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BORN-JORDAN PSEUDODIFFERENTIAL OPERATORS

WITH SYMBOLS IN THE SHUBIN CLASSES

ELENA CORDERO, MAURICE DE GOSSON, AND FABIO NICOLA

Abstract. We apply Shubin’s theory of global symbol classes Γm
ρ to the

Born-Jordan pseudodifferential calculus we have previously developed. This
approach has many conceptual advantages and makes the relationship be-
tween the conflicting Born-Jordan and Weyl quantization methods much more
limpid. We give, in particular, precise asymptotic expansions of symbols al-
lowing us to pass from Born-Jordan quantization to Weyl quantization and
vice versa. In addition we state and prove some regularity and global hypoel-
lipticity results.

1. Introduction

The Born-Jordan quantization rules [4, 5, 7] have recently been rediscovered in
mathematics and have quickly become a very active area of research under the im-
petus of scientists working in signal theory and time-frequency analysis [1,8,11]. It
has been realized not only that the associated phase space picture has many advan-
tages compared with the usual Weyl-Wigner picture (it allows a strong damping of
unwanted interference patterns [1,10,30]), but also, as shown by de Gosson [18–20],
that there is strong evidence that Born-Jordan quantization might very well be the
correct quantization method in quantum physics. Independently of these potential
applications, the Born-Jordan pseudodifferential calculus has many interesting and
difficult features (some of them, such as non-injectivity [9], being even quite surpris-
ing) and deserve close attention. The involved mathematics is less straightforward
than that of the usual Weyl formalism; for instance Born-Jordan pseudodifferential
calculus is not fully covariant under linear symplectic transformations [16], which
makes the study of the symmetries of the operators much less straightforward than
in the Weyl case.

In the present paper we set out to study the pseudodifferential calculus associated
with Born-Jordan quantization in the framework of Shubin’s [28] global symbol
classes. These results complement and extend those obtained by the authors in [9].

To be precise, in the Weyl quantization scheme, to any observable (symbol) a(z),
z ∈ R

2n, defined as a function or (temperate) distribution in phase space, there is
associated the Weyl operator

ÂW =
(

1
2π�

)n ∫
aσ(z)T̂ (z)d

2nz,
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where aσ = Fσa is the symplectic Fourier transform of a and T̂ (z0) is the Heisenberg
operator given by

T̂ (z0)ψ(x) = e
i
�
(p0x− 1

2p0x0)ψ(x− x0).

This is simply a phase space shift and, as a consequence of the Schwartz kernel
theorem, every continuous linear operator S(Rn) → S ′(Rn) can be written in a
unique way as a Weyl operator for a suitable symbol a ∈ S ′(R2n); namely, it
is a superposition of phase space shifts. In this functional framework the Weyl
correspondence between observables and operators is therefore one-to-one.

The Born-Jordan quantization of a symbol a(z) is instead defined as

ÂBJ =
(

1
2π�

)n ∫
aσ(z) sinc

(
px
2�

)
T̂ (z)d2nz

with z = (x, p) and px = p · x. The presence of the function sinc
(
px
2�

)
and in

particular its zeros make the corresponding quantization problem much more subtle.
It was proved in [9] that every linear continuous operator S(Rn) → S ′(Rn) can still
be written in Born-Jordan form, but the representation is no longer unique. The
Born-Jordan correspondence is anyway still surjective.

In this paper we continue this investigation by focusing on a particulary relevant
subclass of smooth symbols satisfying good growth conditions at infinity, namely
Shubin’s classes [28]. Roughly speaking the main result reads as follows. Within
such symbol classes the Weyl symbol aW and the corresponding Born-Jordan sym-
bol aBJ are related by the following explicit asymptotic expansions:

aW(x, p) ∼
∑
α∈N

n

|α| even

1

α!(|α|+ 1)

(
i�

2

)|α|
∂α
x ∂

α
p aBJ(x, p)

and

aBJ(x, p) ∼
∑
α∈N

n

|α| even

cα
α!

(
i�

2

)|α|
∂α
x ∂

α
p aW(x, p)

for suitable coefficients cα (see (4.10) below).
These expansions seem remarkable, because at present there is no an exact and

explicit formula for the Born-Jordan symbol corresponding to a given Weyl opera-
tor, although the existence of such a symbol was proved in [9]. Indeed, the situation
seems definitely similar to what happens in the division problem of temperate dis-
tributions by a (not identically zero) polynomial P : the map f �→ Pf from S ′(Rn)
into itself is onto but in general a linear continuous right inverse does not exist
[3, 25].

We will systematically use properties of the global pseudodifferential calculus
whose study was initiated by Shubin, after related work by Beals, Berezin, Kumano-
go, Rabinovič, and others (see the bibliography in [28]). This calculus plays an
important role in quantum mechanics since the position and momentum variables
are placed on an equal footing in the estimates defining the symbol classes. We have
found this approach particularly well adapted to investigate asymptotic expansions
such as those for aW and aBJ.

