
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Feedback for increased robustness of forwarding graphs in the cloud

Published version:

DOI:10.1016/j.sysarc.2017.09.005

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1662777 since 2018-03-19T10:13:52Z

Feedback for increased robustness of forwarding graphs in the cloud

Victor Millnert∗, Johan Eker∗†, Enrico Bini‡
∗Lund University, Sweden
†Ericsson Research, Sweden
‡University of Turin, Italy

Abstract—Cloud computing technology provides the means to
share physical resources among multiple users and data center
tenants by exposing them as virtual resources. There is a
strong industrial drive to use similar technology and concepts
to provide timing sensitive services. One such domain is a
chain of connected virtual network functions. This allows the
capacity of each function to be scaled up and down by adding
or removing virtual resources. In this work, we develop a model
of a such a service chain and pose the dynamic allocation of
resources as an optimization problem. We design and present
a set of strategies to allot virtual network nodes in an optimal
fashion subject to latency and buffer constraints. Furthermore,
we derive a feedback-law for dynamically adjusting the amount
of resources given to each functions in order to ensure that the
system remains in the desired state even if there are modeling
error or for a stochastic input.

1. Introduction
Over the last years, cloud computing has swiftly trans-

formed the IT infrastructure landscape, leading to large cost-
savings for deployment of a wide range of IT applications.
Some main characteristics of cloud computing are resource
pooling, elasticity, and metering. Physical resources such
as compute nodes, storage nodes, and network fabrics are
shared among tenants. Virtual resource elasticity brings the
ability to dynamically change the amount of allocated re-
sources, for example as a function of workload or cost.
Resource usage is metered and in most pricing models the
tenant only pays for the allocated capacity.

While cloud technology initially was mostly used for IT
applications, e.g. web servers, databases, etc., it is rapidly
finding its way into new domains. One such domain is
processing of network packages. Today network services are
packaged as physical appliances that are connected together
using physical network. Network services consist of inter-
connected network functions (NF). Examples of network
functions are firewalls, deep packet inspections, transcod-
ing, etc. A recent initiative from the standardisation body
ETSI (European Telecommunications Standards Institute)
addresses the standardisation of virtual network services
under the name Network Functions Virtualisation (NFV) [1].
The expected benefits from this are, among others, better
hardware utilisation and more flexibility, which translate into
reduced capital and operating expenses (CAPEX and OPEX).
A number of interesting use cases are found in [2], and in
this paper we are investigating the one referred to as Virtual
Network Functions Forwarding Graphs, see Figure 1.

We investigate the allocation of virtual resources to a
given packet flow, i.e. what is the most cost efficient way

VNF3

VNF1 VNF1

VNF1

VNF1

VNF1VNF1

VNF4

VNF2

VNF3

VNF5

infrastructure

Packet flow
Mapping to
physical
hardware

Logical
network
links

m1 m2

m4

m5

m5

Figure 1: Several virtual networking functions (VNF) are
connected together to provide a set of services. Packet flow
through a specific path the VNFs (a virtual forwarding
graph). The VNFs consist of a set of virtual resources, e.g.,
VNF1 consist of three virtual machines, that are mapped onto
physical hardware referred to as the virtual network function
virtualization infrastructure (NFVI). In the figure there are
two packet flows: a blue {VNF1, VNF2, VNF3, VNF5}, and
a red {VNF1, VNF2, VNF4, VNF5}.

to allocate VNFs with a given capacity that still provide
a network service within a given latency bound? The dis-
tilled problem is illustrated as the packet flows in Figure 1.
The forwarding graph is implemented as a chain of virtual
network nodes, also known as a service chains. To ensure
that the capacity of a service chain matches the time-varying
load, the number of instances mi of each individual network
function VNFi may be scaled up or down.

The contribution of the paper is

• a mathematical model of the virtual resources sup-
porting the packet flows in Figure 1,

• the set-up of an optimization problem for controlling
the amount of resources needed by each function in
the service chain,

• solution of the optimization-problem under the as-
sumption of a constant input flow,

• a feedback-law for dynamically changing the re-
sources used by each function, allowing for a
stochastic input and impulse disturbances.

Related work

There are a number of well known and established re-
source management frameworks for data centers, but few
of them explicitly address the issue of latency. Sparrow [3]
presents an approach for scheduling a large number of

parallel jobs with short deadlines. The problem domain is
different compared to our work in that we focus on sequential
rather than parallel jobs. Chronos [4] focuses on reducing
latency on the communication stack. RT-OpenStack [5] adds
real-time performance to OpenStack by usage of a real-time
hypervisor and a timing-aware VM-to-host mapping.

The enforcement of an end-to-end (E2E) deadline of a
sequence of jobs to be executed through a sequence of com-
puting elements was addressed by several works, possibly
under different terminologies. In the holistic analysis [6],
[7], [8] the schedulability analysis is performed locally. At
global level the local response times are transformed into
jitter or offset constraints for the subsequent tasks.

