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Abstract—An experience common to smartphone users is the
difficulty in accessing services in crowded scenarios, such as a
rock concert or a football match. In these cases, to (partially) mit-
igate frustration, users generically claim that network congestion
is occurring, and try again and again to access the network with
their smartphones: the result is that user frustration and network
congestion reinforce each other! This paper investigates the root
causes of poor performance of cellular networks in crowded
environments, and shows that the commonly adopted random
access procedure can prevent full utilization of wireless resources.
We develop a simple, yet accurate analytical model, to analyze
why attempting random access to wireless resources can become a
problem even when access congestion avoidance is enforced, e.g.,
with the Access Class Barring (ACB) technique. The model we
propose suggests that cluster-based network access, leveraging
device-to-device communications, significantly alleviates access
problems. Moreover, it sheds light on scalability laws that govern
network utilization and quality of experience, in terms of cell
capacity, number of access channels, and cluster size.

I. INTRODUCTION

Our common experience is that wireless access networks
perform poorly in very crowded environments. When we enjoy
a soccer match or a rock concert in an extremely crowded
stadium, and we would like to share our emotions with friends,
we discover that placing a phone call or sending a short
video, even posting a picture, is not possible, due to network
congestion. When large numbers of networking experts gather
at top international conferences in their field to discuss the
latest research results, reading emails during the occasionally
uninteresting talk is a problem, because the wireless access
network is not able to sustain the very large number of email
clients. These phenomena were quantitatively observed in [1],
by collecting measurements over a tier-1 cellular network
in the US during crowded events, and showing substantial
performance degradations with respect to normal conditions.

The problem can only get worse. The Cisco Visual Net-
working Index forecast 2015-2020 [2] estimates that by 2020
the number of devices connected to IP networks will be more
than three times as high as the world’s population, generating
an overall traffic of 2.3 ZB (equal to 2.3 · 1021 B). Two thirds
of this traffic will come from wireless devices, and 30% of
the total will be generated by smartphones. The total mobile
data traffic in 2020 will reach 30.5 EB (over 3 · 1019 B) per
month, with the highest volume in the Asia Pacific region, and
the highest growth in the Middle East Africa region.

The 5G Infrastructure Public Private Partnership, in short
5G PPP, initiated by the European Commission, together with
companies and research institutions of the field, shares those
extreme visions [3]. Among the key challenges for 5G, a
prominent position is given to the connection of over 7 trillion
wireless devices serving over 7 billion people, and to the
service of extremely crowded environments, such as a stadium,
providing capacities of the order of 0.75 Tb/s over the stadium
area, and an automated factory, comprising terminal densities
up to 100 devices per m2, and requiring sub-ms latency.

This paper looks at the performance of wireless access
networks in extremely crowded environments, focusing as an
example on the case of a group of LTE cells covering a
stadium. The main contributions are the following:

• We develop a simple analytical model that captures the
key aspects of the behaviour of a cell and we use it to
understand the main sources of poor performance.

• We validate the analytical model with detailed simu-
lations, which prove the validity of the assumptions
introduced for analytical tractability.

• We show how the model can be instrumental for a correct
dimensioning of crowded cellular systems.

• We propose the adoption of device-to-device (D2D) com-
munications [4] as a means to improve performance in
extremely crowded environments, and we quantify the
benefits that can be achieved with the D2D approach,
showing that D2D clusters of size k are more beneficial
to system performance than a costly increase of system
capacity by a factor k (e.g., through the deployment of k
more cells).

The rest of this paper is structured as follows. Section II
discusses the stadium scenario that we consider in this work;
Section III overviews resource allocation request procedures.
Section IV presents the analytical model. Section V uses the
model to illustrate the system behavior. Section VI discusses
numerical results. Section VII addresses the related work and
Section VIII concludes the paper.

II. SCENARIO

The reference scenario that we use in our analysis is a large
stadium, with capacity roughly comprised between 50 and 100
thousand spectators. Many such structures exist around the



world, including, e.g.: the Maracana in Rio de Janeiro, the
Rose Bowl in Pasadena, and the Camp Nou in Barcelona.

Of course, such extraordinary numbers of people (terminals)
imply a wide variety of services: spectators may want to send
to their friends short videos, or pictures of the event, may
receive all sort of messages, as well as phone calls, and at the
same time terminals may be involved in content downloads.

We primarily focus on services which imply the human
intervention, such as the transmission of a picture with a
messaging application. In this case, the human user is in
the service loop, so that the basic sequence of the service
operations is made of a request for the radio access network
resources, possibly repeated several times, until resources are
granted, then the use of the network resources, followed by a
think time before the next service request.

We will see that in some cases the system bottleneck is
in the request for the radio access network resources, mostly
because cellular systems use an Aloha-like contention-based
scheme for this operation. It may thus happen that, while the
network resources are available, request collisions do not allow
their allocation. Under these circumstances, a reduction of the
number of requests is mandatory to restore acceptable network
performance. This can be obtained by reducing the number of
users who are allowed to issue requests, or by forcing users to
coalesce during the request phase. This is where D2D comes
into play. If end user terminals are allowed to form clusters
(or are instructed to form clusters by the network, through
appropriate commands issued by the BS), only one request
is issued whenever multiple terminals of the same cluster
require access to the network resources, as proposed in [5]
for opportunistic scenarios.

