C^{0}, G^{-1}\right)=0$, i.e. the only extension of $\left[G^{-1} \rightarrow 0\right]$ by $\left[0 \rightarrow C^{0}\right]$ is the trivial one, we obtain

$$
\begin{align*}
\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(C^{\cdot}, G[-1]\right) & =\operatorname{Ext}^{-1}\left(C^{\cdot}, G\right)=\mathrm{E}_{2}^{-10}=\operatorname{ker}\left(d_{1}^{-10}\right) \tag{4.5}\\
\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(C^{\cdot}, G\right) & =\operatorname{Ext}^{0}\left(C^{\cdot}, G\right)=\mathrm{E}_{2}^{00}=\operatorname{ker}\left(d_{1}^{00}\right) / \operatorname{im}\left(d_{1}^{-10}\right) \tag{4.6}
\end{align*}
$$

Comparing the above equalities with the explicit computation (4.3) of the complex [K], we get

$$
\begin{equation*}
\operatorname{Ext}^{i}\left(C^{\cdot}, G\right)=\mathrm{H}^{i}([\mathcal{K}]) \quad i=-1,0 \tag{4.7}
\end{equation*}
$$

These equalities together with equality (4.2) give the expected statement.
Remark 4.3. In the computation (4.3) the term $\operatorname{Hom}\left(P^{-1}, G^{0}\right)$ does not appear because we work with the good truncation $\tau_{\leq 0} \operatorname{RHom}([\mathcal{P}],[\mathcal{G}])$. In the spectral sequence (4.4) this term appear but we are interested in elements which become zero in $\operatorname{Hom}\left(P^{-1}, G^{0}\right)$.

Remark 4.4. If $\mathcal{H}(\mathbf{S})$ denotes the category of complexes of abelian sheaves on \mathbf{S} modulo homotopy, by equality (4.6) we have $\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(C^{\cdot}, G\right)=\operatorname{Hom}_{\mathcal{H}(\mathbf{S})}\left(C^{\cdot}, G\right)$. Moreover, since P and G are 1-motives we have that $\operatorname{Hom}\left(C^{0}, G^{-1}\right)=0(\boxed{B 09}$ Lemma 1.1.1) and so $\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(C^{\cdot}, G\right)=\operatorname{Hom}_{\mathcal{K}(\mathbf{S})}\left(C^{\cdot}, G\right)$.

Remark 4.5. The category $\Psi_{\mathcal{L} \cdot}(\mathcal{G})$ should be a 2 -category, but it is just a category because we are working with strictly commutative Picard stacks defined by 1 -motives. In fact, if A is a group scheme which is locally for the étale topology a constant group scheme defined by a finitely generated free \mathbb{Z}-module and B is an extension of an abelian scheme by a torus, then the $\operatorname{group} \operatorname{Hom}(B, A)$ is trivial ([B09] Lemma 1.1.1). Because of (4.2), (4.5), (4.7), this implies that the group $\Psi_{\mathcal{L} \cdot}^{-1}(\mathcal{G})$ of automorphisms of arrows from an object of $\Psi_{\mathcal{L} \cdot}(\mathcal{G})$ to itself is trivial:

$$
\Psi_{\mathcal{L} \cdot}^{-1}(\mathcal{G}) \cong \mathrm{H}^{-1}([\mathcal{K}]) \cong \operatorname{Ext}^{-1}\left(C^{\cdot}, G\right)=\operatorname{ker}\left(d_{1}^{-10}\right)=0
$$

Proof of the case $i=1$. First we show how an object (E, I) of $\Psi_{\mathrm{L}} .(G)$ defines a morphism $\operatorname{Tot}\left(L^{\cdot}\right) \rightarrow G[1]$ in the derived category $\mathcal{D}(\mathbf{S})$. Recall that E is an extension of 1-motives of P by G. Denote $j: E \rightarrow P$ the surjective morphism underlying the extension E. Since the trivialization I can be seen as a lifting $Q \rightarrow E$ of $D^{Q}: Q \rightarrow P$ such that $I \circ D^{R}=0$, we have the following diagram in the
category $\mathcal{K}(\mathbf{S})$ of complexes of abelian sheaves on \mathbf{S}

where $i \circ D^{R}=0$ and $j \circ i=i d_{P} \circ D^{Q}$. Putting the complex P in degree 0 , the above diagram gives an arrow

$$
c(E, I): \operatorname{Tot}\left(\mathrm{L}^{*}\right) \longrightarrow M C(j)
$$

in the derived category $\mathcal{D}(\mathbf{S})$. The complex E is an extension of 1-motives of P by G and so as observed at the end of section $2, G$ is quasi-isomorphic to $\tau_{\leq 0}(M C(j)[-1])$. Hence we have constructed a canonical arrow

$$
\begin{align*}
c: \Psi_{\mathrm{L} \cdot .}^{1}(G) & \longrightarrow \operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(\operatorname{Tot}\left(\mathrm{L}^{*}\right), G[1]\right) \tag{4.9}\\
(E, I) & \mapsto c(E, I) .
\end{align*}
$$

Now we will show that this arrow is bijective. The proof that this bijection is additive, i.e. that c is an isomorphism of groups, is left to the reader.

Injectivity: Let (E, I) be an object of $\Psi_{\mathrm{L} \cdot \cdot}(G)$ such that the morphism $c(E, I)$ that it defines in $\mathcal{D}(\mathbf{S})$ is the zero morphism. The hypothesis that $c(E, I)$ is zero in $\mathcal{D}(\mathbf{S})$ implies that there exists a resolution of G

$$
V^{0} \longrightarrow V^{1} \longrightarrow V^{2} \longrightarrow \ldots
$$

and a quasi isomorphism

such that the composite

is homotopic to zero. We can assume $V^{i} \in \mathcal{K}^{[-1,0]}(\mathbf{S})$ for all i and $V^{i}=0$ for $i \geq 2$ (instead of the complex of complexes $\left(V^{i}\right)_{i}$ consider its good truncation in degree 1). The complex of complexes $\left(V^{i}\right)_{i}$ is a resolution of G, and so the short sequence

$$
0 \longrightarrow G \longrightarrow V^{0} \longrightarrow V^{1} \longrightarrow 0
$$

is exact, i.e. V^{0} is an extension of W by G. Since the quasi-isomorphism (4.10) induces the identity on G, the extension E is in fact the fibred product $P \times{ }_{V^{1}} V^{0}$
of P and V^{0} over V^{1}. Therefore, the morphism $s: P \rightarrow V^{0}$ inducing the homotopy $\left(v^{0}, v^{1}\right) \circ c(\mathcal{E}, I) \sim 0$, i.e. satisfying $k \circ s=v^{1} \circ i d_{P}$, factorizes through a morphism

$$
h: P \longrightarrow E=P \times_{V^{1}} V^{0}
$$

satisfying

$$
j \circ h=i d_{P} \quad h \circ D^{Q}=i .
$$

These two equalities mean that h splits the extension E, which is therefore the trivial extension of P by G, and that h is compatible with the trivializations I. Hence we can conclude that the object (E, I) lies in the isomorphism class of the zero object of $\Psi_{\text {L. }}(G)$.