A second approach to guarantee an E2E deadline is
to split a constraint into several local deadline constraints.
While this approach avoids the iteration of the analysis,
it requires an effective splitting method. Di Natale and
Stankovic [9] proposed to split the E2E deadline proportion-
ally to the local computation time or to divide equally the
slack time. Later, Jiang [10] used time slices to decouple the
schedulability analysis of each node, reducing the complexity
of the analysis. Such an approach improves the robustness of
the schedule, and allows to analyse each pipeline in isolation.
Serreli et al. [11], [12] proposed to assign local deadlines to
minimize a linear upper bound of the resulting local demand
bound functions. More recently, Hong et al [13] formulated
the local deadline assignment problem as a Mixed-Integer
Linear Program (MILP) with the goal of maximizing the
slack time. After local deadlines are assigned, the processor
demand criterion was used to analyze distributed real-time
pipelines [14], [12].

In all the mentioned works, jobs have non-negligible
execution times. Hence, their delay is caused by the pre-
emption experienced at each function. In our context, which
is scheduling of virtual network services, jobs are executed
non-preemptively and in FIFO order. Hence, the impact of
the local computation onto the E2E delay of a request is
minor compared to the queueing delay. This type of delay is
intensively investigated in the networking community in the
broad area queuing systems [15]. In this area, Henriksson et
al. [16] proposed a feedforward/feedback controller to adjust
the processing speed to match a given delay target.

Most of the works in queuing theory assumes a stochastic
(usually markovian) model of job arrivals and service times.
A solid contribution to the theory of deterministic queuing
systems is due to Baccelli et al. [17], Cruz [18], and Parekh
& Gallager [19]. These results built the foundation for the
network calculus [20], later applied to real-time systems in
the real-time calculus [21]. The advantage of network/real-
time calculus is that, together with an analysis of the E2E
delays, the sizes of the queues are also modelled. As in the
cloud computing scenario the impact of the queue is very
relevant since that is part of the resource usage which we
aim to minimize, hence we follow this type of modeling.

2. Problem formulation

Section 1. We consider a service-chain consisting of
n functions F1, . . . , Fn, as illustrated in Figure 2. Packets

are flowing through the service-chain and they must be
processed by each function in the chain within some end-to-
end deadline, denoted by Dmax. A fluid model is used to ap-
proximate the packet flow and at time t there are ri(t) ∈ R+

packets per second (pps) entering the i’th function and the
the cumulative arrived requests for this function is

Ri(t) =

∫ t

0

ri(τ) dτ. (1)

In a recent benchmarking study it was shown that a typical
virtual machine can process around 0.1–2.8 million packets
per second, [22]. Hence, in this work the number of packets
flowing through the functions is assumed to be in the order
of millions of packets per second, supporting the use of a
fluid model.

r(t) F1 F2
. . . Fn

r2(t) r3(t) rn(t)

Figure 2: Illustration of the service-chain.

2.1. Service model

As illustrated in Figure 3, the incoming requests to
function Fi are stored in the buffer and then processed
once it reaches the head of the queue. At time t there are
mi(t) ∈ Z+ machines ready to serve the requests, each with
a nominal speed of s̄i ∈ R+ (note that this nominal speed
might differ between different functions in the service chain,
i.e. it does not in general hold that s̄i = s̄j for i 6= j). The
maximum speed that function Fi can process requests at is
thus mi(t)s̄i. The rate by which Fi is actually processing
requests at time t is denoted si(t) ∈ R+. The cumulative
served requests is defined as

Si(t) =

∫ t

0

si(τ) dτ. (2)

At time t the number of requests stored in the queue is
defined as the queue length qi(t) ∈ R+:

qi(t) =

∫ t

0

(ri(τ)− si(τ))dτ = Ri(t)− Si(t). (3)

ri−1(t)

qi(t) ≤ qmax
i

...

fi

mi(t)

fi

+

Service Function Fi

si(t)

Figure 3: Illustration of the structure and different entities of
the service chain.

Each function has a fixed maximum-queue capacity qmax
i ∈

R+, representing the largest number of requests that can be
stored at the function Fi.

The queueing delay, depends on the status of the queue
as well as on the service rate. We denote by Di,j(t) the time
taken by a request from when it enters function Fi to when
it exits Fj , with j ≥ i, where t is the time when the request
exits function Fj :

Di,j(t) = inf {τ ≥ 0 : Ri(t− τ) ≤ Sj(t)}.

The maximum queueing delay then is D̂i,j =
maxt≥0Di,j(t). The requirement that a requests meets it
end-to-end deadline is D̂1,n ≤ Dmax.

To control the queueing delay, it is necessary to control
the service rate of the function. Therefore, we assume that
it is possible to change the maximum service-rate of a
function by changing the number of machines that are on, i.e.
changing mi(t). However, turning on a machine takes ∆on

i
time units, and turning off a machine takes ∆off

i time units.
Together they account for a time overhead, ∆i = ∆on

i +∆off
i ,

associated with turning on/off a machine.
In 2012 Google profiled where the latency in a data

center occurred, [4]. They showed that less than 1% (≈ 1µs)
of the latency occurred was due to the propagation in the net-
work fabric. The other 99% (≈ 85µs) occurred somewhere
in the kernel, the switches, the memory, or the application.
Since it is difficult to say exactly which of this 99% is
due to processing, or queueing, we make the abstraction of
considering queueing delay and processing delay together,
simply as queueing delay. Furthermore, we assume that no
request is lost in the communication links, and that there
is no propagation delay. Hence the concatenation of the
functions F1 through Fn implies that the input of function
Fi is exactly the output of function Fi−1, for i = 2, . . . , n,
as illustrated in Figure 2.

