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ABSTRACT
Anaplastic Large Cell Lymphoma (ALCL) is a clinical and biological heterogeneous 

disease including systemic ALK positive and ALK negative entities. Whereas ALK 
positive ALCLs are molecularly characterized and readily diagnosed, specific 
immunophenotypic or genetic features to define ALK negative ALCL are missing, 
and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) can be 
controversial. In recent years, great advances have been made in dissecting the 
heterogeneity of ALK negative ALCLs and in providing new diagnostic and treatment 
options for these patients. A new revision of the World Health Organization (WHO) 
classification promoted ALK negative ALCL to a definite entity that includes cytogenetic 
subsets with prognostic implications. However, a further understanding of the genetic 
landscape of ALK negative ALCL is required to dictate more effective therapeutic 
strategies specifically tailored for each subgroup of patients.

INTRODUCTION

Systemic Anaplastic Large Cell Lymphomas 
(ALCLs) refer to a group of malignancies of mature 
T lymphocytes characterized by large lymphoid cells 
(“hallmark cells”) and strong expression of CD30 [1]. 
The CD30 antigen has historically been instrumental 
in defining ALCL as a distinct category; however, its 
expression is not restricted to this pathology. CD30 is also 
found in activated non-neoplastic lymphoid cells [2, 3], in 
a subset of Peripheral T-cell Lymphoma - Not Otherwise 
Specified (PCTL-NOS) [4], in Hodgkin’s lymphoma (HL) 
[1], and solid neoplasms [5]. The discovery of recurrent 
chromosomal translocations involving the anaplastic 
lymphoma kinase (ALK) gene in approximately 50% of 
ALCL patients [6] led to the delineation of ALK positive 
and ALK negative as two distinct subtypes [7, 8]. Of note, 
ALK activation is necessary and sufficient for promoting 
ALCL tumorigenesis and its inhibition is key for the 
therapeutic treatment of ALK positive ALCL [9-14]. 
Therefore, ALK positive ALCL was identified as a distinct 
disease. Conversely, ALK negative ALCL was defined as a 
provisional entity, lacking distinctive features. 

In recent years, great advances have been made in 
dissecting the heterogeneity of ALK negative ALCLs and 
in providing new diagnostic and treatment options for 
these patients [15-20]. Consequently, the new revision 
of the World Health Organization (WHO) classification 
has promoted ALK negative ALCL to a definite entity 
that includes distinct cytogenetic subsets with prognostic 
implications [21]. 

This review will focus on advances in understanding 
the biology and pathogenesis of ALK negative ALCL, 
evaluating the clinical relevance of these findings. 

ALCLS FEATURES

Systemic ALCL comprises approximately 3% of all 
adult NHLs and 10% to 20% of childhood lymphomas. 
Both subtypes are characterized by male predominance 
(60%). Most patients present advanced stage disease (III 
to IV stage) often with B symptoms. ALK positive ALCL 
mostly affects young patients (10-19 years), whereas 
ALK negative ALCL occurs in older patients (peak of 
incidence in the sixth decade of life) [22]. Systemic ALCL 
frequently presents as a nodal disease, however extranodal 
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involvement is seen in approximately 20% of cases, 
especially in skin, soft tissues, liver, and bone marrow. 

ALK positive ALCL displays a better outcome 
compared to the ALK negative, with a 5-year overall 
survival rate of about 80% in ALK positive and 50% in 
ALK negative [6]. Nevertheless, when ALCL patients are 
stratified according to age and/or stage ALK positive and 
ALK negative individuals result in similar prognosis [23, 
24]. 

ALCLs are characterized by high morphological 
heterogeneity, ranging from small-cell neoplasms to 
cases where very large and anaplastic cells predominate. 
However, almost all cases share a common feature, which 
is the presence of so called ‘hallmark cells’ characterized 
by abundant cytoplasm and large horseshoe-shaped nuclei. 
Neoplastic cells grow cohesively in a sheet-like pattern 
and preferentially involve lymph node sinuses [25].