III. ACCESSING RESOURCES IN LTE

In LTE and LTE-A, end user terminals (called User Equip-
ments – UEs in the LTE jargon), to access data channels,
if not already connected to the BS (called evolved NodeB
– eNodeB), have to proceed through the RACH (Random
Access CHannel) procedure. Two types of random access
procedures are defined: contention-based and contention-free
[6]. In each LTE cell a fixed number (64) of orthogonal
preamble signatures (PSs) are available, and the operation of
the two types of RACH procedure depends on a partitioning
of these PSs between those for contention-based access and
those reserved for allocation to specific UEs on a contention-
free basis. The contention-free RACH procedure is reserved to
delay-sensitive cases, such as incoming traffic and handovers
[7]. A contention-based random access PS is chosen at a UE to
send a random access signal to the eNodeB. A conflict occurs
if more than one UE use the same PS and time-frequency
resources, resulting in undecodable messages at the eNodeB.
The contention-based procedure consists of an exchange of
four messages to set up a connection among UE and eNodeB.
Step 1: UE → eNodeB (Random Access Preamble) The

first message conveys the randomly chosen RACH PS. The
UE selects one of the available PSs and transmits it in a
time-frequency slot. Several UEs may choose the same PS
and the eNodeB may not be able to decode it. After the PS

transmission, UE begins to monitor the downlink control
channel (PDCCH) looking for an answer.
Step 2: UE ← eNodeB (Random Access Response – RAR)

This message is sent by the eNodeB on the PDCCH , and
addressed with an ID identifying the time-frequency slot
in which the PS was decoded. Whether multiple UEs have
collided or not, if no RAR matching message has been
received within the RAR window, they must repeat the
RACH procedure, after a backoff delay. The duration of such
backoff is randomly chosen in the range (0, B] where B is
the maximum number of subframes in a backoff period, and
varies in (0− 960] ms.
Step 3: UE → eNodeB (Scheduled Transmission) The UE

that receives the RAR message responses a scheduled trans-
mission request that includes the ID of the device and a radio
resource control (RRC) connection request message on the
uplink shared channel (UL-SCH).
Step 4: UE ← eNodeB (Content Resolution) Contention

resolution is released from the eNodeB on the PDSCH. This
identifies that no conflict on the access procedure exists. The
UE can transfer data to eNodeB.
Once a UE has successfully performed the RACH proce-
dure, it owns an active duplex connection and is in the
RRC_CONNECTED state. Keeping a connection running re-
quires that the eNodeB reserves physical resources devoted
to this connection, even if there is no traffic available for
the intended UE. Therefore the eNodeB can handle only a
limited number of connected devices. Such devices incur in
high battery consumption.

As long as the communication is alive, the UE remains in
the RRC_CONNECTED state, but after an inactivity period, it
begins to perform sleep cycles, from which it can return to the
RRC_CONNECTED state without performing the contention-
based RACH procedure. Sleeping UEs are not counted toward
the maximum that can be handled by eNodeB.

Since the above-described access mechanism is based on
a multichannel slotted Aloha, each PS representing an Aloha
channel, its performance degrade beyond the threshold of 1
request/slot per PS. Hence, in dense scenarios, congestion
can happen and become a system bottleneck. To alleviate
congestion, state of the art solutions adopt the Access Class
Barring (ACB) mechanism, which segments devices in several
classes [8]. Devices within each class are managed through
two parameters: the access barring probability and the barring
time. With ACB, devices that are ready to attempt a random
access are probabilistically barred, and barred devices wait for
a barring time before making another barring decision, i.e., a
device can be barred multiple times in a row. ACB is effective
in smoothing peaks of access requests, but it does not change
the RACH load under steady-state conditions. Moreover, ACB
introduces a stochastic delay.

IV. ANALYTICAL MODEL

We model the operations of n end user terminal devices
located in the same cell, under the coverage of one base
station (BS or eNodeB). The notation used in this paper is
summarized in Table I.



TABLE I
NOTATION AND CELL PARAMETERS USED IN SECTION VI

Quantity Symbol Value

Number of devices (or clusters) n
BS capacity C 150–1500 [Mb/s]
Network Max Accepted Requests M 200
Number of Random Access Preambles N 54
Slot Time τ 0.01 [s]
Back-off time RACH B0 av. 0.15 [s]
Back-off time Network B1 av. 1 [s]
ACB access probability pa 0.05–0.95
ACB barring time Ba av. 4-512s
Transmitted data volume FS av. 1.5 [MB]
Transmission time S
Think time TTH av. 30 [s]
Device uplink speed limit R
Probability to skip RACH procedure pJ ≤ 0.5
Access delay AT
Thinking subsystem throughput λ
Network subsystem throughput ξ
Random Access subsystem Input γ
Arrival Rate at Network subsystem σ
Collision Probability pC
Rejection Probability pB

Each device generates uplink transmission requests accord-
ing to the 3GPP contention-based RACH procedure briefly
described in Section III to obtain a transmission grant from the
BS. We account for the fact that the establishment of downlink
flows might provide the devices with extra opportunities to
obtain transmission grants, skipping contention through the
contention-free RACH procedure.