Natural related topics that we have not included in this work are the spectral
theory of Born-Jordan operators, in which the notion of global hypoellipticity plays
a crucial role, and the anti-Wick version of these operators (the latter might lead



96 ELENA CORDERO, MAURICE DE GOSSON, AND FABIO NICOLA

to some new insights). Finally, we have not discussed at all the Wigner-Moyal
formalism associated with the Born-Jordan question; for the latter we refer to
[1, 10, 18].

In short, the paper is organized as follows. In Section 2 we review the definition
of the Born-Jordan pseudodifferential operators. Section 3 is devoted to Shubin’s
symbol classes. In Section 4 we prove the above relationships between Weyl and
Born-Jordan symbols. Finally Section 5 is devoted to applications to the global
regularity problem.

Notation. We denote by σ the standard symplectic form
∑n

j=1 dpj ∧ dxj on the

phase space R
2n ≡ R

n × R
n; the phase space variable is written z = (x, p). Equiv-

alently, σ(z, z′) = Jz · z′ where J =
(

0 I
−I 0

)
. We will denote by x̂j the operator

of multiplication by xj and set p̂j = −i�∂/∂xj . These operators satisfy Born’s
canonical commutation relations [x̂j , p̂j ] = i�, where � is a positive parameter such
that 0 < � ≤ 1.

2. Born-Jordan pseudodifferential operators

In this section we review the recent advances in the theory of Born-Jordan quanti-
zation; for proofs and details we refer to Cordero et al. [9] and de Gosson [16,18,19].

2.1. The Born-Jordan quantization rules. Following Heisenberg’s insightful
work on “matrix mechanics” Born and Jordan [4,5] proposed the quantization rule

(2.1) psxr BJ−→ 1

s+ 1

s∑
�=0

p̂ s−�x̂rp̂ �

for monomials. Their rule conflicts with Weyl’s [31] quantization rule, leading to

(2.2) psxr W−→ 1

2s

s∑
�=0

(
s

�

)
p̂ s−�x̂rp̂ �

(McCoy rule [27]) as soon as r ≥ 2 and s ≥ 2. The following observation is crucial:
both quantizations are obtained from Shubin’s τ -rule

(2.3) psxr τ−→
s∑

�=0

(
s

�

)
(1− τ )�τ s−�p̂ s−�x̂rp̂ �

but by very different means. In fact, the Weyl rule (2.2) is directly obtained by
choosing τ = 1

2 while Born and Jordan’s rule (2.1) is obtained by averaging the
right-hand side of (2.3) with respect to τ over the interval [0, 1] (de Gosson and
Luef [21], de Gosson [16, 18]).

On the operator level, the Weyl operator ÂW = OpW(a) is given by the familiar
formula due to Weyl himself [31]

(2.4) ÂW =
(

1
2π�

)n ∫
aσ(z)T̂ (z)d

2nz,

where aσ = Fσa is the symplectic Fourier transform

(2.5) aσ(z) =
(

1
2π�

)n ∫
e−

i
�
σ(z,z′)a(z′)d2nz′
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and T̂ (z0) = e−
i
�
σ(ẑ,z0) is the Heisenberg operator; recall [14,26] that the action of

T̂ (z0) on a function or distribution ψ is explicitly given by

(2.6) T̂ (z0)ψ(x) = e
i
�
(p0x− 1

2p0x0)ψ(x− x0).

Let us underline that the parameter � ∈ (0, 1] is fixed in our context. Here we are
not interested in the semiclassical analysis, i.e., the asymptotic as � → 0.

Using Plancherel’s identity, formula (2.4) can be rewritten

(2.7) ÂW =
(

1
π�

)n ∫
a(z)Π̂(z)d2nz,

where

(2.8) Π̂(z) = T̂ (z)Π̂T̂ (z)−1

is the Grossmann-Royer reflection operator (where Π̂ψ(x) = ψ(−x)). One ver-
ifies that under suitable convergence conditions (for instance a ∈ S(R2n) and
ψ ∈ L1(Rn)) one recovers the more familiar “midpoint formula”

(2.9) ÂWψ(x) =
(

1
2π�

)n ∫∫
e

i
�
p(x−y)a( 12 (x+ y), p)ψ(y)dnydnp

common in the theory of pseudodifferential operators; we will use this notation as
a formal tool for the sake of clarity (keeping in mind that it can be given a rigorous

meaning by (2.7)). The easiest way to define Shubin’s τ -operator Âτ = Opτ (a) is
to use the formula above as a starting point, and to replace the midpoint 1

2 (x+ y)
with (1− τ )x+ τy which leads to

(2.10) Âτψ(x) =
(

1
2π�

)n ∫∫
e

i
�
p(x−y)a((1− τ )x+ τy, p)ψ(y)dnydnp.

As in the monomial case, the Born-Jordan operator ÂBJ = OpBJ(a) is obtained by
averaging (2.10) over [0, 1]:

(2.11) ÂBJ =

∫ 1

0

Âτdτ.

2.2. Harmonic representation of Born-Jordan operators. The following re-
sult gives an explicit expression of the Weyl symbol of a Born-Jordan operator with
arbitrary symbol (see [1, 9]).

Proposition 2.1. Let a ∈ S ′(R2n).