Surjectivity: Now we show that for any morphism f of $\operatorname{Hom}_{\mathcal{D}(\mathbf{S})}\left(\operatorname{Tot}\left(L^{\bullet}\right), G[1]\right)$, there is an element of $\Psi_{\mathrm{L} . .}^{1}(G)$ whose image via c is f. The hypothesis that f is an element of $\mathcal{D}(\mathbf{S})$ implies that there exists a resolution of G

$$
V^{0} \longrightarrow V^{1} \longrightarrow V^{2} \longrightarrow \ldots
$$

such that the morphism f can be described in the category $\mathcal{H}(\mathbf{S})$ of complexes modulo homotopy via the following diagram

We can assume $V^{i} \in \mathcal{K}^{[-1,0]}(\mathbf{S})$ for all i and $V^{i}=0$ for $i \geq 2$ (instead of the complex of complexes $\left(V^{i}\right)_{i}$ consider its good truncation in degree 1). Since the complex of complexes $\left(V^{i}\right)_{i}$ is a resolution of G, the short sequence of complexes

$$
0 \longrightarrow G \longrightarrow V^{0} \longrightarrow V^{1} \longrightarrow 0
$$

is exact, i.e. V^{0} is an extension of V^{1} by G. Consider the extension of P by G

$$
Z=\left(v^{1}\right)^{*} V^{0}=V^{0} \times_{V^{1}} P
$$

obtained as pull-back of V^{0} via $v^{1}: P \rightarrow V^{1}$. The pull-back of a short exact sequence is again a short exact sequence, and so $0 \rightarrow G \rightarrow Z \rightarrow P \rightarrow 0$ is exact. Moreover, as observed in Remark 1.2, since P and G are 1-motives the complex Z is an extension of 1-motives. The condition $v^{1} \circ D^{Q}=k \circ v^{0}$ implies that $v^{0}: Q \rightarrow V^{0}$ factories through a morphism

$$
z: Q \rightarrow Z
$$

satisfying $l \circ z=D^{Q}$, with $l: Z \rightarrow P$ the canonical surjection of the extension Z. Moreover the equalities $v^{0} \circ D^{R}=D^{Q} \circ D^{R}=0$ furnish $z \circ D^{R}=0$. Therefore the datum (Z, z) is an object of the category $\Psi_{\mathrm{L} \cdot \cdot}(G)$. Consider now the morphism $c(Z, z): \operatorname{Tot}\left(\mathrm{L}^{\cdot}\right) \rightarrow G[1]$ associated to (Z, z). By construction, the morphism f (4.11) is the composite of the morphism $c(Z, z)$

with the morphism

where $h: Z=\left(v^{1}\right)^{*} V^{0} \rightarrow V^{0}$ is the canonical projection underlying the pullback Z. Since this last morphism is a morphism of resolutions of G (inducing the identity on G), we can conclude that in the derived category $\mathcal{D}(\mathbf{S})$ the morphism $f: \operatorname{Tot}\left(\mathrm{L}^{*}\right) \rightarrow G[1]$ (4.11) is the morphism $c(Z, z)$.

Using the above homological description of the groups $\Psi_{\mathrm{L} .}^{i}(G)$ for $i=0,1$ we can study how the category $\Psi_{\mathrm{L} \cdot .}(G)$ varies with respect to the bicomplex L^{*}. Let $R^{\prime} \rightarrow Q^{\prime} \rightarrow P^{\prime} \rightarrow 0$ be another complex of 1-motives defined over S. Denote by $\mathrm{L}^{\prime \prime}$ its total bicomplex. Consider a morphism of bicomplexes

$$
F: \mathrm{L}^{\prime \cdot} \longrightarrow \mathrm{L}^{\cdot}
$$

given by the following commutative diagram

The morphism F defines a canonical functor

$$
F^{*}: \Psi_{\mathrm{L}^{\prime} \cdot}(G) \longrightarrow \Psi_{\mathrm{L}^{\prime} \cdot \cdot}(G)
$$

as follows: if (E, I) is an object of $\Psi_{\mathrm{L} \cdot}(G), F^{*}(E, I)$ is the object $\left(E^{\prime}, I^{\prime}\right)$ where

- E^{\prime} is the extension $\left(F^{0}\right)^{*} E$ of P^{\prime} by G obtained as pull-back of E via $F^{0}: P^{\prime} \rightarrow P$;
- I^{\prime} is the trivialization $\left(F^{-1}\right)^{*} I$ of $\left(D^{Q^{\prime}}\right)^{*} E^{\prime}$ induced by the trivialization I of $\left(D^{Q}\right)^{*} E$ via the commutativity of the first square of (4.12).
The commutativity of the diagram (4.12) implies that $\left(E^{\prime}, I^{\prime}\right)$ is in fact an object of $\Psi_{\mathrm{L}^{\prime} . .}(G)$ (the condition $I^{\prime} \circ D^{Q^{\prime}}=0$ is easily deducible from the corresponding conditions on I and from the commutativity of the diagram (4.12)).