In the following, we derive a model for access requests
and service operation in the cell, and show how to compute
network utilization, access delay, and in general how to assess
the behavior of the system as a function of the number of
devices in the cell, for a given BS configuration (in terms
of capacity, number of RACH channels, RACH slot duration,
backoffs experienced upon failed RACH procedures, etc.).

A. Closed representation of the system

The BS has uplink capacity C, in bits per second, and can
share its capacity among at most M devices at a time (i.e.,
there can be up to M devices in state RRC_CONNECTED).
The number of RACH channels (i.e., orthogonal preamble
signatures - PS) available for Random Access is N and the in-
terval between two consecutive Random Access Opportunities
(RAOs) is τ . If during τ a single device selects a given RACH
channel, then the RACH procedure is successful, otherwise the
RACH channel is either unused or a collision happens with
multiple devices attempting to use the same PS.

A RACH collision results in a random backoff B0, after
which a RACH retry follows. In case of successful RACH
procedure, the device is granted transmission only if there
are less than M devices under service at the BS, otherwise
the device goes through a random backoff B1 followed by
another RACH procedure. The model also considers ACB with
uniform access probability pa for all classes, and barring time
with average duration E[Ba].

For what concerns the traffic generated by end user ter-
minals, we consider human-operated wireless devices, and
assume that each device produces a new transmission request,

NetworkThink

Network Backoff

RACH Backoff

Barring Time

Random Access

σ

ξ

pJ

λ 1−pJ γ̂ γ = paγ̂

Fig. 1. Closed queueing network model of a cell.

with random data volume FS , only after its previous request
has been served. More specifically, upon service completion,
we assume that the devices enters a “think time” period with
random duration TTH before generating the next request.
Unless otherwise specified, the average service time E [S]
only depends on C, M and the average value E [FS ], i.e.,
we assume that the serving speed is fixed and equal to C/M ,
so that E [S] = M ·E[FS ]

C . However, we will also show how to
account for the equal sharing of the BS capacity among the
actual number of devices under service in the system, and for
service speeds limited by a device uplink speed R.

The resulting system model is depicted in Fig. 1. The model
comprises 6 main components: i) Think, representing the end
user think time between the end of a service and the generation
of a new access request; this is modeled with an infinite
server queue with exponential service rate 1

E[TTH ] ; ii) Random
Access, representing the RACH contention-based procedure;
this is modeled as a set of N parallel slotted Aloha channels,
receiving each 1

N of the total load offered to the RACH; the
slot duration for any of the N slotted Aloha channels is τ ;
iii) Barring Time, which models ACB operation as an infinite
server with average service time E[Ba] affecting a portion
1−pa of the flow directed to the Random Access; iv) Network,
representing the BS resources, modeled as an M/G/M/0 queue
with average service time E [S]. The Network queue is fed
by the output of the Random Access subsystem and by the
requests that skip the Random Access because of transmission
opportunities generated by downlink traffic requests; these are
modeled by means of the “jump probability” pJ , which is
the probability to skip the contention-based RACH procedure,
and access directly the BS resources. v) Network Backoff, and
vi) RACH Backoff, representing the two backoffs, which are
modeled by means of infinite server queues with exponential
service times, with rates 1

E[B0] and 1
E[B1] , respectively.

Fig. 1 also shows that the system is closed, i.e., the
population is finite, with the number of customers fixed to
n. We denote by λ the output of the Think subsystem, and by
ξ the output of the Network subsystem. Because of the closed
structure of the system, λ = ξ. We indicate with γ the total
arrival rate at the N RACH channels in the Random Access
subsystem, and we assume that RACH requests follow N par-
allel and i.i.d. Poisson processes with intensity γ

N . Although
devices decide to send RACH requests asynchronously, such
requests are cumulated over τ seconds and physically sent
at the same time over the same frequency band. Thus, the



successful output of each of the N RACH channels is that
of a slotted Aloha system with γτ

N arrivals per slot, which
is given by γτ

N e
− γτN successes per slot, as known from the

the standard analysis of multichannel slotted Aloha [9]. The
maximum throughput per slot of such multichannel slotted
Aloha system is N

e , which is achieved for γτ = N .
With the above, the arrival rate at the network service is

σ = γe−
γτ
N + pJλ, the arrival rate at the RACH backoff

B0 is γ
(
1− e−

γτ
N

)
, and the one at the Network backoff B1

is pBσ, where pB is the blocking probability, given by the
Erlang-B formula with M servers and load ρ = E [S]σ.
The load accepted and served by the network service is
ξ = (1− pB)σ. For analytical tractability, we introduce the
simplifying assumption that all arrival processes are homoge-
neous and independent Poisson processes.

