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Abstract

CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the

adaptive immune response, has also potent pro-inflammatory actions in haematopoietic

and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L)

as modifier of glomerular permselectivity directly acting on glomerular epithelial cells

(GECs). We found that stimulation of CD40, constitutively expressed on GEC cell mem-

brane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and

increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of

CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection

of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glo-

meruli, although no significant increase of urine protein/creatinine ratio was observed after

in vivo injection. The same effects were induced by plasma factors partially purified from

post-transplant plasma exchange eluates of patients with focal segmental glomerulosclero-

sis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa

sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting.

Finally, the levels of sCD40Lwere significantly increased in serum of children both with ste-

roid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with

biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital

NS nor in patients with membranous nephropathy.

Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution

in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from

FSGS patients with post-transplant recurrence may contribute, presumably cooperating

with other mediators, to FSGS pathogenesis by modulating glomerular permeability.
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Introduction

The CD40/CD40 ligand (CD40L) dyad, a bi-molecular component of the tumor necrosis fac-

tor (TNF) gene superfamily, plays a critical role in the adaptive immune response [1–4]. Both

molecules have widespread distribution: CD40L is preferentially expressed on activated CD4+

T lymphocytes and platelets, and CD40 on B lymphocytes, monocytes/macrophages, and den-

dritic cells. In addition, both CD40 and CD40L are expressed by several non-haematopoietic

cells, such as endothelial and smooth muscle cells (SMCs) [1–4]. Moreover, a truncated soluble

form of CD40L (sCD40L), derived from proteolytic cleavage of CD40L, can be detected in the

circulation [1–4].

The ligation of CD40 by sCD40L on endothelial cells, SMCs, monocytes, and dendritic cells

results in induction of adhesion molecules and production of pro-inflammatory cytokines,

chemokines, matrix metalloproteinases and tissue factor [1–4], with relevant implications in

the pathogenesis of cardiovascular, immunological and neoplastic diseases [1–4].

In renal pathophysiology, blockade of CD40-CD40L interaction has a protective effect in

allograft rejection [5] and in several models of experimental glomerulonephritis, with a mecha-

nism mediated by T-cell immunity [6–9]. CD40 is expressed by mesangial and tubular cells,

and its stimulation activates a variety of pro-inflammatory responses [10–13]. Although CD40

expression by glomerular epithelial cells (GECs)/podocytes has been recently shown by several

research groups [9, 14–17], little is known on its physiologic function in this cell-type, and on

its involvement in the pathogenesis of podocytopathies, a distinct group of diseases character-

ized by a functional modification of renal permselectivity, with proteinuria and nephrotic syn-

drome as clinical hallmarks, and minimal or focal segmental glomerulosclerosis lesions (MCN

or FSGS, respectively) as their pathology backgrounds. Post-transplant recurrence of protein-

uria occurs in almost 50% of FSGS patients receiving a renal graft with a kinetic of proteinuria

(frequently occurring within few minutes from transplant) that recalls the existence of a circu-

lating plasmatic permeability factor. This is an area of intense research that has produced so

far inconsistent results [18–29].

On the basis of preliminary proteomic approach to plasmapheresis eluates from

patients with abrupt recurrence of proteinuria after a renal graft, and of the recent

description of agonistic anti-CD40 antibodies in FSGS patients [14], we hypothesized

that sCD40L could act as a permeability trigger of recurrence. Therefore, we studied the

effect of sCD40L on nephrin expression and cytoskeletal organization in cultured podo-

cytes, on the permselectivity of isolated rat glomeruli; on nephrin and podocin glomeru-

lar expression and proteinuria induction after in vivo injection in mice. In addition, we

investigated whether the inhibition of CD40-CD40L interaction prevents the effects

induced in cultured podocytes and in isolated glomeruli by plasma fractions purified

from plasmapheresis eluates obtained from patients with post-tranplant recurrence of

FSGS, and we measured the circulating levels of sCD40L in patients affected by FSGS

compared to healthy subjects and to patients with membranous nephropathy.