(i) The operator ÂBJ = OpBJ(a) is the Weyl operator OpW(b), where

(2.12) b(x, p) =
(

1
2π�

)n
(a ∗ θ)(x, p);

here θ ∈ S′(R2n) is the distribution whose (symplectic) Fourier transform is

(2.13) θσ(x, p) = sinc
(px

2�

)
.

(ii) The restriction of ÂBJ to monomials psjx
r
j is given by the Born-Jordan rule

(2.1).

Recall that the function sinc is defined by sincu = sinu/u for u �= 0 and
sinc 0 = 1.
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It follows from (2.4) and the convolution formula Fσ(a ∗ θ) = (2π�)naσθσthat

ÂBJ is alternatively given by

(2.14) ÂBJ =
(

1
2π�

)n ∫
aσ(z) sinc

(
px
2�

)
T̂ (z)d2nz

(cf. formula (2.4) for Weyl operators).

3. Symbol classes

In what follows we use the notation 〈u〉 =
√
1 + |u|2 for u ∈ R

m. For instance,
if z = (x, p) ∈ R

2n, then

〈z〉 =
√
1 + |z|2 =

√
1 + |x|2 + |p|2.

We assume that the reader is familiar with multi-index notation: if u = (u1, . . . , um)
∈ R

m and α = (α1, . . . , αm) ∈ N
m we write uα = uα1

1 · · ·uαm
m ; similarly ∂α

u =
∂α1
u1

· · · ∂αm
um

. By definition |α| = α1 + · · ·+ αm and α! = α1! · · · αm!.

3.1. The Shubin symbol class Γm
ρ . We begin by giving the following definition

(Shubin [28], Definition 23.1).

Definition 3.1. Let m ∈ R and 0 < ρ ≤ 1. The symbol class Γm
ρ (R2n) consists

of all complex functions a ∈ C∞(R2n) such that for every α ∈ N
2n there exists a

constant Cα ≥ 0 with

(3.1) |∂α
z a(z)| ≤ Cα 〈z〉m−ρ|α| for z ∈ R

2n.

It immediately follows from this definition that if a ∈ Γm
ρ (R2n) and α ∈ N

2n,

then ∂α
z a ∈ Γ

m−ρ|α|
ρ (R2n); using Leibniz’s rule for the derivative of products of

functions one easily checks that

(3.2) a ∈ Γm
ρ (R2n) and b ∈ Γm′

ρ (R2n) =⇒ ab ∈ Γm+m′

ρ (R2n).

The class Γm
ρ (R2n) is a complex vector space for the usual operations of addition

and multiplication by complex numbers, and we have

(3.3) Γ−∞
ρ (R2n) =

⋂
m∈R

Γm
ρ (R2n) = S(R2n).

The reduced harmonic oscillator Hamiltonian H(z) = 1
2 (|x|2 + |p|2) obviously

belongs to Γ2
1(R

2n), and so does

H(z) =

n∑
j=1

1

2mj
(p2j +m2

jω
2
jx

2
j );

in fact, any polynomial function in z of degree m is in Γm
1 (R2n). In particular every

Hamiltonian function of the type

H(z) =

n∑
j=1

1

2mj
p2j + V (x)

belongs to some class Γm
1 (R2n) if the potential function V (x) is a polynomial of

degree m ≥ 2.
The following lemma shows that the symbol classes Γm

ρ (R2n) are invariant un-
der linear automorphisms of phase space (this property does not hold for the usual
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Hörmander classes Sm
ρ,δ(R

n) [24], whose elements are characterized by growth prop-

erties in only the variable p). Let us denote by GL(2n,R) the space of 2n × 2n
invertible real matrices. Then

Lemma 3.2. Let a ∈ Γm
ρ (R2n) and M ∈ GL(2n,R). We have a(M ·) ∈ Γm

ρ (R2n).

Proof. The result is shown in greater generality in [28, p. 177]. This special case
simply follows by the fact

C−1|z| ≤ |Mz| ≤ C|z|
for a suitable C > 0. �
3.2. Asymptotic expansions of symbols. Let us recall the notion of asymptotic
expansion of a symbol a ∈ Γm

ρ (R2n) (cf. [28], Definition 23.2).

Definition 3.3. Let (aj)j be a sequence of symbols aj ∈ Γ
mj
ρ (R2n) such that

limj→+∞ mj → −∞. Let a ∈ C∞(R2n). If for every integer r ≥ 2 we have

(3.4) a−
r−1∑
j=1

aj ∈ Γmr
ρ (R2n),

where mr = maxj≥r mj , we will write a ∼
∑∞

j=1 aj and call this relation an as-
ymptotic expansion of the symbol a.

The interest of the asymptotic expansion comes from the fact that every sequence
of symbols (aj)j with aj ∈ Γ

mj
ρ (R2n), the degrees mj being strictly decreasing and

such that mj → −∞, determines a symbol in some Γm
ρ (R2n), that symbol being

unique up to an element of S(R2n):

Proposition 3.4. Let (aj)j be a sequence of symbols aj ∈ Γ
mj
ρ (R2n) such that

mj > mj+1 and limj→+∞ mj → −∞. Then:
(i) There exists a function a such that a ∼

∑∞
j=1 aj.