2.2. Cost model

To be able to provide guarantees about the behaviour of
the service chain, it is necessary to make hard reservations
of the resources needed by each function in the chain.
This means that when a certain resource is reserved, it is
guaranteed to be available for utilization. Reserving this
resource results in a cost, and due to the hard reservation, the
cost does not dependent on the actual utilisation, but only
on the resource reserved.

The computation cost per time-unit per machine is de-
noted ci , and can be seen as the cost for the CPU-cycles
needed by one machine in Fi. This cost will also occur dur-
ing the time-overhead ∆i. Without being too conservative,
this time-overhead can be assumed to occur only when a
machine is started. The average computing cost per time-
unit for the whole function Fi is then

Jc
i (mi(t)) = lim

t→∞
ci
t

t∫
0

mi(s) + ∆i · (∂−mi(s))+ds (4)

where (x)+ = max(x, 0), and ∂−mi(t) is the left-limit of
mi(t):

∂−mi(t) = lim
a→t−

mi(t)−mi(a)

t− a ,

that is, a sequence of Dirac’s deltas at all points where the
number of machines changes. This means that the value of
the left-limit of mi(t) is only adding to the computation-cost
whenever it is positive, i.e. when a machine is switched on.

The queue cost per time-unit per space for a request is
denoted qi . This can be seen as the cost that comes from the
fact that physical storage needs to be reserved such that a
queue can be hosted on it, normally this would correspond
to the RAM of the network-card. Reserving the capacity of
qmax
i would thus result in a cost per time-unit of

Jq
i (qmax

i) = qi q
max
i . (5)

2.3. Problem definition

The aim of this paper is to control the number mi(t)
of machines running in function Fi, such that the total
average cost is minimized, while the E2E constraint Dmax

is not violated and the maximum queue sizes qmax
i are not

exceeded. This can be posed as the following problem:

minimize J =

n∑
i=1

Jc
i (mi(t)) + Jq

i (qmax
i)

subject to D̂1,n ≤ Dmax

qi(t) ≤ qmax
i , ∀t ≥ 0, i = 1, 2, . . . , n

(6)

with Jc
i and Jq

i as in (4) and (5), respectively. In this
paper the optimization problem (6) will be solved for a
service-chain fed with a constant incoming rate r. Later on a
feedback-law will be derived allowing the system to remain
stable under a stochastic input.

A valid lower bound J lb to the cost achieved by any fea-
sible solution of (6) is found by assuming that all functions
are capable of providing exactly a service rate r equal to the
input rate. This is possible by running a fractional number of
machines r/s̄i at function Fi. In such an ideal case, buffers
can be of zero size (∀i, qmax

i = 0), and there is no queueing
delay (D̂1,n = 0) since service and the arrival rates are the
same at all functions. Hence, the lower bound to the cost is

J lb =

n∑
i=1

ci
r

s̄i
. (7)

Such a lower bound will be used to compare the quality of
the solution found later on.

3. Controlling the machines

In presence of an incoming flow of requests at a constant
rate r(t) = r packets per second, a number

m̄i =

⌊
r

s̄i

⌋
(8)

of machines running in function Fi must always stay on. To
match the incoming rate r, in addition to the m̄i machines

always on, an additional machine must be on for some time
in order to process a request rate of s̄iρi where ρi is the
normalized residual request rate:

ρi = r/s̄i − m̄i, ρi ∈ [0, 1). (9)

Naturally, every function can decide arbitrarily when, and for
how long, its additional machine is on as long as the average
service rate for the function matches in incoming request
rate r, and the queue does not remain zero for a prolonged
amount of time. However, such an approach would lead to
the complexity of the schedule blowing up exponentially
with the number of functions in the chain, making the
synthesis of a machine-schedule intractable. Hence, to reduce
the complexity and make the analysis tractable the extra
machines are restricted to be turned on/off with a global
period T , i.e. the period by which every function switches
on their extra machine is Ti = T . This implies that during
every period the additional machine of the i’th function has
to process the residual work of T×(r−m̄is̄i). The necessary
on-time T on

i , needed by the extra machine, to process this
work during the period is T × (r − m̄is̄i)/s̄i = Tρi. The
remaining time of the period the additional machine should
be switched off, denoted by T off

i , leading to

T on
i = Tρi, T off

i = T − T on
i = T (1− ρi). (10)

Notice, however, that the actual time the extra machine is
consuming power is T on

i + ∆i due to the time-overhead for
starting a new machine.

The design variable of the optimization problem (6)
is now the period T , so it remains to investigate how it
affects the computing-cost, the buffer-cost, and the end-to-
end deadline.