Materials and methods

Reagents

Human recombinant soluble CD40L (hr-sCD40L) trimeric protein plus enhancer (cross-link-

ing Ab), mouse recombinant soluble CD40L (mr-sCD40L) set, recombinant CD40-murine Ig

(muIg) fusion protein, consisting of the extracellular domain of human CD40 fused to mouse

IgG2a, recombinant human CD40L-muCD8 fusion protein, constituted by murine CD8 fused
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to human CD40L, and anti-human CD40L mAbs (MK13A4 and 24–31) were obtained from

Alexis Biochemicals (San Diego, CA).

Rabbit anti-CD40 polyclonal antibody (H-120) used for western blot, and mouse anti-

CD40 mAb used for indirect immunofluorescence and flow cytometry experiments were from

Santa Cruz Biotechnology (Santa Cruz, CA) and from BD Biosciences (Bedford, MA),

respectively.

Anti-CD40 rabbit polyclonal antibody used for indirect immunofluorescence on frozen

mouse kidney sections was from Abcam, Cambridge, UK (ab58391).

Patients

For the experiments on plasma “Permeability Factor” (PF), we used six plasmapheresis eluates

of FSGS patients who presented active post-transplant recurrence (see Table 1 for their clinical

characteristics). Plasmapheresis eluates used in this portion of the study was obtained within 3

to 6 days from proteinuria recurrence. All patients were treated with i.v. steroids and calci-

neurin inhibitors at the time of apheresis. The methods used to prepare a partially purified PF

from plasmapheresis eluates, which was employed in the following in vitro experiments, are

detailed in a separate paragraph.

Circulating levels of serum sCD40L were measured in several cohorts of children and adult

patients with NS subdivided according to the sensitivity to steroids, defined as normalization

of proteinuria (<150 mg/24h, Prot/Creat < .2) after 30 days of therapy with 60 mg/m2predni-

sone. In those cases showing steroid resistance, a second line drug was started, generally calci-

neurin inhibitors (Cyclosporin 4mg/Kg/d, or Tacrolimus 0.1 mg/Kg/d), and, in case of

persisting proteinuria, a renal biopsy was performed.

Children who developed NS under the 1st year of age were defined as congenital nephrotic

syndrome (cNS). All of them underwent a bioptic approach, and were studied with molecular

tests for NPHS1, NPHS2, WT1, PLCE1, ACTN4, TRPC6, and CD2AP.

All adults with NS had a renal biopsy at the onset of proteinuria, and then they were treated

with steroids in association with calcineurin inhibitors.

Overall, 96 patients were studied: 23 children with steroid-dependent NS (SDNS); 15 chil-

dren with steroid-resistant NS (SRNS), all having a histology diagnosis of FSGS; 10 adults

(aged >40 years) with SRNS, all with a renal biopsy proving FSGS; 8 patients with congenital

NS (age at onset <1 year); 40 adults with idiopathic Membranous Nephropathy (Table 2). All

patients had an eGFR greater than 60 ml/min at the time of sampling.

All patients were in a pre-transplant phase and presented variable degree of proteinuria.

Table 1. Baseline characteristics of patients with FSGS who received a renal transplant and presented recurrence of proteinuria. All patients were

treated with plasmapheresis and had their plasmapheresis eluates processed for partial purification of Permeability Factor (PF). Palb activity reported in the

Table is referred to that measured in the partially purified fraction prepared from plasmapheresis eluates following a procedure based on protein A Sepharose

and differential precipitation in ammonium sulphate (see Methods for details).

Patient N. Sex Age at onset

(yrs)

Histological pattern Age at Tx

(yrs)

Recurrence

(months after Tx)

Therapy Palb Ur Prot

(gr/day)

S Creat

(mg%)

Outcome

1 F 14 FSGS 19 6 S; FK; MMF 0.85 3 0.9 Remission

2 M 5 FSGS 12 4 S; FK; MMF 0.9 2 1.5 CRF

3 M 10 FSGS 25 1 S; FK 0.8 5 2 Remission

4 M 2 FSGS 6 5 S; FK; MMF 0.75 4 0.5 Remission

5 M 4 FSGS 11 6 S; FK 0.8 4 0.6 Remission

6 M 2 FSGS 7 0.5 S; FK 0.7 8 0.6 CRF

Legends, Tx, transplantation; S, steroids; FK, Tacrolimus; MMF, Mycophenolate Mofetil.

https://doi.org/10.1371/journal.pone.0188045.t001
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As controls, we also studied 11 healthy volunteers, receiving no medications and with hae-

matological indices, and liver and kidney function tests (including proteinuria) within normal

ranges.

