Power Ultrasound and Microwaves in metal-assisted synthesis

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1663914 since 2018-03-26T22:27:55Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
WORKSHOP ON ASYMMETRIC SYNTHESIS
AND NON-CONVENTIONAL
ADVANCED SYNTHETIC TECHNIQUES
FOR FINE CHEMICALS AND PHARMACEUTICALS
Institute of Organic and Pharmaceutical Chemistry
National Hellenic Research Foundation
Athens, 4 - 6 October 2010

Abstracts’ Book

Speakers:

Christos Argirius (NTUA, Greece)

Werner Bonrath (DSM, Switzerland)

Carmen Claver (Uni. Rovira i Virgili, Spain)

Giancarlo Crovotto (Uni. Torino, Italy)

Johannes G. de Vries (DSM, Netherlands)

Athanassios Giannis (Uni. Leipzig, Germany)

George Kokotos (Uni. Athens, Greece)

Rainer Mahrwald (Humboldt-Uni. Berlin)

Andreas Pfaltz (Uni. Basel, Switzerland)

Emanuel N. Pitsinos (NCSR, Greece)

Kalliopi A. Vallianatou (NRHF, Greece)

This workshop is funded by the EU in the context of the FP7 Capacities Project
ARCADE (FP7-REGPOT-2009-1/GA 245866)
Power ultrasound and microwaves in metal-assisted synthesis

Giancarlo Cravotto, Emanuela Calcio Gaudino, Laura Orio.

Dipartimento di Scienze e Tecnologie del Farmaco, University of Torino, Via P. Giuria 9 - 10125 Torino - Italy

The search for greener and more efficient regio- and stereoselective synthetic procedures to provide highly functionalized chemical structures has found, in metal-assisted reactions, a noteworthy contribution. All these reactions fall in the main domain of sonochemistry [1], no other technique can activate the metal and accelerate the process as much as power ultrasound. Although a piece of metal placed inside a microwave oven will lead to dangerous arcing, it is possible to perform organic reactions using well-dispersed fine metal particles in a polar high boiling solvent [2]. After the pioneering studies of Renaud in 1950 on metal-assisted sonochemical reactions [3], the biggest contribution came in the 80’s from the group of J.L. Luche, who studied a variety of sonochemical organometallic reactions involving Ni, Li, Zn and Cu. In that decade, studies on the applications of sonochemistry in metal-assisted synthesis showed spectacular development as documented by books [4] and reviews [5]. Since the late nineties we have resorted to Barbier-like reactions (with Li, Zn and mainly In) in the synthesis of natural products, often under sonochemical conditions. Some of these are the synthesis of naturally occurring coumarins [6, 7], indole [8] and oxindole derivatives [9] and indolylbutenes [10]. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) has become the paradigm for click chemistry. Sonication permits the use of simple copper turnings as an efficient and green catalyst in click reactions [11]. Further improvement was found with simultaneous ultrasound/microwave irradiation that strongly promoted heterogeneous catalyzed CuAAC [12, 13] allowing easy access to hybrid adducts that combined the properties of ionic liquids and cyclodextrins [14].

References