In the described system, quantities λ, σ, and ξ (and therefore
also ρ and pB) are functions of γ. It is possible to write a
recursive equation in γ by considering that γ is γ̂ minus what
enters the Barring Time block. γ̂ results from the sum of four
arrival rates: λ (1− pJ) from the Think subsystem, the output
of backoffs B0 and B1, plus the recycle caused by ACB:

γ̂=λ (1−pJ)+γ
(

1−e−
γτ
N

)
+pB

(
γe−

γτ
N +pJλ

)
+(1−pa)γ̂,

which, combined with γ = paγ̂, yields a recursive expression
for γ, which does not depend on ACB operation at all:

γ = λ (1−pJ) + γ
(

1−e−
γτ
N

)
+ pB

(
γe−

γτ
N +pJλ

)
. (1)

The recursive expression (1) has two unknowns: γ and λ
(note that pB can be written as function of ξ, and ξ = λ).
Unfortunately, this expression is not enough to identify the
operating point of the system, because it contains no depen-
dency on the population size n. However, to introduce n in
the loop, and remove λ, we can apply Little’s law to different
blocks in the modeled system, as presented in the following.

Solving system equations requires iteration, whose proof of
convergence is omitted due to lack of space.

B. Dependence on the population size n
From the model described in the previous subsection, we

can easily derive the expressions for the network utilization,
the number of devices under service and in any of the system
blocks depicted in Fig. 1, the time of a complete cycle between
two transmissions, and the delay to access the service. All
these quantities can be expressed as function of γ, and γ can
be expressed as function of the population size n.

Utilization and distribution of devices. The network uti-
lization ξ is equal to σ (1− pB) =

(
γe−

γτ
N + pJλ

)
(1− pB).

Therefore, since ξ = λ, it is immediate to obtain the following
expressions for ξ, λ, σ and ρ:

ξ = λ =
γe−

γτ
N (1− pB)

1− pJ (1− pB)
; (2)

σ =
ξ

1− pB
=

γe−
γτ
N

1− pJ (1− pB)
; (3)

ρ = E [S]σ =
E [S] γe−

γτ
N

1− pJ (1− pB)
. (4)

Note that, since ρ in (4) only depends on γ and pB , we have
that pB actually depends only on γ. Thus, all the quantities
representing arrival rates in the system model are functions of
γ only, for fixed values of the other system parameters.

The number of devices under service, that cannot exceed
M , is computed by applying Little’s law at the Network, i.e.,
nS = ξE [S] ≤ M , which also implies that utilization cannot
exceed M/E[S]. Similarly, the average number of devices in
Think is proportional to the average number of devices under
service, i.e., nTH = ξE [TTH ] = nS

E[TTH ]
E[S] .

The rest of the devices n−nS−nTH are attempting access,
either waiting for the next RACH opportunity (including after
a barring event) or in one of the backoff queues, so applying
again Little’s law we obtain:

n−nS−nTH =γ

(
τ

2
+

1−pa
pa

E[Ba]

)
+

+γ
(

1− e−
γτ
N

)
E [B0]+

pBγe
− γτN

1−pJ (1−pB)
E [B1] ,

where the average delay incurred in a RACH attempt is
computed as half of the slot duration because of the Poisson
arrival assumption. The total number of devices in the network
can therefore be expressed as a function of γ:

n=γ

(
τ

2
+

1−pa
pa

E[Ba]

)
+ γ

(
1−e−

γτ
N

)
E [B0] + E [B1]

· pB γe−
γτ
N

1−pJ (1−pB)︸ ︷︷ ︸
pB

1−pB
ξ

+(E [S]+E [TTH ])
γe−

γτ
N (1−pB)

1−pJ (1−pB)︸ ︷︷ ︸
ξ

(5)

This is a monotonic relation between n and γ, which can
be inverted (although not in closed form) to express γ as
a function of n. However, we have seen that all quantities
of interest in the system are functions of γ, so that we can
conclude that they are eventually functions of n only, i.e., of
the device population’s size.

Cycle duration. The average time for a complete cycle in
the system (e.g., the cycle between two consecutive service
completions) is denoted by E [Tcycle] and can be easily
computed from the model of Fig. 1, by considering that: i)
the probability to collide on a slotted Aloha representing the
RACH channel with Poisson arrivals of intensity γτ

N arrivals
per slot is pC = 1 − e−

γτ
N , and ii) collisions are assumed to

be independent. Hence, we can write that:

E [Tcycle]=
pB

1− pB
E [B1]+E [S]+E [TTH ]+

(
1

1−pB
−pJ

)
·
[
e
γτ
N

(
1−pa
pa

E[Ba]+
τ

2
+E [B0]

)
−E[B0]

]
. (6)

The term in brackets in (6) is the average time spent in the loop
formed by the RACH and the RACH backoff blocks, which
has to be counted 1

1−pB times on average (i.e., the average
number of Bernoulli trials before a success, including the
success that occurs when a device finds the Network available),
except for the case in which a request skips the RACH, which
occurs with probability pJ . The quantity 1−pa

pa
E[Ba] + τ

2 +



E [B0] is the time to complete one of such RACH loops—
which includes, on average, 1−pa

pa
passages through the ACB

backoff—and there are, on average, pC
1−pC = e

γτ
N −1 collisions

before a successful RACH attempt (in which case the RACH
backoff does not occur). The network backoff is traversed only
after a failed network access (i.e., pB

1−pB consecutive times,
on average), whilst the Network and Think subsystems are
traversed only once per cycle. E [Tcycle] depends on γ since
we have shown that pB also depends on γ. So, using (5) we
conclude that E [Tcycle] can be written as function of n.