(ii) If another function a′ is such that a′ ∼
∑∞

j=1 aj, then a− a′ ∈ S(R2n).

(See Shubin [28], Proposition 23.1.) Note that property (ii) immediately follows
from (3.3).

3.3. The amplitude classes Πm
ρ . We will need for technical reasons an extension

of the Shubin classes Γm
ρ (R2n) defined above. Since Born-Jordan operators are

obtained by averaging Shubin’s τ -operators

Âτψ(x) =
(

1
2π�

)n ∫∫
e

i
�
p(x−y)a((1− τ )x+ τy, p)ψ(y)dnydnp

over τ ∈ [0, 1], we are led to consider pseudodifferential operators of the type

(3.5) Âψ(x) =
(

1
2π�

)n ∫∫
e

i
�
p(x−y)b(x, y, p)ψ(y)dnydnp,

where the function

b(x, y, p) =

∫ 1

0

a((1− τ )x+ τy, p)dτ

is called the amplitude and is defined not on R
2n ≡ R

n
x × R

n
p but rather on R

3n ≡
R

n
x × R

n
y × R

n
p . It therefore makes sense to define an amplitude class generalizing

Γm
ρ (R2n) by allowing a dependence on the three sets of variables x, y, and p (cf.

[28], Definition 23.3).
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Definition 3.5. Let m ∈ R. The symbol (or amplitude) class Πm
ρ (R3n) consists of

all functions a ∈ C∞(R3n) that for some m′ ∈ R satisfy

(3.6) |∂α
p ∂

β
x∂

γ
y a(x, y, p)| ≤ Cαβγ 〈u〉m−ρ|α+β+γ| 〈x− y〉m

′+ρ|α+β+γ|

for every (α, β, γ) ∈ N
3n, where Cαβγ ≥ 0 and u = (x, y, p).

It turns out that an operator (3.5) with amplitude b ∈ Πm
ρ (R3n) is a Shubin

τ -pseudodifferential operator with symbol in Γm
ρ (R2n)—and this for every value of

the parameter τ :

Proposition 3.6. Let τ be an arbitrary real number.

(i) Every pseudodifferential operator Â of the type (3.5) with amplitude b ∈
Πm

ρ (R3n) can be uniquely written in the form Â = Opτ (aτ ) for some symbol

aτ ∈ Γm
ρ (R2n), that is,

(3.7) Âψ(x) =
(

1
2π�

)n ∫∫
e

i
�
p(x−y)aτ ((1− τ )x+ τy, p)ψ(y)dnydnp;

the symbol aτ has the asymptotic expansion

(3.8) aτ (x, p) ∼
∑
β,γ

1

β!γ!
τ |β|(1− τ )|γ|∂β+γ

p (i�∂x)
β(−i�∂y)

γb(x, y, p)|y=x.

(ii) In particular, choosing τ = 1
2 , there exists aW ∈ Γm

ρ (R2n) such that Â =
OpW(aW).

Proof. See Shubin [28], Theorem 23.2, for the case � = 1 and de Gosson [15], Section
14.2.2. �

We have in addition an asymptotic formula allowing us to pass from one τ -

symbol to another when Â is given by (3.7): if Â = Opτ (aτ ) = Opτ ′(aτ ′) with
aτ , aτ ′ ∈ Πm

ρ (R3n), then

aτ (x, p) ∼
∑
α≥0

i−|α|

α!
(τ ′ − τ )|α|∂α

p ∂
α
x aτ ′(x, p)

([28], Theorem 23.3).

3.4. Elementary properties. The class of all operators (3.5) with b ∈ Πm
ρ (R3n)

is denoted by Gm
ρ (Rn) (cf. [28], Definition 23.4); G−∞(Rn) =

⋂
m∈R

Gm
ρ (Rn) con-

sists of all operators S(Rn) −→ S(Rn) with distributional kernel K ∈ S(Rn ×R
n).

It is useful to make the following remark: in the standard theory of pseudodiffe-
rential operators (notably in its applications to partial differential operators) it is
customary to use operators

(3.9) Âψ(x) =
(

1
2π

)n ∫∫
ei(x−y)ξa(x, y, ξ)ψ(y)dnydnξ

which correspond, replacing p with ξ to the choice � = 1 in the expression (3.5). It is
in fact easy to toggle between the expression above and its �-dependent version; one
just replaces a(x, y, ξ) with a(x, y, p) and ξ with p/� so that dξ = �

−ndp. However,
when doing this, one must be careful to check that the amplitudes a(x, y, ξ) and
a(x, y, �ξ) belong to the same symbol class. That this is indeed always the case
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when one deals with Shubin classes is clear from Lemma 3.2. The following situation
is important in our context; consider the � = 1 Weyl operator

(3.10) Âψ(x) =
(

1
2π

)n ∫∫
ei(x−y)ξa( 12 (x+ y), ξ)ψ(y)dnydnξ.

