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A Bayesian nonparametric model for data
on different scale of measure; an
application to customer base management
of telecommunications companies.

Antonio Canale∗ and David B. Dunson

Abstract To analyze telecommunications marketing data which are usually
made of discrete and continuous observations we consider a general framework
to jointly model continuous, count and categorical variables under a nonpara-
metric prior, which is induced through rounding latent variables having an
unknown density with respect to Lesbesgue measure. For the proposed class
of priors large support, strong consistency and rates of posterior contraction
can be proved. The approach is applied to model the joint density of traffic
data for a portion of customers of a European mobile phone operator.

Key words: Mixed discrete and continuous; Nonparametric regression;
Zero-inflated models

1 Introduction

Telecommunications companies store plenty of informations about their cus-
tomer behaviors. Such variables include continuous, counts, and binary vari-
ables. The most common approach to model such data is to link each ob-
served variable to latent Gaussian variables. Relationships among the un-
derlying Gaussian variables are typically characterized through latent factor
or structural equation models as in Muthén (1984). Although the underlying
Gaussian class is computationally convenient and mathematical tractable, the
flexibility is limited in implying Gaussian distributions for continuous vari-
ables, and probit models for categorical variables. In addition, issues arise in
modeling counts and categorical variables having very many levels due to the
need to introduce and do computation for very many threshold parameters. A
different class of models can be obtained defining a separate generalized linear
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model for each variable, with shared latent variables to induce dependence
(Sammel et al., 1997; Moustaki and Knott, 2000; Dunson, 2000, 2003). This
framework assumes that observed variables are independently drawn from
distributions in the exponential family conditionally on latent variables.

In this paper we discuss classes of Bayesian models for mixed scale densi-
ties, which are computationally convenient and can be shown to have appeal-
ing theoretical properties, such as large support, posterior consistency and
near optimal rates of convergence. Particularly, we focus on a multivariate
mixed scale generalization of the rounding framework of Canale and Dunson
(2011a) already discussed in Canale and Dunson (2011b).

2 Mixed-scale densities

Let y = (yT1 , y
T
2 )T , where y1 = (y1,1, . . . , y1,p1) is a p1×1 vector of continuous

observations and y2 = (y2,p1+1, . . . , y2,p) is a p2×1 vector of discrete variables,
be is a p × 1 vector of variables having mixed measurement scales. We let
y ∼ f , with f denoting the joint density with respect to an appropriate
product measure µ.

To induce a prior f ∼ Π for the density of the mixed scale variables, we
let

y = h(y∗), y∗ ∼ f∗, f∗ ∼ Π∗, (1)

where h : Rp → Ω, y∗ = (y∗1 , . . . , y
∗
p)T ∈ Rp, f ∈ F∗, F∗ is the set of densi-

ties with respect to Lesbesgue measure over Rp, and Π∗ is a prior over F∗.

The mapping function h is defined as h(y∗) =
{
h1(y∗1)T , h2(y∗2)T

}T
, where

h1(y∗1) = y∗1 is the identity function and h2 are thresholding functions. Let

A(j) = {A(j)
1 , . . . , A

(j)
qj } denote a prespecified partition of R into qj mutually

exclusive subsets, for j = 1, . . . , p2, with the subsets ordered so that A
(j)
h is

placed before A
(j)
l for all h < l. Then, letting Ay2 = {y∗2 : y∗2,j ∈ A

(j)
y2j , j =

1, . . . , p2}, the mixed scale density f is defined as

f(y) = g(f∗) =

∫
Ay2

f∗(y∗)dy∗. (2)

The function g : F∗ → F defined in (2) is a mapping from the space of
densities with respect to Lesbesgue measure on Rp to the space of mixed-
scale densities F .

This framework generalizes Canale and Dunson (2011a), which focused
only on count variables. The theory is substantially more challenging in the
mixed scale case when there are continuous variables involved. Clearly the
properties of the induced prior f ∼ Π will be driven largely by the proper-
ties of f∗ ∼ Π∗. The study of asymptotic properties of the induced prior are
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omitted here but can be found in Canale and Dunson (2011b). Such prop-
erties are in terms of large support, strong posterior consistency and rate of
posterior contraction and are based in studying the topology induced by the
mapping functions g and h in the space F .

3 Marketing application

3.1 Customer base management of telecommunications
companies

A key aspect in customer base management of telecommunications companies
is to design contractual plans that match customer needs. For example, a
mobile phone contractual plan can have or not a connection charge, can
include or not some minutes free of charge for each day, while the time slot
can be of minutes, half-minutes or actual seconds used. Furthermore, the text
messages can be included in the subscription or can be payed one by one.

In order to understand the usual customers’ usage behaviors, it can be of
interest to study the joint distribution of traffic variables, including number
and duration of outgoing and incoming calls and number of text messages
sent. With such information available, marketing managers can conceive suit-
able contractual plans that merge customers’ needs and expectations with
marketing and sales goals.

In the next section we analyze a real dataset using the model described
in Section 2 to estimate the joint probability distribution of some traffic
variables.

3.2 A real application

Consider the data on 1,000 SIM (Subscriber Identification Module) cards of
a prepayed European mobile phone operator in a given month. For each SIM
card, we have several monthly traffic variables including total number and
duration of outgoing and incoming calls, video-calls, and the total number
of text messages sent. In the following we try to model the joint distribution
of two of the most interesting variables: the outgoing duration of calls, after
a log transformation (y1) and the total number of text messages sent (y2).
This joint distribution is made of continuous and count marginals and has
p1 = 1 and p2 = 1.

To model the latter distribution we use the model described in Section 2,
assuming that Π∗ is a Dirichlet process mixtures of Gaussian kernels (Lo,
1984; Escobar and West, 1995). Prior hyperparameters elicitation follows
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usual empirical Bayes approach. The partition Ay2
in the case p2 = 1 is simply

induced by a sequence of thresholds, which are assumed to be (−∞, 1, 2, . . . ).
We run a Markov Chain Monte Carlo algorithm for 4,000 iteration, dis-

carding the first 2,000 as burn in. In addition to the values of the latent
parameters we collect, for a fine grid of points, the values of the joint density
and of the marginals. Their posterior means are reported in Figure 1. Our
method naturally accounts for the zero inflation typically present in this kind
of dataset, as can be seen from panel (c) of Figure 1. Indeed, the portion of
SIM cards with y2 = 0 is of 73.7%. While giving a full characterization of
the joint distribution of the data, from which we can obtain the marginals
or any conditional distribution, the model can be used also as a tool for
nonparametric regression in the spirit of Müller et al. (1996).
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Fig. 1 Joint mixed-scale density plotted for y2 > 0 (a), marginal density for y1 (b),
marginal probability mass function for y2 (c), and marginal probability mass function
for y2 > 0 (d).