The study was conducted according to the Helsinki Declaration, and approved by the Insti-

tutional Ethical Committee of G. Gaslini Children Hospital, Genoa (EudraCT: 2008-004486-

26). All patients or, for minors/children, next of kin, caretakers, or guardians signed a written

informed consent form for the participation in the study.

Culture of glomerular epithelial cells (GECs)/podocytes

Primary cultures of human glomerular epithelial cells (GECs)/podocytes were established and

characterized as previously described [30]. Established lines of differentiated GECs were

obtained by infection of primary cultures with a hybrid Adeno5/SV40 virus as previously

described and characterized [30, 31].

Primary rat and mouse podocytes were established as previously described [32].

Preparation of partially purified Permeability Factor (PF) from

plasmapheresis eluates of FSGS patients

Partially purified PF was prepared from plasmapheresis eluates following a procedure based

on protein A Sepharose and differential precipitation in ammonium sulphate [33]. Plasmaphe-

resis eluates were first passed through a 20x5 cm column of Protein A Sepharose (Amersham,

Aylesbury, UK) and, after washings with glycine buffer pH 2.5, PF were eluted with 6 M guani-

dine pH 9. The material bound to Protein A was precipitated with 80% ammonium sulphate

Table 2. IDIOPATHIC NEPHROTIC SYNDROME. Baseline characteristics of patients affected by idiopathic nephrotic syndrome who underwent evaluation

of serum levels of sCD40L.

SDNS SRNS Congenital

NS

iMN

Cases <18 yrs

N = 23

<18 yrs

N = 15

>18yrs

N = 10

N = 8 N = 40

Age—yrs (range) 9.8 (4–23) 9.3 (3.8–22) 63 (41–78) 9 (2–18) 42 (26–64)

Age at onset–yrs (range) 2.9 (0.2–7.1) 3.6 (1.5–14) <1 36 (26–52)

Male sex (%) 17 (74%) 7 (47%) 5 (50%) 3 (38%) 24 (60%)

Renal Histology (%)

Not performed* 13 (57%) 0 0 0 0

FSGS 0 15 (100%) 10 (100%) 8 (100%) 0

IgM 4 0 0 0 0

MCD 4 0 0 0 0

MN - - 0 0 40

Steroid sensitivity 23 (100%) 0 0 0 -

CTX therapy (%) 2 (9%) 2 (13%) 0 0 0

FK506 or Cyclosporine (%) 15 (65%) 15 (100%) 1 (10%) 0 4 (10%)

ARB or ACEI (%) 0 12 (80%) 10 (100%) 8 (100%) 40 (100%)

Urinary protein >1g/m2/day 18 (78%) 15 (100%) 10 (100%) 8 (100%) 40 (100%)

* Renal biopsy was not performed in patients who had presented at least an episode of drug responsiveness in the past.

Median (range) was reported for quantitative variables, and absolute (relative) frequencies for qualitative variables.

Legend: FSGS: Focal and Segmental Glomerular Sclerosis; MCD: Minimal Change Disease; MN: membranous nephropathy; CTX therapy: previous use

of cytotoxic agents (EndoxanR, LeukeranR); FK506: tacrolimus; ARB/ACEI: angiotensin receptor blockers or converting enzyme inhibitors.

https://doi.org/10.1371/journal.pone.0188045.t002
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and the supernatant was utilized for in vitro studies. At every step of the procedure, separate

chromatographic fractions were tested with a bioassay on isolated glomeruli (see below) for

the presence of permeability activity (Palb), and only those fractions showing Palb> 0.5 were

further processed. Protein concentration was determined with the Coomassie Dye binding

assay described by Bradford [34]. Overall, Palb of the final product was higher than in whole

plasma by a factor of 1,000 [33].

Flow cytometry

For flow cytometry analysis, GECs were washed in cold PBS and detached using nonenzymatic

method. After incubation with mouse anti-CD40 mAb (1:100), followed by FITC-conjugated

rabbit anti-mouse secondary antibody, the cells were analysed for relative fluorescence inten-

sity on a Becton Dickinson FACStar-plus instrument using appropriate gating excluding dead

cell population. Data analysis used a FACS plot program (WinMDI by Joseph Trotter).