Proposition 4.6. Let $F: \mathrm{L}^{\prime \prime} \rightarrow \mathrm{L}^{\cdot}$ be morphism of bicomplexes. The corresponding functor $F^{*}: \Psi_{\mathrm{L} . .}(G) \rightarrow \Psi_{\mathrm{L}^{\prime} . .}(G)$ is an equivalence of categories if and only if the homomorphisms

$$
\mathrm{H}^{i}(\operatorname{Tot}(F)): \mathrm{H}^{i}\left(\operatorname{Tot}\left(\mathrm{~L}^{\prime \cdot \cdot}\right)\right) \longrightarrow \mathrm{H}^{i}\left(\operatorname{Tot}\left(\mathrm{~L}^{\cdot \cdot}\right)\right) \quad i=0,1
$$

are isomorphisms.
Proof. The functor $F^{*}: \Psi_{\mathrm{L} \cdot \cdot}(G) \rightarrow \Psi_{\mathrm{L}^{\prime \prime .}}(G)$ induces the homomorphisms

$$
\begin{equation*}
\Psi_{\mathrm{L} . .}^{i}(G) \longrightarrow \Psi_{\mathrm{L}^{\prime} \cdot .}^{i}(G) \quad i=0,1 . \tag{4.13}
\end{equation*}
$$

On the other hand the morphism of bicomplexes $F: \mathrm{L}^{\prime \cdot \cdot} \rightarrow \mathrm{L}^{\cdot \cdot}$ defines the homomorphisms

$$
\begin{equation*}
\operatorname{Ext}^{i}\left(\operatorname{Tot}\left(\mathrm{~L}^{\cdot \cdot}\right),-\right) \longrightarrow \operatorname{Ext}^{i}\left(\operatorname{Tot}\left(\mathrm{~L}^{\prime \cdot \cdot}\right),-\right) \quad i \in \mathbb{Z} \tag{4.14}
\end{equation*}
$$

Since the homomorphisms (4.13) and (4.14) are compatible with the canonical isomorphisms obtained in Theorem 4.2, the following diagrams (with $i=0,1$) are commutative:

The functor $F^{*}: \Psi_{\mathrm{L} \cdot \cdot}(G) \rightarrow \Psi_{\mathrm{L}^{\prime} \cdot .}(G)$ is an equivalence of categories if and only if the homomorphisms (4.13) are isomorphisms, and so using the above commutative diagrams we are reduced to prove that the homomorphisms (4.14) are isomorphisms if and only if the homomorphisms $\mathrm{H}^{i}(\operatorname{Tot}(F)): \mathrm{H}^{i}\left(\operatorname{Tot}\left(\mathrm{~L}^{\prime \cdot \cdot}\right)\right) \rightarrow \mathrm{H}^{i}\left(\operatorname{Tot}\left(\mathrm{~L}^{\cdot \cdot}\right)\right)$ are isomorphisms. This last assertion is clearly true.

5. GEOMETRICAL DESCRIPTION OF $\Psi_{\text {L.. }}(G)$

In this section we switch from cohomological notation to homological.
Let $K=[u: A \rightarrow B]$ be a 1-motive defined over S with A in degree 1 and B in degree 0 . We start constructing a canonical flat partial resolution L..(K) of the complex K. But before, we introduce the following notations: if P is an abelian sheaf on \mathbf{S}, we denote by $[p]$ the point of $\mathbb{Z}[P](U)$ defined by the point p of $P(U)$ with U an S-scheme. In an analogous way, if p, q and r are points of $P(U)$ we denote by $[p, q],[p, q, r]$ the elements of $\mathbb{Z}[P \times P](U)$ and $\mathbb{Z}[P \times P \times P](U)$ respectively.

Consider the following complexes of $\mathcal{D}^{[1,0]}(\mathbf{S})$

$$
\begin{align*}
P & =\left[\mathbb{Z}[A] \xrightarrow{D_{00}} \mathbb{Z}[B]\right] \\
Q & =[0 \longrightarrow \mathbb{Z}[B \times B]] \tag{5.1}\\
R & =[0 \longrightarrow \mathbb{Z}[B \times B]+\mathbb{Z}[B \times B \times B]]
\end{align*}
$$

and the following morphisms of complexes

$$
\begin{aligned}
& \left(\epsilon_{1}, \epsilon_{0}\right) \quad: \quad P \longrightarrow K \\
& \left(0, d_{00}\right): \quad Q \longrightarrow P \\
& \left(0, d_{01}\right) \quad: \quad R \longrightarrow Q
\end{aligned}
$$

where for any U and for any $a \in A(U), b_{1}, b_{2}, b_{3} \in B(U)$, we set

$$
\begin{align*}
\epsilon_{0}[b] & =b \\
\epsilon_{1}[a] & =a \\
d_{00}\left[b_{1}, b_{2}\right] & =\left[b_{1}+b_{2}\right]-\left[b_{1}\right]-\left[b_{2}\right] \\
d_{01}\left[b_{1}, b_{2}\right] & =\left[b_{1}, b_{2}\right]-\left[b_{2}, b_{1}\right] \tag{5.2}\\
d_{01}\left[b_{1}, b_{2}, b_{3}\right] & =\left[b_{1}+b_{2}, b_{3}\right]-\left[b_{1}, b_{2}+b_{3}\right]+\left[b_{1}, b_{2}\right]-\left[b_{2}, b_{3}\right] \\
D_{00}[a] & =[u(a)] .
\end{align*}
$$

These data define the bicomplex L..(K)

which satisfies $\mathrm{L}_{i j}(K)=0$ for $(i j) \neq(00),(01),(02),(10)$ and which is endowed with an augmentation map ϵ. $=\left(\epsilon_{1}, \epsilon_{0}\right): P \rightarrow K$. Note that the relation $\epsilon_{0} \circ d_{00}=0$ is just the group law on B, and the relation $d_{00} \circ d_{01}=0$ decomposes in two relations which express the commutativity and the associativity of the group law on B. This augmented bicomplex L..(K) depends functorially on K : in fact, any morphism $f: K \rightarrow K^{\prime}$ of 1-motives furnishes a commutative diagram

Moreover the components of the bicomplex L.. (K) are flat since they are free \mathbb{Z} modules. In order to conclude that $\mathrm{L} . .(K)$ is a canonical flat partial resolution of K we need the following Lemma. Let $K^{\prime}=\left[u^{\prime}: A^{\prime} \rightarrow B^{\prime}\right]$ be a 1-motive defined over S.