The computing-cost is straightforward to find when the
additional machines are switched on/off with a period T . If
m̄i+1 machines are on for a time T on

i , and only m̄i machines
are on for a time T off

i , the cost Jc
i of (4) becomes:

Jc
i (T) = ci

(
T on
i + ∆i

T
+ m̄i

)
= ci

(
m̄i + ρi +

∆i

T

)
(11)

as long as T off
i ≥ ∆i. If instead T off

i < ∆i, that is if

T < T :=
∆i

1− ρi
, (12)

there is no time to switch the additional machine off and
then on again before the new period start. Hence, we keep
the last machine on, even if it is not processing packets, and
the computing cost depends on the period according to:

Jc
i (T) = ci

(
m̄i + ρi +

T off
i

T

)
= ci(m̄i + 1). (13)

It then remains to find the relationship between the period
and the maximum queue-length—which by equation (5)
translates to the buffer-cost—of the functions as well as
to the maximum end-to-end delay. In Lemma 1 below, it
is shown that the maximum queue-length is proportional to
the period, and similarly, in Lemma 2 it is shown that the
maximum end-to-end delay is also proportional to the period.
The intuition behind this fact is that the longer the period T

is, the longer a function will have to wait with the additional
machine being off, before turning it on again. During this
interval of time, the function is accumulating work and
consequently the maximum queue-size is growing leading
to the delay for passing through that function growing as
well.

Lemma 1. With a constant input rate r0(t) = r, along with
all functions switching on/off their additional machine with a
common period T , the maximum queue size qmax

i at function
Fi is

qmax
i = T × αi, (14)

where

αi = max
{
ρi
(
s̄i(1− ρi)− s̄i−1(1− ρi−1)

)
,

(1− ρi−1)(s̄i−1ρi−1 − s̄iρi),
ρi−1

(
s̄i−1(1− ρi−1)− s̄i(1− ρi)

)
,

(1− ρi)(s̄iρi − s̄i−1ρi−1)
}
,

with ρi as defined in (9), and T being the period of the
switching scheme, common to all functions.

Proof: Due to limited space the proof is shown in a
technical report published at Lund University Publications,
[23].

The expression of qmax
i in (14) suggests that the max-

imum queue-length is always bounded with respect to the
input rate to the service-chain, as shown in Corollary 1.
The intuition behind this is that regardless the seize of the
input rate, it is possible to find a number m̄i such that
(m̄i + 1)s̄i > r, hence one can always mach the input rate.

Corollary 1. The maximum queue qize qmax
i at any function

Fi is bounded, regardless of the rate r of the input.

Proof: From the definition of ρi in Eq. (9), it always
holds that ρi ∈ [0, 1). Hence, from the expression of (14), it
follows that qmax

i is always bounded.
Finally, to solve the optimal design problem one has to

relate the period T and the end-to-end delay:

Lemma 2. With a constant input rate, r0(t) = r, the longest
end-to-end delay D̂i,n for any request passing through func-
tions F1 thru Fn is

D̂1,n = T ×
n∑

i=1

δi. (15)

with δi being an opportune constant that depends on r, s̄i,
and s̄i−1 given in Table 1, with the four different cases given
in Table 2.

Proof: Due to limited space the proof is shown in a
technical report published at Lund University Publications,
[23].

Case δi

Case (1a) 1
r
s̄iρ

2
i
s̄i(1−ρi)−s̄i−1(1−ρi−1)

s̄i−1(1−ρi−1)+s̄iρi

Case (1b) 0

Case (2a)



1
r

(
s̄i−1ρi−1(ρi−1 − ρi)+
+(1− ρi)(s̄iρi − s̄i−1ρi−1

)
, T on

i ≥T on
i−1

1
r

(
ρi
(
s̄i(1− ρi)− s̄i−1(1− ρi−1)

)
+

+s̄i−1(ρi−1 − 1)(ρi−1 − ρi)
)
, T on

i <T on
i−1

Case (2b) 1
r
s̄i(1− ρi)2 s̄iρi+s̄i−1ρi−1

s̄i(1−ρi)+s̄i−1ρi−1

TABLE 1: The opportune constant δi given for each of the
four cases (presented in Table 2).

Case (1a) (m̄i + 1)s̄i ≥ (m̄i−1 + 1)s̄i−1 m̄is̄i ≥ m̄i−1s̄i−1Case (1b) (m̄i + 1)s̄i < (m̄i−1 + 1)s̄i−1

Case (2a) (m̄i + 1)s̄i ≥ (m̄i−1 + 1)s̄i−1 m̄is̄i < m̄i−1s̄i−1Case (2b) (m̄i + 1)s̄i < (m̄i−1 + 1)s̄i−1

TABLE 2: Table for finding which of the four possible cases
the i’th function in the chain belong to. Each case depend on
the nominal services speeds of the function and its preceding
function.

3.1. Solution to the optimization problem

With the relationships between the cost, the end-to-end
delay, and the period established, the optimization prob-
lem (6) can be written as

J(T) = aT +
∑

i:T<T i

ci(1− ρi) +
∑

i:T≥T i

ci
∆i

T
+ J lb, (16)

where J lb is the lower bound given by (7), a =
∑n

i=1 j
q
i αi,

with αi given by Lemma 1, and T i is the value of the
period below which it is not feasible to switch the additional
machine off and then on again, given by (12):

T < T i ⇔ T off
i < ∆i.