Immunofluorescence on cultured GECs

Indirect immunofluorescence on cultured GECs was performed as previously described [35].

RT-PCR

RT-PCR was performed using standard procedure. Briefly, total RNA was extracted using TRI

reagent (Sigma Chemical Co, St. Louis, MO), and the RNA pellet dissolved in 10 μl of diethyl

pyrocarbonate water and stored at -70˚C. 1 μg of total RNA was reverse-transcribed using a

First Strand Synthesis Kit (Boehringer Mannheim, Indianapolis, IN). Sequence-specific oligo-

nucleotide primers were designed (human CD40: forward 50 CCT CGC CAT GGT TCG TCT
GCC, reverse 50 AGC CAG GAA GAT CGT CGG GA [36]; rat CD40: forward 50GTGTGTTAC
GTGCAGTGACAA, reverse 50ATCCTCACAGCTTGT CCA [37]; mouse CD40: forward 50TGG
TCATTCCTGTCGTGATG, reverse 50GGCTCTGTCTTGGCTCATCT [38]). Times and tempera-

tures for denaturation, annealing and extension were 1 minute 94˚C, 1 minute 55˚Cor 57˚C or

60˚C respectively for human, rat, or mouse CD40, and 2 minutes 72˚C. Amplification products

were visualised by ethidium bromide staining after agarose gel electrophoresis.

Western blotting

Nephrin and CD40 expression in GECs was also evaluated by Western blot analysis [35] using

anti-nephrin mAb (at 2.5 μg/ml) or rabbit anti-CD40 polyclonal antibody (1:200), respectively,

as previously described [39].

For the detection of sCD40L in PF partially purified from plasmapheresis eluates from

patients with FSGS, different PF preparations (5 μg), each derived from a single patient, were

subjected to 10% SDS-PAGE under reducing conditions, and, after transfer to nitrocellulose

membranes, blotted with anti-human CD40L mAb (24–31; 1:1000).

Measurement of albumin permeability activity (Palb) in isolated glomeruli

To measure the permeability activity to albumin induced by hr-sCD40L or PF, we used the

method described by Savin et al. [18, 40], with minor variations [19, 33]. Briefly, isolated rat

glomeruli were incubated at 37˚C in 200 μl of medium containing hr-sCD40L (100 ng/ml;

+ 1 μg/ml of enhancer) or PF (500 ng/ml). The medium also contained 5 g/dl bovine serum

albumin (BSA; Sigma Chemical Co) as an oncotic agent. Albumin permeability is a variable

with a minimum of 0.00 in normal glomeruli and a maximum of 1.00 after injury to the per-

meability barrier. Palb values > 0.5 are considered significantly elevated.

sCD40L and glomerular permeability
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This portion of the study was carried out at the University of Trieste after approval of the

experimental protocol by a Committee of Italian Health Ministry (Prot. N. 1120 –August, 7,

2012), and in compliance with Italian regulations (D.L.vo 116/92).

Experimental in vitro conditions

For immunofluorescence (IF) studies, GECs were plated in eight-well Permanox slide at a den-

sity of 50,000 cells per well in DMEM 10% FCS.

In the experiments aimed to study nephrin expression, GECs were incubated with hr-

sCD40L trimeric protein and enhancer (100 ng/ml; + 1 μg/ml of the cross-linking antibody) or

PF (500 ng/ml) for variable times, prior to fixation and staining with mAb specific for the

extracellular domain of nephrin.

To evaluate actin microfilament, GECs were fixed after stimulation, permeabilized by incu-

bation for 5 min at 4˚C in HEPES-Triton X-100 buffer, and stained for 30 min at 37˚C with

FITC-phalloidin (2 μg/ml).

In order to block the biological effects of sCD40L, hr-sCD40L or PF were pre-treated for 10

minutes with CD40-muIg fusion protein (20 ng/ml) or with an anti-human CD40L blocking

mAb (5 μg/ml), or either GECs or isolated rat glomeruli were pre-treated for 30 minutes with

recombinant human CD40L-muCD8 fusion protein (50 ng/ml).