Irrespective of ALCL subtype, strong expression of 
CD30 can be detected on the cell membrane and Golgi 
region. ALK positive ALCL cases show more often 
positivity for EMA (epithelial membrane antigen; 83% 
vs 43%; P < 0.001). Cytotoxic protein expression (TIA1, 
granzyme B, or perforin) is slightly more pronounced 
in ALK positive compared to ALK negative, but the 
difference is not statistically significant. ALK negative is 
most frequently CD3 positive compared to ALK positive 
ALCL [22, 23]. 

Another peculiar feature of ALCLs is the significant 
repression of the T-cell expression program. Even though 
nearly all ALCL cases (74-90%) show clonal TCR gene 
rearrangements, both ALK positive and ALK negative 
ALCLs lack T-cell receptors (TCRs) and related signaling 
molecules such as CD3, ZAP70, LAT and SLP76 [26, 27]. 
Paradoxically, ALCL cells display morphology, migration 
efficiency, and cytoskeletal rearrangements consistent with 
those of activated T-cells. In ALK positive ALCLs, it has 
been demonstrated that oncogene-deregulated tyrosine 
kinase activity controls T cell identity by transcriptional 
regulation and epigenetic silencing of key signaling 
molecules [28, 29].

Very recently Hassler et al. provided insights into 
the pathogenesis of ALCL through genome-wide DNA 
methylation profiling. The study found that ALK positive 
and ALK negative ALCL share common DNA methylation 
changes for genes involved in T cell differentiation and 
immune response [30].

A growing amount of literature has reported a 
link between breast implant and ALK negative ALCL 
designated as Breast Implant-Associated ALCL (BIA-
ALCL or I-ALCL) [21]. Neoplastic cells are characterized 
by anaplastic features such as cytotoxic T-cell phenotype, 
CD30 and EMA co-expression, and ALK negativity [31-
33]. Two distinct clinicopathological subtypes have been 
identified according to tumor localization: in situ BIA-
ALCL (anaplastic cells confined to the fibrous capsule) 

and infiltrative I-ALCL (pleomorphic cells infiltrating 
adjacent tissue). In situ BIA-ALCLs have an indolent 
clinical course and generally remain free of disease after 
implant removal. On the contrary, infiltrative BIA-ALCLs 
have a more aggressive clinical course that might require 
systemic chemotherapy [34]. Chronic inflammation, 
implant immunogenicity, and sub-clinical infections have 
been implicated as driving mechanisms of BIA-ALCL 
tumorigenesis [32].

THERAPEUTIC OPTIONS

Optimal therapy for ALK negative ALCL patients 
has not yet been identified due to the rarity of the disease 
and the lack of randomized trials.

CHOP (Cyclophosphamide, doxorubicin, 
vincristine, and prednisone), or CHOP-like regimen, is 
currently the standard of care in the initial management of 
ALCL patients [22]. 

After induction chemotherapy with CHOP, ALK 
negative ALCL patients often receive a high-dose 
chemotherapy followed by consolidative autologous stem 
cell transplantation [19, 21, 23, 35]. The outcome of ALK 
negative ALCL is consistently worse using CHOP-like 
regimens than in ALK positive ALCL and no improved 
survival rate could be achieved using dose-intensive 
chemotherapies [36, 37]. The poor outcome of ALK 
negative patients likely reflects the clinical and genetic 
heterogeneity of the disease and suggests that more 
specific therapeutic strategies should be explored. 