Lemma 5.1. The category $\operatorname{Ext}\left(K, K^{\prime}\right)$ of extensions of K by K^{\prime} is equivalent to the category $\Psi_{\mathrm{L} . .(K)}\left(K^{\prime}\right)$:

$$
\begin{equation*}
\operatorname{Ext}\left(K ; K^{\prime}\right) \simeq \Psi_{\mathrm{L} . .(K)}\left(K^{\prime}\right) \tag{5.3}
\end{equation*}
$$

Proof. In order to describe explicitly the objects of the category $\Psi_{\text {L..(K) }}\left(K^{\prime}\right)$ we use the description (1.2) of extensions of free commutative groups in terms of torsors:

- an extension of $\mathbb{Z}[B]$ by B^{\prime} is a $\left(B^{\prime}\right)_{B}$-torsor,
- an extension of $\mathbb{Z}[A]$ by B^{\prime} is a $\left(B^{\prime}\right)_{A^{\prime}}$-torsor,
- an extension of $\mathbb{Z}[B \times B]$ by B^{\prime} is a $\left(B^{\prime}\right)_{B \times B^{\prime}}$-torsor, and finally
- an extension of $\mathbb{Z}[B \times B]+\mathbb{Z}[B \times B \times B]$ by B^{\prime} consists of a couple of a $\left(B^{\prime}\right)_{B \times B^{\prime}}$-torsor and a $\left(B^{\prime}\right)_{B \times B \times B^{-} \text {-torsor. }}$
According to these considerations an object (E, I) of $\Psi_{\mathrm{L} . .(K)}\left(K^{\prime}\right)$ consists of
(1) an extension E of $P=\left[D_{00}: \mathbb{Z}[A] \rightarrow \mathbb{Z}[B]\right]$ by $K^{\prime}=\left[u^{\prime}: A^{\prime} \rightarrow B^{\prime}\right]$, i.e.
(a) a B^{\prime}-torsor E over B,
(b) a trivializations β of the B^{\prime}-torsor $D_{00}^{*} E$ over A obtained as pull-back of E via $D_{00}: \mathbb{Z}[A] \rightarrow \mathbb{Z}[B]$,
(c) an homomorphism $\gamma: A \rightarrow A^{\prime}$ such that the composite $u^{\prime} \circ \gamma$ is compatible with β;
(2) a trivialization I of the extension $\left(0, d_{00}\right)^{*} E$ of Q by K^{\prime} obtained as pullback of E by $\left(0, d_{00}\right): Q \rightarrow P$, i.e. a trivialization I of the B^{\prime}-torsor $d_{00}^{*} E$
over $B \times B$ obtained as pull-back of E via $d_{00}: \mathbb{Z}[B \times B] \rightarrow \mathbb{Z}[B]$. This trivialization can be interpreted as a group law on the fibres of the B^{\prime}-torsor E:

$$
+: E_{b_{1}} E_{b_{2}} \longrightarrow E_{b_{1}+b_{2}}
$$

where b_{1}, b_{2} are points of $B(U)$ with U an S-scheme. The compatibility of I with the relation $\left(0, d_{00}\right) \circ\left(0, d_{01}\right)=0$ imposes on the datum $(E,+)$ two relations through the two torsors over $B \times B$ and $B \times B \times B$. These two relations are the relations of commutativity and of associativity of the group law + , which mean that + defines over E a structure of commutative extension of B by B^{\prime}.

Hence the object $(E,+, \beta, \gamma)$ of $\Psi_{\mathrm{L} . .(K)}\left(K^{\prime}\right)$ is an extension of K by K^{\prime} and we can conclude that the category $\Psi_{\mathrm{L} . .(K)}\left(K^{\prime}\right)$ is equivalent to the category $\operatorname{Ext}\left(K, K^{\prime}\right)$.

Proposition 5.2. The augmentation map ϵ : $\mathrm{L}_{\cdot 0}(K) \rightarrow K$ induces the isomorphisms $\mathrm{H}_{1}(\operatorname{Tot}(\mathrm{~L} . .(K))) \cong \mathrm{H}_{1}(K)$ and $\mathrm{H}_{0}(\operatorname{Tot}(\mathrm{~L} . .(K))) \cong \mathrm{H}_{0}(K)$.

Proof. Applying Proposition 4.6 to the augmentation map ϵ. : L. ${ }_{0}(K) \rightarrow K$, we just have to prove that for any 1-motive $K^{\prime}=\left[u^{\prime}: A^{\prime} \rightarrow B^{\prime}\right]$ the functor

$$
\epsilon .^{*}: \Psi_{K}\left(K^{\prime}\right) \rightarrow \Psi_{\mathrm{L} . .(K)}\left(K^{\prime}\right)
$$

is an equivalence of categories (in the symbol $\Psi_{K}\left(K^{\prime}\right), K$ is seen as a bicomplex whose only non trivial entries are A in degree (10) and B in degree (00)). According to definition 4.1, it is clear that the category $\Psi_{K}\left(K^{\prime}\right)$ is equivalent to the category $\operatorname{Ext}\left(K, K^{\prime}\right)$ of extensions of K by K^{\prime}. On the other hand, by Lemma 5.1 also the category $\Psi_{\text {L.. }(K)}\left(K^{\prime}\right)$ is equivalent to the category $\operatorname{Ext}\left(K, K^{\prime}\right)$. Hence we can conclude.

Let $K_{i}=\left[u_{i}: A_{i} \rightarrow B_{i}\right]$ (for $i=1,2,3$) be 1-motives defined over S and let L.. $\left(K_{i}\right)$ be its canonical flat partial resolution. Denote by L.. $\left(K_{1}, K_{2}\right)$ the bicomplex L.. $\left(K_{1}\right) \otimes \mathrm{L} . .\left(K_{2}\right)$.