Access delay. The access delay, indicated as E [AT ], is the
time spent in a cycle, excluding the think time and the service,
and is therefore easily obtained from (6):

E [AT ] = E [Tcycle]− E[S]− E [TTH ] . (7)

As for E [Tcycle], this is an expression that depends on γ,
and therefore on n. An alternative expression for E [AT ] is
obtained by applying Little’s law to the part of the system
that excludes network service and think time:

E [AT ] =
n− nS − nTH

λ
. (8)

Since λ= ξ, (8) reveals that the access delay is (practically)
linear with the population size if ξ is (roughly) constant in a
range of n, so that also nS and nTH are constant. As we will
show later, such range exists if the Network saturates before
the Random Access. That range is very relevant, because any
point in it leads to maximal utilization.

C. QoE indexes
We use two indexes to express the quality of experience

(QoE) for the end user. The first index ηS compares the service
time with the time spent waiting before service starts, and it
decreases with the access delay:

ηS :=
E[S]

E[S] + E [AT ]
. (9)

The second index is ηA, which is inversely proportional to
the service time and fades exponentially with the access delay.
Service time and access delay used in ηA are normalized to
their values obtained with the smallest population n that causes
the presence of M devices under service (denoted by n′):

ηA :=
E[S]|n=n′

E[S]
e
− E[AT ]
E[AT ]|n=n′ . (10)

Differently form ηS , Index ηA is very sensitive to relative
increases of delay rather than to absolute increases.

D. Analysis with D2D support
When D2D is used to alleviate RACH contention problems,

terminal clusters come into play, each of them behaving as a
single device. Thus, we can use the same formulas as above,
with n, nS , nTH denoting the number of clusters in the
system, under service and in think time, respectively. Similarly,
all arrivals and services refer to clusters. The main effect of
clusters is the reduced load to the Random Access. The impact
is non-linear because γ does not scale linearly with n.

Cluster formation. Clusters form either spontaneously,
when a device announces its willingness to wait for other users

to join in a random access attempt, or under the control of the
BS, when RACH collision probability becomes problematic.

Cluster service time. If k is the average cluster size, i.e.,
the average number of devices in a cluster, the service time
becomes k times higher than for the case without clusters.

Cluster think time. In the case of clustered RACH access,
the think time increases as well. Indeed, for a cluster, the
think time corresponds to the think time of the device that
initiates the cluster, plus the time needed for the other members
to join. However, assuming a very high density of devices,
forming a cluster of a few units is very quick. For instance,
clusters of k devices have an average think time of E [TTH ]+∑k−1
i=1

E[TTH ]
m−i ' E [TTH ]

(
1 + k−1

m

)
, where m � k is the

number of devices that can join the cluster. In practice, the
think time increase is negligible in crowded environments, and
so we ignore it in the model.

E. Impact of resource sharing under non-saturated conditions
If we consider that the BS resources can be shared by

active connections, it is obvious that underloaded systems
offer higher rates to the active devices. Therefore, the analysis
proposed so far is valid in the region in which the Network
subsystem is fully loaded, while it contains an approximation
elsewhere. To fix this approximation, let us consider a Net-
work subsystem that shares equally its resources among the
connected devices, up to a rate R that can be interpreted as
the maximum rate achievable by a device or as the maximum
rate agreed in the user’s SLA. In such case, the service time
becomes E [S] = E [FS ] max

{
1
R ,

1
C/nS

}
.

Note that E [S] is equal to E[FS ]
R when the number of

devices under service is not enough to saturate the Network
subsystem. The adaptation of E[S] to the number of devices
under service introduces a further element of dependence
on n, and a non-linearity. However, the impact on system
performance is quite limited and can be neglected, as shown
in the next section.

V. SYSTEM BEHAVIOR

Here we study the bottlenecks of the system, point out some
notable points in the performance curves, and analyze how
performance is affected by the number of devices present in
the cell and by the introduction of D2D-based clusters.

A. Bottlenecks
The model depicted in Fig. 1 has two potential bottlenecks:

the Random Access and the Network subsystems. The former
filters network access attempts, and asymptotically prevents
any network request as γ grows with the population n. The
Network subsystem has finite capacity, and therefore cannot
serve more than M simultaneous requests.

Fig. 2 shows a typical case in which the maximum through-
put of the Random Access is below the capacity of the
Network subsystem, and thus is the only bottleneck, for
all population sizes. In this case, the Network subsystem
throughput ξ and the input σ of the Network subsystem
are equal, since the blocking probability pB is negligible.
From (7), the access delay becomes a linear affine function



of e
γτ
N , and therefore grows with en. However, as shown

in Fig. 2, a system in which the Random Access saturates
before the Network subsystem does not suffer high delay. The
range of device populations that roughly maximizes network
utilization is quite narrow, and corresponds to a rather small
interval around the peak efficiency of a multichannel slotted
Aloha system, i.e., to values of n close to the one that yields
γτ = N (about 400 in the figure). This is the context that was
previously analysed in the literature for the case of machine to
machine (M2M) communications [10], with a model similar
to ours. Here we focus on the more complex two-bottleneck
case, in which the Network subsystem saturates before the
Random Access, which is typical for the stadium scenario.