Denoting by Â(�) the corresponding operator (3.5) in order to make the �-
dependence clear, that is,

(3.11) Â(�)ψ(x) =
(

1
2π�

)n ∫∫
e

i
�
p(x−y)a( 12 (x+ y), p)ψ(y)dnydnp,

we have Â(�) = M̂−1
�

B̂M̂� where B̂ is the operator (3.10) with symbol b(x, p) =

a(�1/2x, �1/2p) and M̂� is the unitary scaling operator defined by M̂�ψ(x) =
�
n/4ψ(�1/2).
Using the symbol estimates (3.1) it is straightforward to show that every operator

Â ∈ Gm
ρ (Rn) is a continuous operator S(Rn) −→ S(Rn) and can hence be extended

into a continuous operator S ′(Rn) −→ S ′(Rn). It follows by duality that if Â ∈
Gm

ρ (Rn), then Â∗ ∈ Gm
ρ (Rn) (cf. [28], Theorem 23.5).

One also shows that ([28, Theorem 23.6]) if Â ∈ Gm
ρ (Rn) and B̂ ∈ Gm′

ρ (Rn),

then Ĉ = ÂB̂ ∈ Gm+m′

ρ (Rn).

4. Weyl versus Born-Jordan symbol

4.1. General results. Comparing the expressions (2.4) and (2.14) giving the har-
monic representations of, respectively, Weyl and Born-Jordan operators one sees

that if Â = OpW(a) = OpBJ(b), then the symbols a and b are related by the convo-
lution relation b ∗ θBJ = a; equivalently, taking the (symplectic) Fourier transform
of each side,

(4.1) aσ(z) = bσ(z) sinc
(px

2�

)
.

The difficulty in recovering bσ from aσ comes from the fact that the sinc function
has infinitely many zeros; in fact sinc(px/2�) = 0 for all points z = (x, p) such
that px = 2Nπ� for a non-zero integer N . We are thus confronted with a division
problem. Notice in addition that if the solution b exists, then it is not unique:
assume that c(z) = e−iσ(z,z0)/�, where p0x0 = 2Nπ� (N ∈ Z, N �= 0). We have
cσ(z) = (2π�)nδ(z − z0) and hence by (2.14)

OpBJ(c) =

∫
δ(z − z0) sinc

(
px
2�

)
T̂ (z)d2nz = 0.

It follows that if OpBJ(b) = OpW(a), then we also have OpBJ(b + c) = OpW(a).
Now, in [9, Theorem 7] we have proven that equation (4.1) always has a (non-
unique) solution in b ∈ S(R2n) for every given a ∈ S(R2n); our proof used the
theory of division of distributions. Thus every Weyl operator has a Born-Jordan
symbol; equivalently,

Proposition 4.1. For every continuous linear operator Â : S(Rn) −→ S ′(Rn)

there exists b ∈ S ′(R2n) such that Â = OpBJ(b).

Notice that the existence of the solution b of (4.1), as established in [9], is a
purely qualitative result; it does not tell us anything about the properties of that
solution.
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4.2. Weyl symbol of a Born-Jordan operator. We are going to show that
every Born-Jordan operator with symbol in one of the Shubin classes Γm

ρ (R2n) is
a Weyl operator with symbol in the same symbol class and produce an asymptotic
expansion for the latter. For this we will need the following elementary inequalities
(see for instance Chazarain and Piriou [6] or Hörmander [24]).

Lemma 4.2. Let ξ and η be positive numbers and m ∈ R. We have

(4.2) min{ξm, ηm} ≤ C(ξ + η)m,

where C = max{1, 2−m} and

(4.3) (1 + |ξ − η|2)m ≤ 2|m|(1 + |ξ|2)m(1 + |η|2)|m|.

The estimate (4.3) is usually referred to as Peetre’s inequality in the literature
on pseudodifferential operators.

Theorem 4.3. Let ÂBJ = OpBJ(a) with symbol a ∈ Γm
ρ (R2n).

(i) For every τ ∈ R there exists aτ ∈ Γm
ρ (R2n) such that ÂBJ = Opτ (aτ ). Here

aτ has the following asymptotic expansion:

(4.4) aτ (x, p) ∼
∑
α∈Nn

(i�)|α|(τ |α|+1 − (τ − 1)|α|+1)

α!(|α|+ 1)
∂α
x ∂

α
p a(x, p).

(ii) In particular ÂBJ = OpBJ(a) is a Weyl operator ÂW = OpW(aW) with
symbol aW ∈ Γm

ρ (R2n), having the asymptotic expansion

(4.5) aW(x, p) ∼
∑
α∈N

n

|α| even

1

α!(|α|+ 1)

(
i�

2

)|α|
∂α
x ∂

α
p a(x, p)

and we have aW − a ∈ Γm−2ρ
ρ (R2n).

Proof. Property (ii) follows from (i) choosing τ = 1
2 .

(i) Consider the τ -pseudodifferential operator Âτ = Opτ (a):

Âτψ(x) =
(

1
2π�

)n ∫
e

i
�
p(x−y)a((1− τ )x+ τy, p)ψ(y)dnydnp

and set

(4.6) aBJ(x, y, p) =

∫ 1

0

a((1− τ )x+ τy, p)dτ.