Theorem 5.3. The category $\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right)$ of biextensions of $\left(K_{1}, K_{2}\right)$ by K_{3} is equivalent to the category $\Psi_{\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)$:

$$
\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right) \simeq \Psi_{\tau \leq(1 *) \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)
$$

Proof. Explicitly, the non trivial components of $\mathrm{L}_{i j}\left(K_{1}, K_{2}\right)$ are

$$
\begin{aligned}
\mathrm{L}_{00}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{00}\left(K_{1}\right) \otimes \mathrm{L}_{00}\left(K_{2}\right) \\
& =\mathbb{Z}\left[B_{1} \times B_{2}\right] \\
\mathrm{L}_{01}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{00}\left(K_{1}\right) \otimes \mathrm{L}_{01}\left(K_{2}\right)+\mathrm{L}_{01}\left(K_{1}\right) \otimes \mathrm{L}_{00}\left(K_{2}\right) \\
& =\mathbb{Z}\left[B_{1} \times B_{2} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times B_{1} \times B_{2}\right] \\
\mathrm{L}_{02}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{00}\left(K_{1}\right) \otimes \mathrm{L}_{02}\left(K_{2}\right)+\mathrm{L}_{02}\left(K_{1}\right) \otimes \mathrm{L}_{00}\left(K_{2}\right)+\mathrm{L}_{01}\left(K_{1}\right) \otimes \mathrm{L}_{01}\left(K_{2}\right) \\
& =\mathbb{Z}\left[B_{1} \times B_{2} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times B_{2} \times B_{2} \times B_{2}\right]+ \\
& =\mathbb{Z}\left[B_{1} \times B_{1} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times B_{1} \times B_{1} \times B_{2}\right]+ \\
& =\mathbb{Z}\left[B_{1} \times B_{1} \times B_{2} \times B_{2}\right] \\
& =\mathrm{L}_{01}\left(K_{1}\right) \otimes \mathrm{L}_{02}\left(K_{2}\right)+\mathrm{L}_{02}\left(K_{1}\right) \otimes \mathrm{L}_{01}\left(K_{2}\right) \\
\mathrm{L}_{03}\left(K_{1}, K_{2}\right) & \mathrm{L}_{02}\left(K_{1}\right) \otimes \mathrm{L}_{02}\left(K_{2}\right) \\
\mathrm{L}_{04}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{00}\left(K_{1}\right) \otimes \mathrm{L}_{10}\left(K_{2}\right) \\
\mathrm{L}_{10}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{10}\left(K_{1}\right) \otimes \mathrm{L}_{00}\left(K_{2}\right)+\mathrm{L}^{2} \\
& =\mathbb{Z}\left[A_{1} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times A_{2}\right] \\
\mathrm{L}_{11}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{10}\left(K_{1}\right) \otimes \mathrm{L}_{01}\left(K_{2}\right)+\mathrm{L}_{01}\left(K_{1}\right) \otimes \mathrm{L}_{10}\left(K_{2}\right) \\
& =\mathbb{Z}\left[A_{1} \times B_{2} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times B_{1} \times A_{2}\right] \\
\mathrm{L}_{12}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{10}\left(K_{1}\right) \otimes \mathrm{L}_{02}\left(K_{2}\right)+\mathrm{L}_{02}\left(K_{1}\right) \otimes \mathrm{L}_{10}\left(K_{2}\right) \\
\mathrm{L}_{20}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{10}\left(K_{1}\right) \otimes \mathrm{L}_{10}\left(K_{2}\right) \\
& =\mathbb{Z}\left[A_{1} \times A_{2}\right]
\end{aligned}
$$

The differential operators of L.. $\left(K_{1}, K_{2}\right)$ can be computed from the below diagram, where we don't have written the identity homomorphisms in order to avoid too heavy notation (for example instead of ($i d \times D_{00}^{K_{2}}, D_{00}^{K_{1}} \times i d$) we have written just $\left.\left(D_{00}^{K_{2}}, D_{00}^{K_{1}}\right)\right)$:

$$
\begin{equation*}
\mathrm{L}_{2 *}(K) \quad \mathrm{L}_{1 *}(K) \quad \mathrm{L}_{0 *}(K) \tag{5.4}
\end{equation*}
$$

$\mathrm{L}_{* 2}(K)$

These operators have to satisfy the well-known conditions on differential operators of bicomplexes that we recall explicitly here:

- the following sequences are exact:
(5.5) $\mathbb{Z}\left[B_{1} \times B_{2} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times B_{2} \times B_{2} \times B_{2}\right] \xrightarrow{d_{01}^{K_{2}}} \mathbb{Z}\left[B_{1} \times B_{2} \times B_{2}\right] \xrightarrow{d_{00}^{K_{2}}} \mathbb{Z}\left[B_{1} \times B_{2}\right]$

$$
\begin{equation*}
\mathbb{Z}\left[B_{1} \times B_{1} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times B_{1} \times B_{1} \times B_{2}\right] \xrightarrow{d_{01}^{K_{1}}} \mathbb{Z}\left[B_{1} \times B_{1} \times B_{2}\right] \xrightarrow{d_{00}^{K_{1}}} \mathbb{Z}\left[B_{1} \times B_{2}\right] \tag{5.6}
\end{equation*}
$$

- the following diagrams are anticommutative:

$$
\begin{align*}
& \mathbb{Z}\left[B_{1} \times B_{1} \times B_{2} \times B_{2}\right] \xrightarrow{\substack{d_{00}^{K_{2}}}} \mathbb{Z}\left[B_{1} \times B_{1} \times B_{2}\right] \\
& d_{00}^{K_{1}} \downarrow \quad \downarrow d_{00}^{K_{1}} \tag{5.7}\\
& \mathbb{Z}\left[B_{1} \times B_{2} \times B_{2}\right] \quad \xrightarrow{d_{00}^{K_{2}}} \quad \mathbb{Z}\left[B_{1} \times B_{2}\right] \\
& \underset{\substack{\mathbb{Z} \\
\left[A_{1} \times B_{2} \times B_{2}\right] \\
d_{00}^{K_{2}} \downarrow}}{\xrightarrow{D_{00}^{K_{1}}}} \underset{\mathbb{Z}\left[B_{1} \times B_{2} \times B_{2}\right]}{\downarrow d_{00}^{K_{2}}} \tag{5.8}\\
& \mathbb{Z}\left[A_{1} \times B_{2}\right] \quad \xrightarrow{D_{00}^{K_{1}}} \quad \mathbb{Z}\left[B_{1} \times B_{2}\right] \\
& \mathbb{Z}\left[B_{1} \times B_{1} \times A_{2}\right] \quad \xrightarrow{d_{00}^{K_{1}} \downarrow} \quad \begin{array}{c}
\mathbb{D _ { 0 0 } ^ { K _ { 2 } }}\left[B_{1} \times B_{1} \times B_{2}\right] \\
\downarrow d_{00}^{K_{1}}
\end{array} \tag{5.9}\\
& \mathbb{Z}\left[B_{1} \times A_{2}\right] \quad \xrightarrow{D_{00}^{K_{2}}} \quad \mathbb{Z}\left[B_{1} \times B_{2}\right] \\
& \mathbb{Z}\left[A_{1} \times A_{2}\right] \xrightarrow{D_{00}^{K_{2}}} \mathbb{Z}\left[A_{1} \times B_{2}\right] \\
& D_{00}^{K_{1}} \downarrow \quad \downarrow D_{00}^{K_{1}} \tag{5.10}\\
& \mathbb{Z}\left[B_{1} \times A_{2}\right] \xrightarrow{D_{00}^{K_{2}}} \mathbb{Z}\left[B_{1} \times B_{2}\right]
\end{align*}
$$