Fig. 3 shows an example of the model behaviour when
both the Random Access and the Network subsystem can
become the system bottleneck. Indeed, the Network subsystem
is a bottleneck for lower values of population size, until the
Random Access reaches success probabilities so low to starve
the Network subsystem. In the figure we can identify three
operational regions. In the first region (low number of devices
and low load: roughly below 550 devices for the specific
example), pB and pC are close to zero, σ ' ξ, and the
delay is practically negligible. In the second region (shaded
in the figure, roughly from 550 to 7500 users), the throughput
of the Network subsystem is constant, while σ follows the
familiar bell-shaped curve of slotted Aloha, and the delay
grows linearly with the user population, as visible from (8).
In the third region, pB is negligible again, so that σ ' ξ
like in the first region, but the delay now grows exponentially
with γ, and therefore with n. Out of such three regions, only
the second one is desirable for system operation, since the
Network subsystem resources are not wasted, and delay scales
linearly with the number of devices in the cell.

B. Notable operational points
Random Access saturates first. In this case, pB ' 0, so

that ξ ' γe−
γτ
N

1−pJ , the average number of devices in service
is E [nS ] = ξE[S] < M , and the average service time has
to be constant (as remarked in Section IV-E, E [S] must be
equal to E[FS ]

R , otherwise the Network subsystem saturates).
The network throughput is maximal when the output of the
Random Access is maximal. This occurs for a number n∗

of users that results in γ = N
τ . From (5) we obtain the

approximation (linear in N ):

n∗'N
τ

[
E[S]+E [TTH ]

e(1−pJ)
+
(
1−e−1

)
E [B0]+

1−pa
pa

E[Ba]

]
+
N

2
.

With Network saturation. In this case, to characterize the
behavior of the system in the three operational regions shown
in Fig. 3, in addition to n∗ we characterize n′ and n′′, i.e., the
values of n that correspond to the first and the second knee
of the curve representing ξ vs. n.

Note that n′ ≤ n∗ ≤ n′′, and the throughput of the Network
subsystem is constant and equal to C

E[FS ] for all values in the
interval [n′, n′′]. Therefore, (1) reduces to:

γe−
γτ
N =

C

E [FS ]

1− pJ (1− pB)

1− pB
, ∀γ | n ∈ [n′, n′′].
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Fig. 2. Random Access-limited model behavior. Left scale for σ and ξ, right
scale for access delay.
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Fig. 3. Model behavior with Network subsystem saturation. Left scale for σ
and ξ, right scale for access delay.

At the extremes of the considered interval [n′, n′′], the
Network subsystem has exactly enough resources to satisfy
the demand, so that we can consider pB ' 0:

γe−
γτ
N ' C

E [FS ]
(1− pJ) , γ | n ∈ {n′, n′′}. (11)

Considering that the l.h.s. of (11) is a non-negative continuous
function of γ that starts from 0, grows until it reaches the
value N

eτ at γ = N
τ and then decreases asymptotically to 0,

expression (11) admits two (possibly coinciding) real solutions
only if C

E[FS ] (1− pJ) ≤ N
eτ . So, a range of values of n such

that the throughput of the Network subsystem is constant and
maximal exists, if and only if

N ≥ eτC

E [FS ]
(1− pJ) . (12)

The distance between the zeros of γ in (11) decreases loga-
rithmically with C increasing (and with pJ decreasing). Since
γ is monotone with respect to n, this means that the interval
[n′, n′′] becomes smaller with larger capacities C (and with
smaller probabilities pJ ), and n′ = n′′ = n∗ when (12) holds
as equality. If (12) does not hold, the Network subsystem
cannot saturate, and we fall back to the Random Access-
limited scenario of Fig. 2.

The above condition also tells that the number of RACH
channels needed to allow network saturation scales linearly
with the capacity of the network and with (1− pJ).

The notable points described above and the asymptotic be-
havior of γ vs. n can be approximated by means of following
closed form expressions that can be readily derived:



 1

 10

 100

 1000

 0  1000  2000  3000  4000  5000  6000  7000  8000
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

[r
eq

ue
st

s/
s]

[s
]

# Devices in the System

σ (Mod.)
ξ (Mod.)

E[AT] (Mod.)

σ (Sim.)
ξ (Sim.)

E[AT] (Sim)n’ n’’

Fig. 4. Model validation for a cell with 150 Mb/s capacity and pa = 1.0.
Left scale for σ and ξ, right scale for access delay.

n′' C

E [FS ]

[
E[S]+E [TTH ]+(1−pJ)

(
τ

2
+

1−pa
pa

E[Ba]

)]
;

n∗'M+E [TTH ]
C

E [FS ]
+
N

2
+
N

τ

(
1−e−1

)
E [B0]

+
N

τ

1− pa
pa

E[Ba] +

[
N

eτ
− C

E [FS ]
(1−pJ)

]
E [B1] .