In the last decade there have been a limited number 
of trials evaluating novel therapies specific for systemic 
ALK negative ALCL. Among these, CD30-directed 
therapies with Brentuximab Vedotin (BV) received 
great attention and displayed promising results [38]. 
BV is composed of an anti-CD30 antibody conjugated 
to the anti-microtubule agent monomethyl auristatin 
E (MMAE). Based on the positive responses to BV in 
relapsed/refractory ALCL (ORR: 86%; CR: 57%), the 
drug was approved in 2012 for relapsed/refractory ALCL 
following one line of therapy [39]. A subsequent study 
including 32 ALCLs patients (6 ALK positive and 26 ALK 
negative) demonstrated that BV treatment in combination 
with CHOP or CHP (CHOP without vincristine) exhibits 
substantial antitumor activity with a manageable safety 
profile (ORR: 100%; CR: 88%) [40]. The use of BV in 
combination with chemotherapy as front-line treatment is 
now being investigated in the ECHELON-2 phase III trial 
(NCT01777152). 

TRANSCRIPTIONAL PROFILES

Gene expression profiling (GEP) is a recognized 
tool to identify differentially expressed genes between two 
or more groups. This analysis has been widely applied to 



Oncotarget18527www.impactjournals.com/oncotarget

identify novel diagnostic and prognostic biomarkers for 
the peripheral T-cell lymphoma patients’ stratification [41-
44]. 

Thompson et al. first demonstrated the ability of 
GEP to correctly distinguish between ALK positive and 
ALK negative ALCL based on the differential expression 
of genes encoding signal transduction molecules (SYK, 
LYN, CDC37), transcription factors (including HOXC6 
and HOXA3), and cell cycle regulators (CCND3 and 
CDKN2D) [45]. 

A subsequent study performed on 32 systemic ALCL 
samples and 5 cell lines, identified ALK, BCL6, PTPN12, 
CEBPB, and SERPINA1 as the most discriminating 
genes between ALK positive and ALK negative ALCL. 
Moreover, a molecular signature of ALK negative 
included the overexpression of CCR7, CNTFR, IL22, and 
IL21 genes [46]. However, these studies have analyzed a 
small number of patients and lacked of objective quality 
control criteria.

A GEP analysis of T-cell non-Hodgkin’s lymphoma 
samples, including angioimmunoblastic lymphomas 
(AILT), ALK positive ALCL, ALK negative ALCL, 
PTCL-NOS and normal T-cells, identified a genomic 
classifier for the recognition of ALCL patients [16]. 
Specifically, a set of 14 genes was able to distinguish ALK 
negative ALCL from PTCL-NOS and AILT. This study 
showed that ALCL patients share a cluster of transcripts, 
which allow their stratification and distinction from other 
T-cell lymphomas, and suggests that all ALCL may have a 
common cell of origin. 

Piccaluga et al. developed a GEP-based molecular 
classifier that improved classification and prognostication 
among ALK negative ALCL, AITL, and PTCL-NOS 
patients [47]. This classifier displayed very high accuracy 
both in frozen and FFPE samples, however its clinical 
application remains limited due to the large number of 
genes required for ALK negative distinction.

A meta-analysis of several expression data sets [16, 
48-50] identified and validated a 3-gene model (TNFRSF8, 
BATF3, and TMOD1) able to separate ALK negative 
ALCL from PTCL-NOS with a 97% accuracy [18]. The 
application of RT-qPCR protocols to FFPE tissues allowed 
the translation of GEP studies to routine clinical settings 
and the correct stratification of T-NHL. 

To explore boundaries between PTCL-NOS 
and ALK negative ALCL, Bisig et al. analyzed the 
immunophenotype of different T-NHL subtypes 
[51]. The study found a substantial overlap between 
CD30-positive PTCL-NOS and ALK negative ALCL 
signatures. Specifically, CD30-positive PTCL-NOS were 
significantly enriched in ALK-negative related genes. The 
authors introduced a new hypothesis stating a biological 
continuum across CD30 positive PTCLs in contrast with 
other studies that demonstrated that PTCL-NOS and ALK 
negative ALCL are separated entities [16, 18, 23, 41]. The 
discordant observations were probably due to the high 
heterogeneity of these pathologies, different criteria for the 

samples’ characterization and the relatively small number 
of patients.