We thus have, using (2.11),

ÂBJψ(x) =
(

1
2π�

)n ∫
e

i
�
p(x−y)aBJ(x, y, p)ψ(y)d

nydnp

which is of the type (3.5). Let us show that aBJ ∈ Πm
ρ (R3n), i.e., that we have

estimates of the type

(4.7) |∂α
x ∂

β
y ∂

γ
p aBJ(x, y, p)| ≤ Cα,β,γ〈(x, y, p)〉m−ρ|α+β+γ|〈x− y〉m′+ρ|α+β+γ|

for some m′ ∈ R independent of α, β, γ. The result will follow using Proposition
3.6. Let us set

bτ (x, y, p) = a((1− τ )x+ τy, p);

we have

∂α
x ∂

β
y ∂

γ
p bτ (x, y, p) = (1− τ )|α|τ |β|(∂α+β

x ∂γ
pa)((1− τ )x+ τy, p).



BORN-JORDAN PSEUDODIFFERENTIAL OPERATORS 103

Hence, since a ∈ Γm
ρ (Rn), we have by (3.1) the estimates

(4.8) |∂α
x ∂

β
y ∂

γ
p bτ (x, y, p)| ≤ Cα+β,γ(1− τ )|α|τ |β|〈((1− τ )x+ τy, p)〉m−ρ|α+β+γ|.

Now, by Peetre’s inequality (4.3) there exists a constant C = C(m, ρ, α, β, γ) > 0
such that the estimates

〈((1− τ )x+ τy, p)〉m−ρ|α+β+γ| ≤ C〈(x, p)〉m−ρ|α+β+γ|〈τ (x− y)〉|m|+ρ|α+β+γ|

and

〈((1− τ )x+ τy, p)〉m−ρ|α+β+γ|≤ C〈(y, p)〉m−ρ|α+β+γ|〈(1− τ )(x− y)〉|m|+ρ|α+β+γ|

hold, and hence

〈((1− τ )x+ τy, p)〉m−ρ|α+β+γ|

≤ Cmin{〈(x, p)〉m−ρ|α+β+γ|, 〈(y, p)〉m−ρ|α+β+γ|}〈x− y〉|m|+ρ|α+β+γ|.

This implies, using the inequality (4.2), that

〈((1− τ )x+ τy, p)〉m−ρ|α+β+γ| ≤ C ′〈(x, y, p)〉m−ρ|α+β+γ|〈x− y〉|m|+ρ|α+β+γ|.

Together with (4.8) this inequality implies (4.7) with m′ = |m| after an integration
on τ . The asymptotic expansion (4.4) follows by using the expansion of the τ -
symbol aτ in (3.8), in terms of the amplitude b(x, y, p) = aBJ(x, y, p) in (4.6).
Namely, observe that

∂β+γ
p (i�∂x)

β(−i�∂y)
γb(x, y, p)|y=x

= (i�)|β+γ|(−1)|γ|
∫ 1

0

(1− t)|β|t|γ|∂β+γ
p ∂β+γ

x a(x, p) dt

= (i�)|β+γ|(−1)|γ|∂β+γ
p ∂β+γ

x a(x, p)

∫ 1

0

(1− t)|β|t|γ|dt.

Setting α = β + γ, so that β = α− γ, we have

1

β!γ!
=

(
α

γ

)
1

α!
,

and hence∑
γ≤α

(
α

γ

)
[τ (1− t)]|α−γ|(−1)|γ|[(1− τ )t]|γ|

=
n∏

j=1

∑
γj≤αj

(
αj

γj

)
[τ (1− t)]|αj−γj |[−(1− τ )t]|γj |

=

n∏
j=1

[τ (1− t)− (1− τ )t]αj

= (τ − t)|α|.

Computing the integral∫ 1

0

(τ − t)|α| dt =
τ |α|+1 − (τ − 1)|α|+1

|α|+ 1

we immediately obtain the asymptotic expansion for aτ (x, p) in (4.4). This con-
cludes the proof. �
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Notice that the asymptotic formula (4.5) yields exact results when the Born-
Jordan symbol a is a polynomial in the variables xj , pk. For instance, when n = 1
and a(z) = ars(z) = xrps it leads to

(4.9) ars,W(x, p) =
∑

k≤inf(r,s)
k even

(
i�

2

)k
k!

k + 1

(
r

k

)(
s

k

)
xr−kps−k.

We refer to Domingo and Galapon [22] for a general discussion of quantization of
monomials.

Using [28], Definition 23.4, the result above has the following interesting conse-
quence.

Corollary 4.4. A Born-Jordan operator ÂBJ = OpBJ(a) with symbol a ∈ Γm
ρ (R2n)

belongs to Gm
ρ (Rn).

In many cases this result reduces the study of Born-Jordan operators to that of
Shubin operators.

4.3. The Born-Jordan symbol of a Weyl operator. We now address the more
difficult problem of finding the Born-Jordan symbol of a given Weyl operator in
Gm

ρ (R2n). As already observed the analysis in [9] did not provide an explicit formula
for it because of division problems. It is remarkable that, nevertheless, an explicit
and general asymptotic expansion can be written down when the symbol belongs
to one of the classes Γm

ρ (R2n). To this end we need a preliminary lemma about the
formal power series arising in (4.5).