In fact, ∀i with T < T i we pay the full cost of having m̄i+1
machines always on.

The deadline constraint in (6), can be simply written as

T ≤ c :=
Dmax∑n
i=1 δi

,

with δi given in Lemma 2, Table 1.
The cost J(T) of (16) is a continuous function of one

variable T . It has to be minimized over the closed interval
[0, c]. Hence, by the Weierstaß’s extreme-value theorem, it
has a minimum. To find this minimum, we just check all
(finite) points at which the cost is not differentiable and the
ones where the derivative is equal to zero. Let us define all
points in [0, c] in which J(T) is not differentiable:

C = {T i : T i < c} ∪ {0} ∪ {c}. (17)

We denote by p = |C| ≤ n + 2 the number of points in
C. Also, we denote by ck ∈ C the points in C and we
assume they are ordered increasingly c1 < c2 < . . . < cp.
Since the cost J(T) is differentiable over the open interval
(ck, ck+1), the minimum may also occur at an interior point

of (ck, ck+1) with derivative equal to zero. Let us denote by
C∗ the set of all interior points of (ck, ck+1) with derivative
of J(T) equal to zero, that is

C∗ = {c∗k : k = 1, . . . , p− 1, ck < c∗k < ck+1} (18)

with

c∗k =

√∑
i:T i<ck+1

ci∆i

a
.

Then, the optimal period is given by

T ∗ = arg min
T∈C∪C∗

{J(T)}. (19)

3.2. Feedback for increased robustness

In this section a feedback-law will be derived to increase
the robustness and stability of the system. The goal is to
enable the system to handle impulse disturbances of mass di
occurring at the i’th function, i.e. di packets suddenly appear
at the tail of the i’th queue, as well as to be able to handle a
stochastic input. The feedback will use information about
deviations from the expected queue-sizes and use this to
dynamically change the on-time of the additional machines
in order to drive the system back to the desired queue-sizes
and, as illustrated in Figure 4 where the nominal schedule is
shown in green and the adjusted, extra on-time for the i’th
function highlighted in red. By extending the on-time during
the second period the extra work introduced by the impulse-
disturbance is processed and the system is driven back to
the desired state. What is also highlighted in Figure 4 is that
one can use an impulse disturbance to model both modeling
errors as well as time-varying input. For instance, denoting
the expected queue-size by qi(t) and the true queue-size by
by q̃i(t) one can model the difference of them at time t∗ by
an impulse disturbance of mass di = q̃i(t

∗) − qi(t∗). One
cause for such deviations might be a stochastic input rate.

T̃ on
ĩT
on
i

didi

T on
iT
on
i

qi(t)qi(t)
q̃i(t)q̃i(t)

timetime

Figure 4: Illustration of the idea to alter the on-time of
the additional machine in order to handle the extra load
caused by the impulse disturbance. The blue bars symbolize
the machines that are always on, and the green symbolize
when the extra machine is supposed to be on, and the red
bar highlight the additional on-time for the extra machine
needed to process the extra work introduced by the impulse
disturbance. The solid (–) line show the expected queue-size
of the function, and the dashed (- - -) show the true queue-
size. One can thus use the impulse disturbance as a tool
to model the difference between these when the additional
machine starts.

When an impulse disturbance of mass di appear at func-
tion Fi the nominal on-time T on

i will not be sufficient to
process both the residual work, i.e. the work not processed
by the m̄i machines, and the impulse disturbance. Hence, at
the end of T on

i there will still be di too many packets in the
queue. Moreover, without any feedback law to adjust T on

i
the extra load will never be processed.

The time needed by the additional machine to process the
impulse disturbance is di/s̄i, which should thus be added to
the nominal on-time T on

i . Denoting the adjusted on-time by
T̃ on
i it should thus be given by

T̃ on
i = T on

i +
di
s̄i
. (20)

However, since the on-time can only be extended by con-
verting off-time into on-time, it might very well be that
di/s̄i > T off

i , implying that there is not sufficient off-time
in the next period to convert to on-time in order to process
the extra work caused by the impulse disturbance. In fact,
assuming that no additional disturbances occur during the
processing of di, the function will need d(di/s̄i)/T off

i e periods
before the extra work is fully processed. Hence, the total
time needed is

T̃ on
i = T

⌊
di/s̄i
T off
i

⌋
︸ ︷︷ ︸

number of full periods needed

+T on
i + T off

i

fraction of final T off
i needed ∈ [0, 1)︷ ︸︸ ︷(di/s̄i

T off
i

−
⌊
di/s̄i
T off
i

⌋)
.

Here one should note that T̃ on
i →∞ as T off

i → 0, therefore,
should T̃ on

i grow very large it might be favorable to switch
on yet another machine. If such a thing would happen it
would thus need to switch between using m̄i +1 and m̄i +2
machines, which is the problem studied in this paper.

To allow for this impulse disturbance to be accepted by
the buffer there must be space in the buffer. Therefore, one
would have to increase the maximum queue-size qmax

i given
by Lemma 1 to

q̃max
i = qmax

i + di.