With clusters. Clustering k devices results in transferring
kE [FS ] bits per network access, hence the cluster service time
E[S] becomes k times longer. So, n′ decreases with increasing
cluster size. However, the number of devices within clusters
becomes kn′. Denoting by E[S|1] the service time without
clusters, we have:

kn′' C

E [FS ]

[
kE[S|1]+E [TTH ]+(1−pJ)

(
τ

2
+

1− pa
pa

E[Ba]

)]
,

which includes (k − 1)CE[S|1]
E[FS ] more devices w.r.t. the case

without clusters. Similarly, we can observe that kn∗ grows
by M plus a number of devices proportional to N for each
increase of 1 in the cluster size k.

The interval n′′−n′ increases with the cluster size, because
a factor k appears in the denominator of the r.h.s. of (11)
when clusters are used. Therefore, the increase of the size of
the network saturation region, in terms of devices, becomes
k(n′′ − n′), which is more than a k-fold increase.

We can conclude that the beneficial impact of clustering is
larger than the one obtained by increasing cell capacity, which
is linear, and it comes at a much lower deployment cost.

C. Delay

The access delay E [AT ] is negligible when the Random
Access saturates first, and for n < n′ when the Network
subsystem also saturates, unless ACB introduces high delay
by using low values for pa and/or high values for E[Ba].
When the Network subsystem is saturated, we know from (8)
that E [AT ] is proportional to n with coefficient 1

λ = E[FS ]
C .

For n > n′′, the delay explodes exponentially. Therefore, the
desirable range of population sizes goes from n′ to n′ + ∆n,
where ∆n is such that the delay ∆nE[FS ]

C is bearable by the
applications running at the devices in the network.

So, in practice, the study of n′ and its approximation are key
to tune system parameters properly during network design.
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0.95, E[Ba] = 4] (solid lines) and clustering (where k is specified) in the
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D. Validation through packet-level simulation

In order to validate the simplifying assumptions that we
had to introduce for the analytical tractability of the model,
we developed a packet-level simulator that reproduces the
behaviour of the closed model in Fig. 1. However, in the
simulator we used uniformly distributed (rather than expo-
nentially) file sizes; in addition, the output of the Random
Access subsystem is not a Poisson process, rather an impulsive
process in which all successful RACH attempts are brought at
the Network subsystem ingress at the same time. Of course,
in the simulator, the assumption that all arrival processes are
Poisson, homogeneous and independent does not hold.

Fig. 4 reports an example of the simulated results for σ and
ξ, together with the analytical results. Specifically, we report
numerical results for a cell with C = 150Mb/s, R = 10Mb/s,
N = 54, M = 200, and τ = 0.01s, which are typical values
for LTE BSs. Moreover, we used E [TTH ] = 30s, E [B0] =
0.15s, E [B1] = 1s, E [FS ] = 1.5MB, to account for typical
upload of pictures and small videos during crowded events by
using applications like Whatsapp, with automatic file upload
retry. We run each experiment a sufficient number of times
to obtain small 95% confidence intervals. The figure clearly
shows that the model is extremely accurate. We tested a wide
range of values for all relevant parameters, and found very
similar model accuracy in all cases.

VI. STADIUM: NUMERICAL RESULTS

We consider a stadium covered by a set of LTE cells.
The system parameters are as reported in Table I (right-most
column). Fig. 5 illustrates the impact of ACB and clustering
in the specified scenario. We only report the results obtained
with the ACB configuration that causes less delay, and one
example of clustering (k = 2). The figure shows that either
ACB or clustering makes it possible to significantly increase
the number of users in the system. In particular, clustering as
few as groups of 2 users is very effective in increasing n′.
ACB suffers large delays, so as to make it quite undesirable
even for limited user population sizes. However, Fig. 5 also
shows that ACB and clustering in combination achieve low
delay and guarantee access to very large user populations.

Fig. 6 reports the values for the two QoE indexes ηS and ηA
we defined in Section 4B. Both indexes try to capture the user
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satisfaction, combining the service time and the access delay.
In the first case we just compute the ratio between the service
time and the sum access delay plus service time. In the second
case we define a more elaborate parameter, which is inversely
proportional to the service time, normalized to the service
time when M users are under service, and exponentially fades
with the access delay normalized to the access delay value
at population value equal to n′, thus being very sensitive to
relative increases of delay rather than to absolute increases.

The curves of the QoE parameters show qualitatively similar
trends. As regards ηS , with a low population of UEs, the
network access time E[TA] is very low and mostly depends
on RACH transit and ACB operation. Each device in service
is guaranteed a rate equal to R, keeping ηS close to 1, unless
ACB is used and E[AT ] cannot be neglected. When the BS
can no longer provide the maximum rate R to each one of the
nS devices in service, E[S] starts to increase, while E[AT ] is
practically constant (without ACB) or slowly increasing (with
ACB), so that its weigh in ηS diminishes as the population
increases. However, when the number of devices reaches the
value n′, the access delay E[AT ] starts increasing fast (and
linearly) causing a hyperbolic decrease of ηS towards zero.
The QoE parameter starts dropping around 550 devices in the
cell. In general, the figure shows that using ACB is detrimental
in terms of quality experience in steady state conditions,
especially with small populations, when the ACB delay is the
most prominent component of the access delay.