A more recent GEP analysis revealed that ALK 
negative ALCL were enriched for MYC and IRF4 target 
gene signature in comparison with PTCL-NOS [44]. The 
same study pointed out other differences between ALCL 
subtypes, such as the overexpression of the PI3K pathway- 
in ALK negative cases and the overrepresentation of 
HIF1A, IL10 and HRAS/KRAS-induced genes in the ALK 
positive patients. MYC inhibition has been demonstrated 
to be critical for ALCL survival and may represent a 
therapeutic target for ALCL therapy [52, 53]. 

ALK negative ALCL characterization was also 
improved by microRNA expression profiling. MicroRNAs 
(miRNAs) are small non-coding RNA molecules that 
play a crucial role in regulating gene expression at 
post-transcriptional level in a sequence-specific manner 
[54, 55]. miRNAs can act as oncogenes or tumor 
suppressors according to their target mRNAs. Recent 
works demonstrated the diagnostic and prognostic value 
of miRNA profiling for ALK negative patients. Liu et al 
proposed an 11-miRNA signature including 4 upregulated 
(miR-210, miR-197, miR-191, and miR-512-3p) and 
7 downregulated miRNA (miR-451, miR- 146a, miR-
22, miR-455-3p, miR-455-5p, miR-143, and miR-494), 
which distinguished ALK negative patients from PTCL-
NOS with a 90% probability [56]. Merkel et al highlighted 
miRNA signatures associated with ALCL subtypes. The 
study described miR-17-92 cluster and miR-155 highly 
expressed in ALK positive and ALK negative ALCL 
patients, respectively [57]. Accordingly, Spaccarotella 
et al demonstrated that miR 17-92 cluster promotes 
proliferation and survival of ALK-positive anaplastic large 
cell lymphoma [58]. Moreover, miR-155 silencing results 
in increased levels of cleaved caspase-3 and SOCS1, 
which leads to STAT3 signaling suppression and tumor 
growth reduction in murine models of ALK negative 
ALCL [59]. These data suggested that miR-155 could 
act as a tumor driver in ALK negative ALCL. However, 
mir-155 is consistently over-expressed in the majority of 
T-NHL samples, indicating that its levels could not be used 
as a marker for differential diagnosis [18]. Another study 
identified a five miRNAs signature able to discriminate 
PTCL-NOS from ALK negative ALCL with high 
accuracy. This signature was validated in FFPE samples 
and was suggested to be predictive for the distinction 
between CD30 positive PTCL-NOS and ALK negative 
ALCLs [60]. Small RNA sequencing was recently used to 
investigate the differential expression of miRNA between 
ALCL subgroups. Steinhilber et al. identified a 56-miRNA 
signature distinguishing ALK positive, ALK negative and 
normal T-cells. This signature shows overlapping results 
with 26 miRNA identified by Merkel et al. and Liu et al. 
[61].

GEP has had a clear impact on elucidating ALK 
negative ALCL biology, defining the borders with other 
PTCL subtypes and providing new genomic classifiers for 
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the correct stratification of patients. However, applying 
gene-expression profiling analysis is currently impractical 
and not yet standardized in routine clinical settings. 
Alternative strategies should be considered to translate the 
knowledge gained from GEP studies to the clinical arena. 
A three gene classifier able to discerne ALK negative 
ALCL showed potential clinical utility [18]. Recently, 
Nanostring nCounter technology has been developed to 
quantify a high number of RNA transcripts derived from 
formalin-fixed paraffin-embedded tissues [62, 63]. This 
methodology provides results concordant to conventional 
GEP with high reproducibility [64]. It is expected that the 
application of RT-qPCR or Nanostring protocols to FFPE 
tissues in clinical settings will allow the development of 
precise molecular diagnostic tools able to reduce errors 
and ambiguity in the stratification of T-NHL. 