Naturally one might wonder if this affects the solution of the
optimization problem (6) and the answer is no. In the cost
function (16), the added queue-size would add a cost

n∑
i=1

jq
i di

which does not depend on the optimization variable T , hence
implying a linear shift of the cost and that the same optimal
period T still holds. The same holds for the additional time
needed to process the impulse disturbance, implying a larger
computation cost.

3.3. Designing the schedule

To implement this in the real system, one would have
to know when to start the extra machines, i.e. to derive
a schedule. With the period T by which the additional
machines should be switched on/off, along with the adaptive

on-time T̃ on
i to handle impulse disturbances and variations in

the input, the only thing one needs to know before designing
a schedule is when to start the additional machine for the
first time.

With the schedule by being periodic with a period T ,
the the (k + 1)’th time the additional machine in the i’th
function starts is given by

ton
i,k = ton

i,0 + kT, i = 1, 2, . . . , ∀k ≥ 1

where ton
i,0 ≥ 0 is the first time the additional machine starts

in the function. Similarly, the (k + 1)’th time the additional
machine should stop is given by

toff
i,k = ton

i,k + T̃ on
i , i = 1, 2, . . . , ∀k ≥ 1

where T̃ on
i is given by the feedback-law (20), but with di

being the difference between the expected queue size at
this time-instance and the actual queue-size, as shown later.
Hence, it remains to define ton

i,0 and di.
When proving Lemma 1 and 2 in [23] a by-product was

the optimal time to start the additional machine as well as
the expected queue-size at that time. It was shown that ton

i,0
can be expressed relative to ton

i−1,0 and that this relationship,
as well as the expected queue-size qi(ton

i,0) = qon
i , depend on

s̄i and s̄i−1. Moreover, this dependency can be expressed by
the four different cases given in Table 2. Each case giving
a different expression for ton

i,0 and qon
i as shown in Table 3.

Here it should be noted that for the first function in the
chain, one can regard the input r as a “dummy function”
F0, preceding F1, with s̄0 = r, m̄0 = 1, and ρ0 = 0, leading
to the first function belonging to Case (2b). Moreover, for
this “dummy function”, ton

0,0 is assumed to be 0. Finally, the
on-time computed when the additional machine starts every
period, is given by

T̃ on
i,k = min

(
T, T on

i +
qon
i − qi(ton

i,k)

s̄i

)
,

where the min() ensures that if there is a large difference
between the expected actual queue-sizes the additional ma-
chine is kept on for a period, and then a new on-time is com-
puted. In Figure 5 one can see an example-schedule, without
disturbances, for a function Fi belonging to Case (1a).

Case (1a)
ton
i,0 = ton

i−1,0 + Tρi
s̄i(1−ρi)−s̄i−1(1−ρi−1)

s̄i−1(1−ρi−1)+s̄iρi

qon
i = Tρi

(
s̄i(1− ρi)− s̄i−1(1− ρi−1)

)
Case (1b)

ton
i,0 = ton

i−1,0

qon
i = 0

Case (2a)
ton
i,0 = ton

i−1,0 + T (ρi−1 − ρi)

qon
i =

{
T (1− ρi)(s̄iρi − s̄i−1ρi−1), T on

i ≥T on
i−1

Tρi
(
s̄i(1− ρi)− s̄i−1(1− ρi−1)), T on

i <T on
i−1

Case (2b)
ton
i,0 = ton

i−1,0 + T (1− ρi)
qon
i = T (1− ρi)(s̄iρi + s̄i−1ρi−1)

TABLE 3: Table showing the start-time, ton
i,0, for the addi-

tional machine and the expected queue-size, qon
i = qi(t

on
i,0),

of the i’th function depending on which of the four cases
the function belong to.

T on
i

T on
i−1T off

i−1

Ti = Ti−1 = T

r

qi(t)

si(t)

si−1(t)

qmax
i

Figure 5: Case (1a): service schedule and queue qi(t). In this
example: r = 17, s̄i−1 = 6, s̄i = 8, T = 120, T on

i−1 = 100,
T on
i = 15, qmax

i = 90.

4. Example

In this section we investigate the analysis of this paper
using an example with two functions and an input rate of
r = 17× 103 packets per second. Every request has an end-
to-end-deadline of Dmax = 0.02 seconds. The parameters of
the two functions are reported in Table 4.

i s̄i (pps) ci qi ∆i (s)
1 6× 103 6 0.5× 10−3 0.01
2 8× 103 8 0.5× 10−3 0.01

TABLE 4: Parameters of the example.

As mentioned earlier, the input r(t) = r can be seen as
dummy function F0 preceding F1, with s̄0 = r, m̄0 = 1,
and ρ0 = 0. When deriving the schedule, it follows from (8)
and (9) that m̄1 = m̄2 = 2, and ρ1 = 5

6 , ρ2 = 1
8 , implying

that both functions must always keep two machines on, and
then periodically switch a third one on/off. This leads to
T 1 = 60.0× 10−3 and T 2 = 11.4× 10−3, where T i is the
threshold period for function Fi, as defined in (12).