Lemma 4.5. Consider the power series∑
α∈N

n

|α| even

1

α!(|α|+ 1)
xα.

Its formal reciprocal is given by the series
∑

α∈Nn
cα
α! x

α, where c0 = 1 and, for
α �= 0,
(4.10)

cα = α!

|α|∑
j=1

(−1)j
∑

α(1)+...+α(j)=α
|α(1)|,...,|α(j)|	=0 even

1

α(1)! · · ·α(j)!(|α(1)|+ 1) · · · (|α(j)|+ 1)
.

Proof. The proof is straightforward: we expand(
1 +

∑
|α|	=0 even

1

α!(|α|+ 1)
xα

)−1

as a geometric series and collect the similar terms. Alternatively, we could also
apply the Faà di Bruno formula generalizing the chain rule to the derivatives
at x = 0 of the function x �−→ g(f(x)), where g(t) = 1/(1 + t) and f(x) =∑

|α|	=0 even
1

α!(|α|+1)x
α. �

Remark 4.6. The series
∑

α∈Nn
cα
α! x

α in the above lemma has a positive but finite
radius of convergence. For example in dimension n = 1 the radius is π, because the
(complex) zeros of the function sinh x/x closest to 0 are ±iπ (see the computations
after the proof of Theorem 4.7 below). However, the above result suffices for the
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following applications, where we will work in the framework of formal power series,
as usual in the pseudodifferential calculus.

Let us now prove our second main result.

Theorem 4.7. Consider a Weyl operator ÂW = OpW(a) with Weyl symbol a ∈
Γm
ρ (R2n). Let b ∈ Γm

ρ (R2n) be any symbol (whose existence is guaranteed by Propo-
sition 3.4) with the following asymptotic expansion:

(4.11) b(x, p) ∼
∑
α∈N

n

|α| even

cα
α!

(
i�

2

)|α|
∂α
x ∂

α
p a(x, p),

where the coefficients cα are given in (4.10) (c0 = 1).

Let ÂBJ = OpBJ(b) be the corresponding Born-Jordan operator. Then

(4.12) ÂBJ = ÂW +R,

where R is a pseudodifferential operator with symbol in the Schwartz space S(R2n).

Proof. The operator ÂBJ = OpBJ(b) by Theorem 4.3 can be written as a Weyl
operator with Weyl symbol

(4.13) aW(x, p) ∼
∑
α∈N

n

|α| even

1

α!(|α|+ 1)

(
i�

2

)|α|
∂α
x ∂

α
p b(x, p).

Now we substitute in this expression the asymptotic expansion (4.11) for b and we
use the fact that the formal differential operators given by the series

∑
α∈N

n

|α| even

1

α!(|α|+ 1)

(
i�

2

)|α|
∂α
x ∂

α
p and

∑
α∈N

n

|α| even

cα
α!

(
i�

2

)|α|
∂α
x ∂

α
p

are inverses of each other in view of Lemma 4.5 (to see this, formally replace
x = (x1, . . . , xn) in Lemma 4.5 by (i�/2)(∂x1

∂p1
, . . . , ∂xn

∂pn
)). It follows that

(4.14) aW − a ∈
⋂
N∈N

Γ−N
ρ (R2n) = S(R2n),

and hence (4.12). �

Notice that in dimension n = 1 we have∑
k≥0 even

1

k!(k + 1)
xk =

1

x

∑
k≥0 even

1

(k + 1)!
xk+1 =

sinh x

x
=: F (x)

so that ck = ∂k
x(1/F (x))|x=0. In particular, ck = 0 for odd k. In this case the series

expansion of 1/F (x) is particularly easy, since it coincides with the MacLaurin
series expansion of the function

1

F (x)
= x cosechx =

∑
k≥0 even

2− 2k

k!
Bkx

k,

where the Bk are the Bernoulli numbers

(4.15) Bk = lim
x→0

f (k)(x),
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with

f(x) =
x

ex − 1
.

More explicitly,

1

F (x)
= x cosechx = 1− 1

6
x2 +

7

360
x4 − 31

15120
x6 +

127

604800
x8 − · · ·

and the coefficients ck, with k even, are provided by

c0 = 1, c2 = −1

3
, c4 =

7

15
, c6 = −31

21
, c8 =

127

15
, . . . (n = 1).

In this case formula (4.11) takes the simple form

b(x, p) ∼
∑

k≥0 even

ck
k!

(
i�

2

)k

∂k
x∂

k
pa(x, p).

As in the case of formula (4.9), the asymptotic expansion (4.11) becomes exact
(and reduces to a finite sum) when the symbol a is a polynomial. For instance,
assuming n = 1 choose a(z) = ars(z) = xrps. Then the formula above yields

brs,BJ(x, p) =
∑

k≤inf(r,s), k even

k!ck

(
i�

2

)k (
r

k

)(
s

k

)
xr−kps−k.(4.16)

=
∑

k≤inf(r,s), k even

k!(2− 2k)Bk

(
i�

2

)k (
r

k

)(
s

k

)
xr−kps−k,

where the Bk are the Bernoulli numbers defined in (4.15).
We also make the following remark: formulas (4.13) and (4.14) show that (mod-

ulo a term in S(R2n)) a Weyl operator with symbol in Γm
ρ (R2n) has a Born-Jordan

symbol belonging to the same class Γm
ρ (R2n). This is however by no means a

uniqueness result since, as we have already observed, we have OpBJ(b+ c) = 0 for
all symbols c(z) = e−iσ(z,z0)/�, where p0x0 = 2Nπ� (N ∈ Z, N �= 0). Observe that
such a symbol c belongs to none of the symbol classes Γm

ρ (R2n).