SOMATIC COPY NUMBER 
ALTERATIONS

Comparative genomic hybridization (CGH) and 
single nucleotide polymorphism (SNP) arrays have 
thoroughly portrayed the profile of chromosomal 
imbalances of ALCLs. One of the first CGH studies 
in ALCLs and PTCL-NOS identified recurrent 
chromosomal gains of 1q (1q41-qter) in 46%, and losses 
of 6q (6q21) and 13q (13q21-q22) in 31% and 23% 
ALK negative ALCL patients, respectively [65]. The 
authors demonstrated that, despite a considerable overlap 
between the genetic features of ALK negative ALCL and 
PTCL-NOS (such as loss of 6q and 13q), the profile of 
chromosomal imbalances segregate PTCL-NOS from 
ALK negative ALCL. 

Salaverria et al. performed CGH analysis in a large 
series of ALK positive and ALK negative ALCL [66]. 
Chromosomal imbalances were detected in 58% of ALK 
positive and 65% of ALK negative ALCL. ALK positive 
ALCL cases displayed recurrent 17p and 17q24-qter gains 
and 4q13-q21, and 11q14 losses, gains of 1q and 6p21 
were more frequently observed in ALK negative ALCL, 
whereas gains of chromosome 7 and 6q and 13q losses 
were seen in both types of ALCL tumors. The authors 
demonstrated that ALK positive and ALK negative ALCL 
harbor different genetic aberrations, confirming that they 
correspond to separated genetic entities. 

More recently, the genomic profile of ALCL was 
analyzed with a different approach. Genome-wide DNA 
profiling of ALCL using high-density, single nucleotide 
polymorphism (SNP) arrays identified concomitant 
losses at 17p13 and at 6q21, encompassing the TP53 
and PRDM1/BLIMP1, in up to one quarter of ALCL 
cases. Loss of TP53 and/or PRDM1 was present in 52% 
ALK negative ALCL, and in 29% of all ALCL cases. In 
particular, PRDM1 displayed a tumor suppressive role in 
the ALCL model [67]. BLIMP1 is a critical factor for B 
and T cell differentiation, and its onco-suppressive role 

has been documented in different models including diffuse 
large B cell lymphomas and natural killer cell lymphoma 
[68]. 

Copy number alteration studies have provided 
the landscape of chromosomal aberrations in ALCLs. 
However, these findings did not find their application in 
the routine clinical setting. 

MUTATIONS

Using classical DNA Sanger sequencing, PRF1 
monoallelic germline mutations were frequently found 
in patients with childhood ALCL (27% of cases). Current 
opinion is that PRF1 mutations are not oncogenic per se 
but they could represent a predisposition factor for the 
disease by partially impairing the cytotoxic machinery 
[69, 70]. 

Next generation sequencing (NGS) technologies 
have emerged over the past decade providing new 
insights into the biology of ALCL. Different NGS based 
approaches ranging from amplicon-based (targeted), 
whole exome or whole genome sequencing were applied 
to identify new translocations and somatic mutations in 
ALK negative ALCL [17, 71, 72].

Whole exome sequencing was used to investigate 
the frequency of somatic mutation and associated to copy 
number variation analysis in ALK negative ALCL [71]. 
Among the plethora of mutations including PRDM1, 
TP53, TET2, FAS and STIM2 genes, JAK1 and STAT3 
genes were the most recurrently mutated accounting 
for 18% of systemic ALK negative ALCL. The authors 
demonstrated that JAK1/STAT3 mutations lead to STAT3 
activation and transformation. Interestingly, constitutive 
STAT3 phosphorylation was observed in a significant 
proportion of JAK1/STAT3 non-mutated cases, suggesting 
alternative mechanisms of pathway activation.