In vivo injection of recombinant sCD40L or PF from plasmapheresis

eluates of FSGS patients

Mouse recombinant sCD40L (200 ng) or PF (approximately 15 μg) obtained from plasmaphe-

resis eluates from FSGS patients, both diluted in a final volume of 100 μl PBS containing 5%

bovine serum albumin (BSA), was injected into the tail vein in female C57BL/6 or SCID mice,

respectively. As negative control, we used heat-inactivated sCD40L or heat-inactivated PF, as

appropriate, or PBS containing 5% BSA. Urine was collected before and after sCD40L, PF or

BSA injection for protein and creatinine analysis. Twenty-four hours after injection, mice

were killed by using deep inhalation anesthesia (isoflurane) followed by an overdose of barbi-

turate (thiopental), and kidneys snap-frozen for immunofluorescence studies.

This portion of the study was carried out at the University of Turin in strict accordance

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health, and guidelines and Italian government regulations. The protocol

was approved by the Institutional Review Committee for Animal Care and Use at the Univer-

sity of Turin (Protocol Number: 0008619-P).

Immunofluorescence studies on kidney sections

4-μm-thick cryostat sections from mouse kidney (6 per group) were incubated overnight at

4˚C with an anti-CD40 rabbit polyclonal antibody (ab58391; Abcam, Cambridge, UK), or an

anti-nephrin antibody (GP-N1; ProgenBiotechnic, Heidelberg, Germany; 1:100), or an anti-

podocin antibody (H-130; Santa Cruz Biotechnology; 1:100), followed by the appropriate sec-

ondary antibody (Alexa Fluor 488 anti-guinea pig or anti-rabbit; Molecular Probes, Leiden,

the Netherlands). Hoechst 33258 dye (Sigma) was added for nuclear staining. The number of

glomeruli available on each section ranged between 5 and 10.

Confocal microscopy analysis was performed using a Zeiss LSM 5 Pascal Model Confocal

Microscope (Carl Zeiss International, Jena, Germany).

Nephrin and podocin expression were analysed semi-quantitatively as previously described

[35].

sCD40L and glomerular permeability
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Measurement of serum sCD40L levels

sCD40L was measured in duplicate using an ELISA assay (R&D Systems, Minneapolis, Minne-

sota), following the manufacturer’s instructions.

Data analysis

Data represent means ± standard error. Statistical analyses were performed with GraphPad

Prism 4.00 for Windows (GraphPad Software, La Jolla, CA, USA) using the Student’s t test or

one-way analysis of variance (ANOVA) in combination with Dunn’s multiple comparison

test, as appropriate.

Correlation between variables was assessed by Pearson correlation including data from all

groups. A P value of< 0.05 was considered significant.

Results

Expression of CD40 in glomerular epithelial cells (GECs)

We demonstrated mRNA and protein expression of CD40 in both primary cultures and in

established lines of differentiated human GECs by multiple techniques, including flow cytome-

try (Fig 1A), indirect immunofluorescence (Fig 1B) and RT-PCR (Fig 1C, upper image). In

addition, we have shown by RT-PCR that primary cultures of rat and mouse GECs and rat glo-

meruli also express CD40 (Fig 1, panel C, lower image, and panel D). Finally, podocyte CD40

expression was shown in mouse frozen kidney sections by indirect immunofluorescence (Fig

1E).

Fig 1. Expression of CD40 in glomeruli and cultured GECs. Panel A. Detection of CD40 by flow cytometry

in cultured human GECs. Panel B. Indirect immunofluorescence staining for CD40 in cultured human GECs

(x400). Panel C. Representative PCR gels for CD40 expression in cultured human (upper panel) and mouse

(lower panel) GECs. Lane 1: 100 bp molecular weight markers; Lane 2: PCR for CD40, no cDNA control;

Lane 3: PCR for CD40. Panel D. Representative PCR gels for CD40 expression in primary cultures of rat

GECs and rat glomeruli. Lane 1: 100 bp molecular weight markers; Lane 2: PCR for CD40, no cDNA control;

Lane 3: PCR for CD40 on primary cultures of rat GECs. Lane 4: PCR for CD40 on rat glomeruli. Panel E.