From Lemma 1 it follows that the parameter a of the
cost function (16) is a = 0.792, while from Lemma 2 the
parameters δi determining the queuing delay introduced by
each function, are δ1 = 49.0× 10−3 and δ2 = 22.1× 10−3,
which in turn leads to

c =
Dmax

δ1 + δ2
=

0.02

71.1× 10−3
= 281× 10−3.

Since T 2 < T 1 < c, the set C of (17) containing the
boundary is

C = {0, 0.00114︸ ︷︷ ︸
T 2

, 0.060︸ ︷︷ ︸
T 1

, 0.281︸ ︷︷ ︸
c

}.

To compute the set C∗ of interior points with derivative equal
to zero defined in (18), which is needed to compute the
period with minimum cost from (19), we must check all
intervals with boundaries at two consecutive points in C. In

the interval (0, T 2) the derivative of J is never zero. When
checking the interval (T 2, T 1), the derivative is zero at

c∗1 =

√
c2∆2

a
= 0.318,

which, however, falls outside the interval. Finally, when
checking the interval (T 1, c) the derivative is zero at

c∗2 =

√
c1∆1 + c2∆2

a
= 0.421 > c = 0.281.

Hence, the set of points with derivative equal to zero is C∗ =
∅. By inspecting the cost at points in C we find that the
minimum occurs at T ∗ = c = 0.281, with cost J(T ∗) =
34.7. The period of T ∗ results in a schedule with a state-
space trajectory for the two queues shown in Figure 6.

0 100 200
0

100

200

q1(t)

q 2
(t
)

Figure 6: Nominal state-space trajectory of the queues for
the two functions in the example. One can see that, when
the system has a constant input, and no disturbance, the
trajectory follows a limit-cycle.

4.1. Impulse disturbance

Should the system fall victim to an impulse disturbance,
i.e. that di packets suddenly appear at the tail of the queue
in the i’th function, the nominal limit-cycle of the queues
(shown in Figure 6) will be perturbed. This is illustrated
in Figure 7 where we gave the first function an impulse
disturbance of mass d1 after 1.5 periods. With no feedback-
law in place, the nominal limit-cycle is never recovered.
Instead it will be perturbed a distance di in the qi’th direction
of the state-space diagram.

When extending the system with the feedback-law de-
scribed in Section 3.2 the functions will dynamically change
the on-time of the additional machines. This leads to the
nominal limit-cycle being recovered after the initial impulse
disturbance, as shown in Figure 8. One can see that the
recovery takes around two periods, ending when the blue
trajectory hits the black one.

4.2. Stochastic input

A natural question is whether the feedback-law can han-
dle a stochastic input, and not just the occasional impulse
disturbance. We denote the nominal input rate r0 = 17×103,
and then extend the input to the system to be stochastic, with
a uniform distribution from the interval r(t) ∈ [0.9, 1.1]×r0.

0 100 200
0

100

200
Disturbance

q1(t)

q 2
(t
)

Figure 7: When the system is given an impulse disturbance
of mass d1 to the first function, the nominal limit-cycle
(black) is perturbed to the right, giving a new limit-cycle
(blue). Without a feedback-law, the nominal limit-cycle is
never recovered.

0 100 200
0

100

200
Disturbance

q1(t)

q 2
(t
)

Figure 8: Using the feedback-law it successfully recovers the
nominal limit-cycle (black) an impulse disturbance of mass
d1. The blue trajectory shows the recovery of the nominal
limit-cycle, which takes about two periods.

Should this input be used for the original system, without
feedback, the nominal limit-cycle would drift every time the
input rate is larger than the nominal one, i.e. when r(t) > r0.
This can be seen in Figure 9 where system was run for 1000
periods. The black trajectory show the nominal limit-cycle,
and the blue show the trajectory of the simulation. One can
see that the system does not converge back to the nominal
limit-cycle. This implies that the queue-size would grow with
t, qi(t)→∞, as t→∞, making it impossible to dimension
the necessary buffer size.

With the feedback-law, however, the system will en-
sure that the nominal limit-cycle is restored by dynamically
changing the on-time for each additional function every time
it is turned on, hence making it possible to dimension the
queue-sized. This is illustrated in Figure 10 showing the the
state-space trajectory of the system is centered around the
nominal limit-cycle during a simulation length of a 1000
periods.

5. Summary

In this paper we have developed a general mathematical
model for a service-chain residing in a cloud environment.
This model includes an input model, a service model, and
a cost model. The input-model defines the input-stream of

0 100 200
0

100

200

drift

q1(t)

q 2
(t
)

Figure 9: State-space trajectory (blue) for a system with a
stochastic input but with no feedback from the queue-size.
One can see the the trajectory drifts away from the nominal
limit-cycle (black).

0 100 200
0

100

200

q1(t)

q 2
(t
)

Figure 10: State-space trajectory (blue) for a system with
a stochastic input where feedback from the queue-size pulls
the system back around the nominal limit-cycle (black).

requests to each NFV along with end-to-end deadlines for the
requests, meaning that they have to pass through the service-
chain before this deadline. In the service-model, we define
an abstract model of a NFV, in which requests are processed
by a number of machines inside the service function. It
is assumed that each function can change the number of
machines that are up and running, but doing so is assumed
to take some time. The cost-model defines the cost for
allocating compute- and storage capacity, and naturally leads
to the optimization problem of how to allocate the resources.