JAK/STAT3 signaling is frequently deregulated in 
hematopoietic and solid tumors [73]. In ALK positive 
ALCL, the oncogenic effect of ALK chimeras is mostly 
mediated by STAT3 [74-78]. The discovery of STAT3 
activation in ALK negative ALCLs suggests that the 
STAT3-mediated oncogenic mechanism may be shared 
by all ALCLs, independently of ALK status. As a result 
of these findings Crescenzo et al. demonstrated that JAK/
STAT3 inhibition impaired tumor growth in a preclinical 
ALK-negative ALCL-patient derived tumorgraft model, 
providing new potential therapeutic targets for ALK 
negative treatment [71]. Activating STAT3 mutations 
have been observed in other T cell and B cell disorders 
[79, 80], suggesting that STAT3 might be considered 
as a therapeutic target in several malignancies. Among 
JAK/STAT3 pathway inhibitors, Ruxolitinib displays 
promising results in different pathological models and 
has been approved by the FDA to treat myeloproliferative 
disorders [81]. The identification of ALCL patients that 
could benefit from this therapy can be promptly achieved 
by immunohistochemical staining for activated STAT3.
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CHROMOSOMAL TRANSLOCATIONS

Next generation sequencing performed on mate-
paired libraries, identified numerous rearrangements in 
ALK negative ALCL. The first translocation described 
involves DUSP22-IRF4 locus on 6p25.3 and the FRA7H 
fragile site on 7q32.3 [17]. The presence of a DUSP22 
rearrangement was associated with down-regulation of 
DUSP22 expression and upregulation of mir29A levels. 
DUSP22 is a dual-specificity phosphatase involved in JNK 
activation [82, 83], suppression of IL-6-induced STAT3 
activation [84] and TCR signaling down-regulation in 
reactive T cells through ERK2 inactivation [85]. DUSP22 
has a tumor suppressor function in B-cell lymphomas [86], 
T-lymphoblastic leukemias [87] and ALK positive ALCLs 
[88]. FRAH7H site contains a miRNA gene cluster that 
includes miR-29b. Accordingly, ALCL with 7q32.3 
rearrangements show miR-29b over expression. The role 
of miR-29b is still controversial, however its up-regulation 
suggests a role as tumor promoter in ALCL, AML [89], 
bladder cancer [90], and breast cancer [91]. At present, 
the biological significance of DUSP22 rearrangements has 
still to be demonstrated. 

With the same approach thirteen recurrent 
rearrangements were identified in PTCLs, five of these 
are p53-related genes, including TP53, TP63, CDKN2A, 

WWOX, and ANKRD11. The authors focused their 
attention on inv(3)(q26q28) that leads to the expression 
of a fusion transcript TBL1XR1/TP63 with structural 
homology to oncogenic deltaNp63, a p63 isoform lacking 
transactivation domain [72]. DeltaNp63 acts as a dominant 
negative by inhibiting the p53 pathway. Its oncogenic 
role has been demonstrated in several models including 
breast [92, 93], lung [94], and head and neck cancers [95]. 
TP63 rearrangements were exclusively found in PTCL-
NOS (9.4%), ALK negative ALCL (12.5%), and primary 
cutaneous ALCL (10.5%). Of note, the large majority of 
TP63-positive PTCL-NOS show CD30 expression higher 
than 80%. Moreover, TP63 was associated to inferior 
overall survival [72].

Subsequent analyses were aimed to test DUSP22 
and TP63 rearrangements as biomarkers for diagnosis 
and risk stratification of ALK negative ALCL patients. A 
multi-institutional study on 105 ALCL patients (32 ALK 
positive and 73 ALK negative) revealed that DUSP22 
and TP63 rearrangements are present in 30% and 8% 
of ALK-negative ALCL patients, respectively. These 
rearrangements were mutually exclusive and specifically 
expressed in ALK negative ALCL. On morphologic 
grounds DUSP22-rearranged ALCL display significant 
differences from other ALK negative ALCL, typically 
showing sheet-like growth with doughnut cells and few 
large pleomorphic cells. Tumor cells are CD30 positive, 