The bicomplex $\tau_{\leq(1 *)} \mathrm{L}$.. $\left(K_{1}, K_{2}\right)$ is furnished by the bicomplex (5.4) where instead of $\mathrm{L}_{10}\left(K_{1}\right)$ we have

$$
\begin{align*}
\mathrm{L}_{10}^{\prime}\left(K_{1}, K_{2}\right) & =\mathrm{L}_{10}\left(K_{1}, K_{2}\right) /\left(D_{00}^{K_{2}}, D_{00}^{K_{1}}\right) \mathrm{L}_{20}\left(K_{1}, K_{2}\right) \\
& =\mathbb{Z}\left[A_{1} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times A_{2}\right] /\left(i d \times u_{2}\right)+\left(u_{1} \times i d\right) \mathbb{Z}\left[A_{1} \times A_{2}\right] \tag{5.11}
\end{align*}
$$

In order to describe explicitly the objects of $\Psi_{\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)$ we use the description (1.2) of extensions of free commutative groups in terms of torsors:

- an extension of $\mathrm{L}_{00}\left(K_{1}, K_{2}\right)$ by B_{3} is a $\left(B_{3}\right)_{B_{1} \times B_{2}}$-torsor,
- an extension of $\mathrm{L}_{10}^{\prime}\left(K_{1}, K_{2}\right)$ by B_{3} consists of a $\left(B_{3}\right)_{A_{1} \times B_{2}}$-torsor and a $\left(B_{3}\right)_{B_{1} \times A_{2}}$-torsor,
- an extension of $\mathrm{L}_{02}\left(K_{1}, K_{2}\right)$ by B_{3} consists of a system of 5 torsors under the groups deduced from B_{3} by base change over the bases $B_{1} \times B_{2} \times B_{2}, B_{1} \times$ $B_{2} \times B_{2} \times B_{2}, B_{1} \times B_{1} \times B_{2}, B_{1} \times B_{1} \times B_{1} \times B_{2}, B_{1} \times B_{1} \times B_{2} \times B_{2}$.
By these considerations an object (E, I) of $\Psi_{\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)$ consists of
(1) an extension E of $\left[D_{00}^{K_{1}}+D_{00}^{K_{2}}: \mathrm{L}_{10}^{\prime}\left(K_{1}, K_{2}\right) \rightarrow \mathrm{L}_{00}\left(K_{1}, K_{2}\right)\right]$ by K_{3}, i.e.
(a) a B_{3}-torsor E over $B_{1} \times B_{2}$,
(b) a couple of trivializations $\left(\Psi_{1}, \Psi_{2}\right)$ of the couple of B_{3}-torsors
$\left(\left(D_{00}^{K_{1}} \times i d\right)^{*} E,\left(i d \times D_{00}^{K_{2}}\right)^{*} E\right)$ over $A_{1} \times B_{2}$ and $B_{1} \times A_{2}$ respectively, which are the pull-back of E via

$$
\left(D_{00}^{K_{1}} \times i d\right)+\left(i d \times D_{00}^{K_{2}}\right): \mathbb{Z}\left[A_{1} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times A_{2}\right] \rightarrow \mathbb{Z}\left[B_{1} \times B_{2}\right]
$$

We consider the factor $\mathrm{L}_{10}^{\prime}\left(K_{1}, K_{2}\right)$ (5.11) instead of $\mathrm{L}_{10}\left(K_{1}, K_{2}\right)$ and this means that the restriction of the trivializations $\left(\Psi_{1}, \Psi_{2}\right)$ have to coincide over $A_{1} \times A_{2}$,
(c) a homomorphism $\gamma: \mathbb{Z}\left[A_{1}\right] \otimes \mathbb{Z}\left[A_{2}\right] \rightarrow A_{3}$ such that the composite $\mathbb{Z}\left[A_{1}\right] \otimes \mathbb{Z}\left[A_{2}\right] \xrightarrow{\gamma} \mathbb{Z}\left[A_{1}\right] \otimes \mathbb{Z}\left[A_{2}\right] \xrightarrow{u_{3}} B_{3}$ is compatible with the restriction of the trivializations Ψ_{1}, Ψ_{2} over $\mathbb{Z}\left[A_{1}\right] \otimes \mathbb{Z}\left[A_{2}\right]$.
(2) a trivialization I of the extension $\left(d_{00}^{K_{2}}+d_{00}^{K_{1}}, d_{00}^{K_{2}}+d_{00}^{K_{1}}\right)^{*} E$ of $\left[D_{00}^{K_{1}}+D_{00}^{K_{2}}\right.$: $\left.\mathrm{L}_{11}\left(K_{1}, K_{2}\right) \rightarrow \mathrm{L}_{01}\left(K_{1}, K_{2}\right)\right]$ by K_{3} obtained as pull-back of E via
$\left(d_{00}^{K_{2}}+d_{00}^{K_{1}}, d_{00}^{K_{2}}+d_{00}^{K_{1}}\right):\left[\mathrm{L}_{11}\left(K_{1}, K_{2}\right) \rightarrow \mathrm{L}_{01}\left(K_{1}, K_{2}\right)\right] \longrightarrow\left[\mathrm{L}_{10}^{\prime}\left(K_{1}, K_{2}\right) \rightarrow \mathrm{L}_{00}\left(K_{1}, K_{2}\right)\right]$,
i.e. a couple of trivializations $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ of the couple of B_{3}-torsors over $B_{1} \times B_{2} \times B_{2}$ and $B_{1} \times B_{1} \times B_{2}$ which are the pull-back of E via $\left(i d \times d_{00}^{K_{2}}\right)+\left(d_{00}^{K_{1}} \times i d\right): \mathbb{Z}\left[B_{1} \times B_{2} \times B_{2}\right]+\mathbb{Z}\left[B_{1} \times B_{1} \times B_{2}\right] \rightarrow \mathbb{Z}\left[B_{1} \times B_{2}\right]$. The trivializations (α_{1}, α_{2}) can be viewed as two group laws on the fibres of the B_{3}-torsor E over $B_{1} \times B_{2}$:

$$
+{ }_{2}: E_{b_{1}, b_{2}} E_{b_{1}, b_{2}^{\prime}} \longrightarrow E_{b_{1}, b_{2}+b_{2}^{\prime}} \quad+_{1}: E_{b_{1}, b_{2}} E_{b_{1}^{\prime}, b_{2}} \longrightarrow E_{b_{1}+b_{1}^{\prime}, b_{2}}
$$

where b_{2}, b_{2}^{\prime} (resp. b_{1}, b_{1}^{\prime}) are points of $B_{2}(U)$ (resp. of $B_{1}(U)$) with U any S-scheme.
The trivialization I, i.e. the two group laws, must be compatible with the trivializations $\left(\Psi_{1}, \Psi_{2}\right)$ underlying the trivialization E. This compatibility is expressed through the 2 torsors arising from the factors $\mathrm{L}_{11}\left(K_{1}, K_{2}\right)$:

- the anticommutative diagram (5.8) furnishes a relation of compatibility between the group law $+_{2}$ of E and the trivialization Ψ_{1} of the pullback $\left(D_{00}^{K_{1}} \times i d\right)^{*} E$ of E over $A_{1} \times B_{2}$, which means that Ψ_{1} is an additive section;
- the anticommutative diagram (5.9) furnishes a relation of compatibility between the group law $+_{1}$ of E and the trivialization Ψ_{2} of the pullback $\left(i d \times D_{00}^{K_{2}}\right)^{*} E$ of E over $B_{1} \times A_{2}$, which means that also Ψ_{2} is an additive section.
Finally, the compatibility of I with the relation

$$
\left(d_{00}^{K_{2}}+d_{00}^{K_{1}}, d_{00}^{K_{2}}+d_{00}^{K_{1}}\right) \circ\left(d_{01}^{K_{2}}+d_{01}^{K_{1}}+\left(d_{00}^{K_{1}}, d_{00}^{K_{2}}\right)\right)=0
$$

imposes on the datum $\left(E,+_{1},+_{2}\right) 5$ relations of compatibility through the system of 5 torsors over $B_{1} \times B_{2} \times B_{2}, B_{1} \times B_{2} \times B_{2} \times B_{2}, B_{1} \times B_{1} \times$ $B_{2}, B_{1} \times B_{1} \times B_{1} \times B_{2}, B_{1} \times B_{1} \times B_{2} \times B_{2}$ arising from $\mathrm{L}_{02}\left(K_{1}, K_{2}\right):$

- the exact sequence (5.5) furnishes the two relations of commutativity and of associativity of the group law $+_{2}$, which mean that $+_{2}$ defines over E a structure of commutative extension of $\left(B_{2}\right)_{B_{1}}$ by $\left(B_{3}\right)_{B_{1}}$;
- the exact sequence (5.6) expresses the two relations of commutativity and of associativity of the group law $+_{1}$, which mean that $+_{1}$ defines over E a structure of commutative extension of $\left(B_{1}\right)_{B_{2}}$ by $\left(B_{3}\right)_{B_{2}}$;
- the anticommutative diagram (5.7) means that these two group laws are compatible.
Therefore these 5 conditions implies that the B_{3}-torsor E is endowed with a structure of biextension of $\left(B_{1}, B_{2}\right)$ by B_{3}.
The object $\left(E, \Psi_{1}, \Psi_{2}, \gamma\right)$ of $\Psi_{\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)$ is therefore a biextension of $\left(K_{1}, K_{2}\right)$ by K_{3}.

In the above proof we have not used diagram (5.10) because we work with the truncated bicomplex $\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)($ see (5.11) $)$.

6. Proof of theorem 0.1 (a)

Let $K_{i}=\left[A_{i} \xrightarrow{u_{i}} B_{i}\right]$ (for $i=1,2,3$) be three 1-motives defined over S. Denote by L.. $\left(K_{i}\right)$ (for $i=1,2$) the canonical flat partial resolution of K_{i} introduced in $\S 5$. According to Proposition 5.2. there exists an arbitrary flat resolution $\mathrm{L}^{\prime} . .\left(K_{i}\right)$ (for $i=1,2)$ of K_{i} such that the groups $\operatorname{Tot}\left(\mathrm{L} . .\left(K_{i}\right)\right)_{j}$ and $\operatorname{Tot}\left(\mathrm{L}^{\prime} . .\left(K_{i}\right)\right)_{j}$ are isomorphic for $j=0,1$. We have therefore two canonical homomorphisms of bicomplexes

$$
\mathrm{L} . .\left(K_{1}\right) \longrightarrow \mathrm{L}^{\prime} . .\left(K_{1}\right) \quad \mathrm{L} . .\left(K_{2}\right) \longrightarrow \mathrm{L}^{\prime} . .\left(K_{2}\right)
$$

inducing a canonical homomorphism between the corresponding total complexes

$$
\operatorname{Tot}\left(\mathrm{L} . .\left(K_{1}\right) \otimes \mathrm{L} . .\left(K_{2}\right)\right) \longrightarrow \operatorname{Tot}\left(\mathrm{L}^{\prime} . .\left(K_{1}\right) \otimes \mathrm{L}^{\prime} . .\left(K_{2}\right)\right)
$$

which is an isomorphism in degrees 0 and 1 . Denote by L.. $\left(K_{1}, K_{2}\right)$ (resp. L'.. $\left(K_{1}, K_{2}\right)$) the bicomplex L.. $\left(K_{1}\right) \otimes \mathrm{L} . .\left(K_{2}\right)\left(\right.$ resp. $\left.\mathrm{L}^{\prime} . .\left(K_{1}\right) \otimes \mathrm{L}^{\prime} . .\left(K_{2}\right)\right)$. Remark that $\operatorname{Tot}\left(\mathrm{L}^{\prime} . .\left(K_{1}, K_{2}\right)\right)$ represents $K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}$ in the derived category $\mathcal{D}(\mathbf{S})$:

$$
\operatorname{Tot}\left(\mathrm{L}^{\prime} . .\left(K_{1}, K_{2}\right)\right)=K_{1}{ }^{\mathbb{L}} K_{2} .
$$