The optimization problem for controlling the resources
of the network functions is analyzed and solved under the
assumption of a constant input-stream of requests as well
as having every function in the chain switch on/off their
extra machine with the same period, although not necessarily
having the them on for the same duration. The solution
derived with these assumptions is then augmented with a
feedback-law, allowing the machines to dynamically adjust
the necessary on-time for the extra machine depending on
whether the queue-size match the expected queue-size, or
whether they deviate. This leads to the system being able
to handle both impulse disturbances as well as a stochastic
input.

Acknowledgements. The authors would like to
thank Karl-Erik Årzén and Bengt Lindoff for the useful
comments on early versions of this paper.

References

[1] ETSI, “Network Functions Virtualization (NFV),”
https://portal.etsi.org/nfv/nfv white paper.pdf, October 2012.

[2] ——, “Network Functions Virtualization (NFV); Use Cases,” October
2013.

[3] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles. ACM, 2013, pp. 69–84.

[4] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in
Proceedings of the Third ACM Symposium on Cloud Computing,
ser. SoCC ’12. New York, NY, USA: ACM, 2012, pp. 9:1–9:14.
[Online]. Available: http://doi.acm.org/10.1145/2391229.2391238

[5] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan, I. Lee, and
O. Sokolsky, “RT-Open Stack: CPU resource management for real-
time cloud computing,” in Cloud Computing (CLOUD), 2015 IEEE
8th International Conference on. IEEE, 2015, pp. 179–186.

[6] K. W. Tindell, A. Burns, and A. Wellings, “An extendible approach
for analysing fixed priority hard real-time tasks,” Journal of Real Time
Systems, vol. 6, no. 2, pp. 133–152, Mar. 1994.

[7] J. Palencia and M. G. Harbour, “Offset-based response time analysis
of distributed systems scheduled under EDF,” in 15th Euromicro
Conference on Real-Time Systems, Porto, Portugal, July 2003.

[8] R. Pellizzoni and G. Lipari, “Holistic analysis of asynchronous real-
time transactions with earliest deadline scheduling,” Journal of Com-
puter and System Sciences, vol. 73, no. 2, pp. 186–206, Mar. 2007.

[9] M. Di Natale and J. A. Stankovic, “Dynamic end-to-end guarantees
in distributed real time systems,” in Proceedings of the 15-th IEEE
Real-Time Systems Symposium, Dec. 1994, pp. 215–227.

[10] S. Jiang, “A decoupled scheduling approach for distributed real-time
embedded automotive systems,” in Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2006,
pp. 191–198.

[11] N. Serreli, G. Lipari, and E. Bini, “Deadline assignment for
component-based analysis of real-time transactions,” in 2nd Workshop
on Compositional Real-Time Systems, Washington, DC, USA, Dec.
2009.

[12] ——, “The demand bound function interface of distributed sporadic
pipelines of tasks scheduled by EDF,” in Proceedings of the 22-nd

Euromicro Conference on Real-Time Systems, Bruxelles, Belgium, Jul.
2010.

[13] S. Hong, T. Chantem, and X. S. Hu, “Local-deadline assignment
for distributed real-time systems,” IEEE Transactions on Computers,
vol. 64, no. 7, pp. 1983–1997, Jul. 2015.

[14] A. Rahni, E. Grolleau, and M. Richard, “Feasibility analysis of non-
concrete real-time transactions with edf assignment priority,” in Pro-
ceedings of the 16-th conference on Real-Time and Network Systems,
Rennes, France, Oct. 2008, pp. 109–117.

[15] L. Kleinrock, Queueing Systems. John Wiley & Sons, 1975.

[16] D. Henriksson, Y. Lu, and T. Abdelzaher, “Improved prediction for
web server delay control,” in Proceedings of the 16th Euromicro
Conference on Real-Time Systems, Jun. 2004, pp. 61–68.

[17] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization
and linearity. Wiley New York, 1992, vol. 3.

[18] R. L. Cruz, “A calculus for network delay, part I: Network elements in
isolation,” IEEE Transactions on Information Theory, vol. 37, no. 1,
pp. 114–131, Jan. 1991.

[19] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp.
344–357, Jun. 1993.

[20] J.-Y. Le Boudec and P. Thiran, Network Calculus: a theory of de-
terministic queuing systems for the internet, ser. Lecture Notes in
Computer Science. Springer, 2001, vol. 2050.

[21] S. Chakraborty and L. Thiele, “A new task model for streaming
applications and its schedulability analysis,” in Design, Automation
and Test in Europe Conference and Exposition, Mar. 2005, pp. 486–
491.

[22] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, and F. Risso,
“Assessing the performance of virtualization technologies for nfv: a
preliminary benchmarking,” in 2015 Fourth European Workshop on
Software Defined Networks. IEEE, 2015, pp. 67–72.

[23] V. Millnert, J. Eker, and E. Bini, “Cost minimization of network
services with buffer and end-to-end deadline constraints,” p. 11,
09 2016. [Online]. Available: https://lup.lub.lu.se/search/publication/

8c7b837e-bca3-4375-bb9d-28ce6bbc889a