Figure 1: Schematic representation of systemic Anaplastic Large Cell Lymphomas (ALCL). ALK positive (ALK+) ALCL 
is a well-defined entity, characterized by ALK translocations. ALK negative (ALK-) ALCL were promoted to a definite entity that includes 
different cytogenetic subsets with prognostic and pharmacological significance.
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ALK, TIA-1 and granzyme B negative. TP-63 rearranged 
cases show more heterogenic features with hallmark cells 
always present. However, the small number of TP63-
rearranged cases limited the identification of general 
features [19, 96].

Patients with DUSP22 rearrangement had better 
outcomes, similar to ALK positive ALCL (five years 
overall survival: 90% DUSP22 and 85% ALK positive 
ALCL). Patients with TP63-rearrangements had 
overall survival rates significantly worse than those 
with ALK positive ALCL (five years overall survival: 
17%). Therefore, DUSP22 and TP63 rearrangements 
have important prognostic relevance and may serve as 
predictive biomarkers [19]. 

The study by Crescenzo et al. further depicted the 
heterogeneity of ALK negative ALCL by the recognition 
of numerous sporadic fusion transcripts [71]. As a common 
feature, chimeric proteins recurrently involved tyrosine 
kinases (i.e. ROS1 or TYK2) triggering the activation of 
JAK/STAT3 pathway. Interestingly, these gene fusions 
were mutually exclusive with JAK1/STAT3 mutations, 
suggesting convergent pathogenetic mechanisms and 
therapeutic targets for ALK negative ALCL (Figure 1). 

Whole genome sequencing analyses have shed 
light on genetic and biological heterogeneity among 
ALK negative ALCL, supporting the idea that this 
entity is composed by different subgroups. DUSP22 
and TP63 translocations defined three different 
subgroups (DUPSP22-positive, TP63-positive and triple 
negative ALCL) with clear prognostic implications. 
The predictive value of these rearrangements can be 
successfully translated to routine clinical setting by 
performing fluorescence in situ hybridization assays, 
in order to deliver the most appropriated therapeutic 
protocol to ALK negative patients. Early autologous 
Stem Cell Transplantation (SCT) is indicated for ALK 
negative patients but not for ALK positive because of 
their favorable outcomes following chemotherapy. The 
discovery that DUSP22 positive patients show similar 
outcomes to ALK positive may play a role in the decision 
to employ early SCT [97].

ROS and TYK translocations assume clinical 
value in the light of their ability to activate JAK/STAT 
pathway which represent an attractive therapeutic 
target for ALK negative ALCL, as discussed above. 
Immunofluorescence analysis for routine clinical detection 
of these translocations in primary samples remains to be 
confirmed on a larger cohort of ALCL patients.

ABERRANT TRANSCRIPTS

Using integrated bioinformatics approaches Scarfò 
et al. recently identified a novel diagnostic subclass of 
ALK negative ALCL coexpressing ERBB4 and COL29A1 
and featuring a specific gene signature [20]. ERBB4 
encodes for a member of the tyrosine kinase receptor 

superfamily which includes ERBB1 (EGFR) and ERBB2 
(HER2), known to be deregulated in several solid tumors 
[98]. ERBB4 was found to be mutated and potentially 
oncogenic in several cancer types, such as melanoma and 
lung adenocarcinoma [99-103]. Moreover, it has been 
demonstrated that ERBB4 mediates acquired resistance to 
ERBB2 inhibitors in breast cancer cells [104, 105]. Very 
recently, Boddicker et al. described a novel translocation 
involving ERBB4 in one PTCL-NOS patient. This 
rearrangement contains IKZF2 gene (exons 1-2) fused 
with ERBB4 (exons 2-28) [106]. 