For what concerns ηA, the figure shows that, without ACB,
it starts from the value 10/0.75 = 13.33. This is the ratio
between the data rate cap for each individual device, and the
data rate given by the BS to each user once the maximum
number of users (200) is reached (150 Mb/s divided by 200
users means 0.75 Mb/s per user). With ACB, the additional
delay due to barring decreases the initial value of ηA. In all
cases, the curve stays close to the initial value as long as the
access delay remains negligible, then it rapidly drops. Also
in this case, the QoE parameter starts dropping around 500
devices. Note that this means that a coverage of the 50, 000
users in the stadium with good QoE would require about 100
cells, if each user carries just one device, 200 cells if each
users carries two devices, and so on.

Of course, one possibility to improve performance is to use
cells with higher capacity. In Fig. 7 we plot curves of E[AT ]
for cell capacities in the range 150-1, 500 Mb/s. The critical
element for QoE is given by the points where the access delay
starts increasing significantly. This means about 550 devices
with capacity 150 Mb/s and about 4, 000 devices with capacity
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1, 500 Mb/s. The latter translates into 12 cells for 50, 000
devices, 25 in the case each spectator carries 2 devices.

In addition, Fig. 7 clearly shows that the operating area
where both end users and network operators wish “to be”
is just before the curve’s first knee. In such neighbourhood,
ACB does not play any significative role, and E[AT ] is a
fraction of E[S], before starting to rapidly move to bigger
values. It is important to recall that this phase change in the
access delay is pinpointed by n′. The second knee of the
curves corresponds to n′′, and both knees change with the
cell capacity. It is very important to notice that in the whole
interval [n′, n′′] the system bottleneck is the Network due to
the limitation of M RRC_CONNECTED devices. When the
number of devices in the cell becomes larger than n′′, we
see a switch in the bottlenecks, and only from this point on
the RACH subsystem becomes unstable, and the access time
explodes, going asymptotically to infinite.

Increasing the cell capacity or the number of cells is quite
costly, and may not be the most desirable solution to achieve
good QoE in crowded environments. A much simpler option
can be to allow users to coalesce in their network access
attempts through the formation of clusters. Fig. 8 shows the
values of n′ as a function of the cell capacity, for variable
cluster sizes. We immediately appreciate the advantages of
clusters: the adoption of coalitions brings a gain comparable
to the one obtained increasing C with a negligible cost (if any)
to the network provider. Indeed, a gain equal to or larger than
that obtained by doubling the cell capacity can be achieved
by adopting a cluster size k = 3.

Finally, to evaluate the importance of reducing the load of
the Random Access in presence of downlink traffic, we repeat
our tests with different values of pJ . Skipping the contention-
based RACH procedure introduces a small improvement in
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Fig. 9. Impact of skipping the contention-based RACH procedure.

terms of the height of the point at n∗, allowing the RACH to
sustain a slightly higher arrival frequency. However, as can be
seen in Fig. 9 for the case with no ACB, the main impact of
pJ on the performance of the system is reflected in the value
of n′′, which is moved towards larger values of n. It must be
noted that the increase in height at n∗ is so small not to be
visible on the graphs, and that the increase in the value of n′′

is not relevant from the point of view of applications, because
at those numbers of users per cell, performance (e.g., in terms
of access delay) is intolerably bad.

VII. RELATED WORK

In [11], 3GPP has identified the random access mechanism
as a possible problem when the number of connected devices
rises to tens of thousands. For this reason, MAC overload
control has been investigated, and a broad literature exists
on this topic. See [12] for a comprehensive overview. Simple
models to estimate the probability of preamble collision in
the PRACH channel are presented in a few 3GPP standard
documents (e.g., [11]), and in the literature (e.g. [10], [12],
[13], [14]). The conclusions of most of these studies point out
that for Mobile-Type Communications (MTC) applications,
the PRACH procedure can drastically limit network perfor-
mance. Possible approaches to modify the PRACH access
procedure have been proposed in [15], [16].

Most of the previous studies on dense cellular environments
have focused on MTC scenarios, and [12] shows that the
differences between the human-based and the MTC scenarios
are substantial. Nevertheless, the PRACH access mechanism,
and its interactions with the other phases of the network usage
cycle play an important role also in case of human-based
scenarios. This was shown in [1], through a measurement-
based study of cellular network performance during crowded
events, showing that network access failures become orders
of magnitude higher than those observed on routine days,
and the interaction between access and transmission phases
generates behaviors difficult to predict. The simple analytical
model presented in this paper provides a tool to understand
the root causes of the behaviors measured in [1], and to
quantify the impact of the crowd size on network performance,
also indicating possible approaches to correctly dimension the
network and to mitigate the negative impacts of crowds.

VIII. CONCLUSIONS

This paper presents a model to capture the key aspects of
the behaviour of a cellular networks in crowded environments.
The main merit of the model lies in the insight that it brings on
cellular system operations in very crowded environments, and
in the possibility to use it to drive the correct dimensioning
of the cellular system in very crowded environments. As an
example, the model allows the assessment of the benefits
achievable through the adoption of D2D communications to
reduce the congestion on the RACH much effectively than
with ACB, thus significantly improving performance and QoE.
For example, our model shows that, instead of serving 50,000
terminals with 100 cells of capacity 150 Mb/s each, it is
possible to use 25 cells, each of capacity 300 Mb/s, provided
that clusters of 5 devices are formed to access the RACH.
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