5. Regularity and global hypoellipticity results

In order to define the Sobolev-Shubin spaces (cf. [28], Definition 25.3), we re-
call the definition of anti-Wick operators. The anti-Wick operator OpAW(a) with
symbol a is defined by

OpAW(a)f =

∫
a(z)Pzfd

2nz,

where Pzf(t) = 〈f,Φz〉Φz(t) are orthogonal projections on L2(Rn) on the functions

Φz(t) = π−n/4eitpe−
|t−x|2

2 (i.e., phase-space shifts of the Gaussian π−n/4e−
|t|2
2 ).

Definition 5.1. For s ∈ R consider the anti-Wick symbol 〈z〉s, z ∈ R
2n, and

let As = OpAW(a) be the corresponding anti-Wick operator. The Sobolev-Shubin
space Qs is defined by

Qs = {f ∈ S′(Rn) : Asf ∈ L2(Rn)} = A−1
s L2(Rn).
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Our reduction result Theorem 4.3 allows us to transpose to Born-Jordan oper-
ators all known continuity results for Weyl operators with symbol in the symbol
classes Γm

ρ (R2n). For instance:

Proposition 5.2. Let ÂBJ = OpBJ(a) with symbol a ∈ Γm
ρ (R2n). We have

ÂBJ : Qs(Rn) → Qs−m(Rn).

In particular, if m = s = 0, ÂBJ is continuous on L2(Rn).

Proof. By Corollary 4.4 the operator ÂBJ is in the class Gm
ρ (Rn). The result follows

by applying Theorem 25.2 in [28]. �

It turns out that the Sobolev-Shubin spaces are particular cases of Feichtinger’s
modulation spaces [12, 13, 23]; we do not discuss these here and refer to Cordero
et al. [11] for a study of continuity properties of Born-Jordan operators in these
spaces.

We next recall the notion of global hypoellipticity [28, 29], which plays an im-
portant role in the study of spectral theory for pseudodifferential operators (see the
monograph [2] by Boggiatto et al.).

An operator Â : S ′(Rn) −→ S ′(Rn) which also maps S(Rn) into itself is globally
hypoelliptic if

ψ ∈ S ′(Rn) and Âψ ∈ S(Rn) =⇒ ψ ∈ S(Rn)

(global hypoellipticity is thus not directly related to the usual notion of hypoellip-
ticity [24], which is a local notion).

In [28] Shubin introduced the following subclass of Γm
ρ (R2n).

Definition 5.3. Let m,m0 ∈ R and 0 < ρ ≤ 1. The symbol class HΓm,m0
ρ (R2n)

consists of all complex functions a ∈ C∞(R2n) such that

C0 〈z〉m0 ≤ |a(z)| ≤ C1 〈z〉m for |z| > R,

for some C0, C1, R > 0 and whose derivatives satisfy the following property: for
every α ∈ N

2n there exists Cα > 0 such that

|∂α
z a(z)| ≤ Cα|a(z)| 〈z〉−ρ|α| for |z| > R.

The symbol class HΓm,m0
ρ (R2n) is insensitive to perturbations by lower order

terms ([28], Lemma 25.1(c)):

Lemma 5.4. Let a ∈ HΓm,m0
ρ (R2n) and b ∈ Γm′

ρ (R2n). If m′ < m0, then a + b ∈
HΓm,m0

ρ (R2n).

The interest of these symbol classes comes from the following property [28]: if

a ∈ HΓm,m0
ρ (R2n), then the Weyl operator Â = OpW(a) is globally hypoelliptic.

For instance, the Hermite operator −Δ+ |x|2 is globally hypoelliptic since its Weyl

symbol is a(z) = |z|2, which is in HΓ2,2
1 (R2n). Moreover, if Â = OpW(a) with

a ∈ HΓm,m0
ρ (R2n) the following stronger result holds:

ψ ∈ S ′(Rn) and Âψ ∈ Qs(Rn) =⇒ ψ ∈ Qs+m0(Rn).
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Proposition 5.5. Let a ∈ HΓm,m0
ρ (R2n), with m− 2ρ < m0.

(i) The Born-Jordan operator ÂBJ = OpBJ(a) is globally hypoelliptic.

(ii) If ψ is a tempered distribution such that ÂBJψ ∈ Qs(Rn) for some s ∈ R,
then ψ ∈ Qs+m0(Rn).

Proof. In view of the discussion above it suffices to show that the Weyl symbol

aW of ÂBJ belongs to the class HΓm,m0
ρ (R2n). Now, by Theorem 4.3(ii) we have

aW − a ∈ Γm−2ρ
ρ (R2n), and hence the result using Lemma 5.4. �
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