Scarfò et al. found ERBB4 expression in ~25% 
ALK negative ALCL, but not in PTCL-NOS nor in 
ALK positive ALCL. Interestingly, ERBB4 ectopic 
expression in ALK negative ALCL patients resulted from 
two different truncated transcripts: I20ΔERBB4 and 
I12ΔERBB4. The study suggests that ERBB4 aberrant 
expression is not due to a genomic alteration, rather it is 
driven by reactivation of normally dormant long terminal 
repeat elements (LTRs) located in ERBB4 introns [20]. 
Examples of ancient LTR promoters awakening have 
been previously reported in Hodgkin lymphoma (HL). 
Lamprecht and colleagues demonstrated that the activation 
of an endogenous LTR leads to the expression of colony-
stimulating factor 1 receptor (CSF1R), which results 
oncogenic and correlates with a poor outcome of HL 
patients [107]. More recently, Babaian et al. reported the 
activation of the LOR1a LTR with consequent ectopic 
overexpression of IRF5 [108]. Notably, ERBB4 positive 
ALCL frequently displayed Hodgkin-like features, usually 
rare among conventional ALCL. Considering the shared 
awakening of ancient LTR promoters in HL and ERBB4 
positive ALCL, it will be interesting to analyze ERBB4 
expression in Hodgkin Lymphoma samples.

The study by Scarfò et al. indicated that ERBB4-
truncated forms show oncogenic potentials. Nevertheless, 
the pharmacologic inhibition of ERBB4 only partially 
controls ALCL cell growth and disease progression in a 
preclinical model, indicating the need for combination 
therapies in relapsed or refractory ERBB4-positive ALCL 
patients. 

The identification of a subset of ERBB4 expressing 
ALK negative ALCL confirms the commonly accepted 
hypothesis that ALK negative includes multiple subgroups 
driven by different aberrations. ERBB4 represents 
a new diagnostic marker and a potential therapeutic 
target for this novel subclass. Clinical diagnosis of 
ERBB4 positive patients can be established using 
droplet digital PCR analysis for ERBB4 detection and/
or immunohistochemical staining for MMP9, a protein 
highly correlated with ERBB4 expression. The diagnostic 
value of this finding is reinforced by observing that 
ERBB4 expression is mutually exclusive with other 
rearrangements such as: TP63, DUSP22 and ROS or TYK 
translocations. However these data have to be confirmed 
in a larger panel of patients. 
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LTR de-repression raises the perspective of 
clinical use of epigenetic drugs in tumors driven by 
transposable elements (TE) and refractory to current 
standard therapeutic regimens. Histone methylation and 
acetylation are among the most relevant modifications that 
guide chromatin remodeling and epigenetic control [109]. 
Targeting genes that regulate these modifications can 
represent valid therapeutic strategies to repress TE-driven 
oncogenic transcription. Indeed, the use of demethylases 
(KDM) and bromodomains (BET) inhibitors to block 
aberrant transcription could be an attractive option [110]. 
In particular, numerous studies have highlighted BET 
inhibitors as a novel category of anti-cancer agents, 
with preclinical and clinical evidence both in solid and 
hematological malignancies [111-113].

CONCLUSIONS

ALK negative ALCL is a genetically and 
biologically heterogeneous neoplasm previously 
considered a provisional entity because of the lack of 
specific biomarker. Many efforts have been made over 
the past few decades to identify precise, reproducible 
and clinically applicable biomarkers that have led to 
the recognition of ALK negative ALCL as a distinct 
clinicopathologic entity. The discovery of key driver 
mutations and therapeutic targets has been slowed down 
by the intrinsic molecular heterogeneity and the relative 
rarity of this disease. However, recent advances in next 
generation sequencing and bioinformatics approaches 
allowed the recognition of different subgroups of ALK 
negative ALCL with prognostic or pharmacological 
relevance. Integrating these findings with each other will 
be critical to understand the molecular heterogeneity of 
ALK negative ALCL and to select therapeutic strategies 
specifically tailored for each subgroup of ALK negative 
patients.
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