By Proposition 4.6 we have the equivalence of categories

$$
\Psi_{\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right) \simeq \Psi_{\tau_{\leq(1 *)} \mathrm{L}^{\prime} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)
$$

Hence applying Theorem 5.3, which furnishes the following geometrical description of the category $\Psi_{\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)$:

$$
\operatorname{Biext}\left(K_{1}, K_{2} ; K_{3}\right) \simeq \Psi_{\tau_{\leq(1 *)} \mathrm{L} . .\left(K_{1}, K_{2}\right)}\left(K_{3}\right)
$$

and applying Theorem 4.2, which furnishes the following homological description of the groups $\Psi_{\tau \leq(1 *)}^{i} \mathrm{~L}^{\prime} . .\left(K_{1}, K_{2}\right),\left(K_{3}\right)$ for $i=0,1$:

$$
\Psi_{\tau_{\leq(1 *)} \mathrm{L}^{\prime} . .\left(K_{1}, K_{2}\right)}^{i}\left(K_{3}\right) \cong \operatorname{Ext}^{i}\left(\operatorname{Tot}\left(\tau_{\leq(1 *)} \mathrm{L}^{\prime} . .\left(K_{1}, K_{2}\right)\right), K_{3}\right) \cong \operatorname{Ext}^{i}\left(K_{1} \stackrel{\mathbb{Q}}{\otimes} K_{2}, K_{3}\right)
$$

we get Theorem 0.1, i.e.

$$
\operatorname{Biext}^{i}\left(K_{1}, K_{2} ; K_{3}\right) \cong \operatorname{Ext}^{i}\left(K_{1} \stackrel{\mathbb{}}{\otimes} K_{2}, K_{3}\right) \quad(i=0,1)
$$

Remark 6.1. From the exact sequence $0 \rightarrow B_{3} \rightarrow K_{3} \rightarrow A_{3}[1] \rightarrow 0$ we get the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \Psi_{\tau \leq(1 *)}^{0} \mathrm{~L}^{\prime} . .\left(K_{1}, K_{2}\right) \\
&\left(B_{3}\right) \rightarrow \Psi_{\tau_{\leq(1 *)} \mathrm{L}^{\prime} . .\left(K_{1}, K_{2}\right)}^{0}\left(K_{3}\right) \rightarrow \Psi_{\tau_{\leq(1 *)}^{0} \mathrm{~L}^{\prime} . .\left(K_{1}, K_{2}\right)}^{0}\left(A_{3}[1]\right) \\
& \Psi_{\tau_{\leq(1 *)}}^{1} \mathrm{~L}^{\prime} . .\left(K_{1}, K_{2}\right) \\
&\left(B_{3}\right) \rightarrow \Psi_{\tau \leq(1 *)}^{1} \mathrm{~L}^{\prime} . .\left(K_{1}, K_{2}\right) \\
&\left(K_{3}\right) \rightarrow \Psi_{\tau_{\leq(1 *)}^{1} \mathrm{~L}^{\prime} . .\left(K_{1}, K_{2}\right)}^{1}\left(A_{3}[1]\right) .
\end{aligned}
$$

The homological interpretation of this long exact sequence is

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}\left(T, B_{3}\right) \rightarrow \operatorname{Hom}\left(T, K_{3}\right) \rightarrow \operatorname{Hom}\left(T, A_{3}[1]\right) \\
& \rightarrow \operatorname{Ext}^{1}\left(T, B_{3}\right) \rightarrow \operatorname{Ext}^{1}\left(T, K_{3}\right) \rightarrow \operatorname{Ext}^{1}\left(T, A_{3}[1]\right)
\end{aligned}
$$

where we set $T=\operatorname{Tot}\left(\tau_{\leq(1 *)} \mathrm{L}^{\prime} . .\left(K_{1}, K_{2}\right)\right)$, and its geometrical interpretation is

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}\left(B_{1} \otimes B_{2}, B_{3}\right) \rightarrow \operatorname{Hom}\left(K_{1} \stackrel{\mathbb{L}}{\otimes} K_{2}, K_{3}\right) \rightarrow \operatorname{Hom}\left(A_{1} \otimes B_{2}+B_{1} \otimes A_{2}, A_{3}\right) \\
& \rightarrow \operatorname{Biext}^{1}\left(K_{1}, K_{2} ; B_{3}\right) \rightarrow \operatorname{Biext}^{1}\left(K_{1}, K_{2} ; K_{3}\right) \rightarrow \operatorname{Hom}\left(A_{1} \otimes A_{2}, A_{3}\right)
\end{aligned}
$$

References

[B08] C. Bertolin, Multilinear morphisms between 1-motives, J. Reine Angew. Math. 637 (2009), pp. 141-174.
[B09] C. Bertolin, Extensions and biextensions of locally constant group schemes, tori and abelian schemes, Math. Z. (2009) 261, pp. 845-868.
[Be11] C. Bertolin, Extensions of Picard stacks and their homological interpretation, J. of Algebra 331 (2011), no. 1, pp. 28-45.
[Be] C. Bertolin, Biextensions of Picard stacks and their homological interpretation, arXiv:1103.0723v1 [math.AG], 2011.
[BM] C. Bertolin, C. Mazza, Biextensions of 1-motives in Voevodsky's category of motives, Int. Math. Res. Not. IMRN (2009), no. 19, pp. 3747-3757.
[D73] P. Deligne, La formule de dualité globale, Théorie des topos et cohomologie étale des schémas, Tome 3. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4). Lecture Notes in Mathematics, Vol. 305. Springer-Verlag, Berlin-New York, 1973.
[D89] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over Q (Berkeley, CA, 1987), pp. 79-297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989.
[G71] J. Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179. Springer-Verlag, Berlin-New York, 1971.
[G] A. Grothendieck and others, Groupes de Monodromie en Géométrie Algébrique, SGA 7 I, Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin-New York, 1972.
[R] M. Raynauld, 1-motifs et monodromie géométrique, Périodes p-adiques, Astérisque 223 (1994) pp. 295-319.

Dip. di Matematica, Università di Torino, Via Carlo Alberto 10, I-10123 Torino
E-mail address: cristiana.bertolin@googlemail.com

[^0]: 1991 Mathematics Subject Classification. 18G15.
 Key words and phrases. extensions, biextensions, 1-motives, tensor products.