Indirect immunofluorescence staining for CD40 in frozen mouse kidney sections (x63). Images are

representative of at least 3 separate experiments with similar results.

https://doi.org/10.1371/journal.pone.0188045.g001
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Effect of sCD40L on nephrin expression and cytoskeleton organization

in cultured GECs

We have then evaluated, in cultured podocytes, the effect of CD40 stimulation by human

recombinant sCD40L on nephrin expression and cytoskeleton organization, phenomena that

had been observed to be induced by other well-known proteinuric agents [35, 39]. sCD40L

induced a significant reduction of nephrin expression on podocyte cell membrane (Fig 2, pan-

els B and D), evident after only 15 minutes (Fig 2D, lower graph). This decrease of nephrin

Fig 2. Effect of sCD40L on nephrin expression and cytoskeleton organization in cultured GECs. (A-C)

Micrographs representative of immunofluorescence staining for nephrin in non-permeabilized GECs: (A) GECs

incubated with vehicle alone for 30 min; (B) GECs incubated with hr-sCD40L (100 ng/ml + 1 μg/ml enhancer) for 30

min; (C) Effect of pretreatment with an inhibitor of CD40-CD40L interaction, CD40-muIg fusion protein (20 ng/ml), on

loss of nephrin induced by hr-sCD40L. Original magnification: ×400 (F-H). Bars = 10 μm. Images are representative

of at least 5 separate experiments with similar results. (D) Semiquantitative analysis of nephrin expression as

detected by immunofluorescence staining in GECs incubated with various concentrations of hr-sCD40L for 30 min

(upper graph), and of the time-course effect of incubation of GECs with hr-sCD40L (100 ng/ml + 1 μg/ml enhancer;

dashed bars) or vehicle alone (open bars) on nephrin expression, as detected by immunofluorescence staining

(lower graph). Values are derived from 5 or more experiments for each experimental condition and expressed as

percent variations from baseline value. (E-G) Micrographs representative of fluorescein isothiocyanate phalloidin

staining of actin microfilaments in permeabilized GECs. (E) GECs incubated with vehicle alone for 30 min; (F) GECs

incubated with hr-sCD40L (100 ng/ml + 1 μg/ml enhancer) for 30 min; (G) Effect of pretreatment with an inhibitor of

CD40-CD40L interaction, CD40-muIg (20 ng/ml), on reorganization of cytoskeleton induced by hr-sCD40L. Original

magnification: ×400 (D-I). Bars = 10 μm. Images are representative of at least 5 separate experiments with similar

results. (H) Semiquantitative analysis of nephrin expression as detected by immunofluorescence staining in GECs

incubated with hr-sCD40L (100 ng/ml + 1 μg/ml enhancer) for 30 min in the absence (black bar) or presence of

different inhibitors of CD40-CD40L interaction (dashed bars). Using CD40-muIg fusion protein (20 ng/ml) and the

neutralizing antibody against CD40L (5 μg/ml), hr-sCD40L was pre-treated for 10 minutes prior to GEC stimulation,

whereas the CD40L-muCD8 fusion protein (50 ng/ml) was added to cultured GECs 30 minutes before adding hr-

sCD40L (see Methods for details). Values are derived from 5 or more experiments for each experimental condition

and expressed as percent variations from baseline value. (I) Immunoblot of a representative experiment on the

effect of hr-sCD40L and PF on nephrin expression as detected by Western blot analysis. GEC lysates were

immunoblotted with antibodies anti-nephrin or Beta-actin after incubation with hr-sCD40L (100 ng/ml + 1 μg/ml

enhancer) or PF (500 ng/ml), in the presence or absence of CD40-muIg fusion protein (20 ng/ml) to inhibit

CD40-CD40L interaction. Blots are representative of three independent experiments with similar results.

https://doi.org/10.1371/journal.pone.0188045.g002
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expression was transient, as nephrin was re-expressed after 6 and 24 hours (Fig 2D, lower

graph). The pre-treatment of sCD40L with an inhibitory CD40-muIg fusion protein or with a

neutralizing antibody against CD40L, or of GECs with a CD40L-muCD8 fusion protein pre-

vented the disappearance of nephrin from podocyte surface (Fig 2, panels C and H).

In parallel to nephrin re-distribution and loss from GEC membrane, sCD40L induced a

deep cytoskeleton reorganization, revealed by loss in stress fibers, cortical accumulation of F-

actin and cell retraction (Fig 2F), which was blunted by inhibiting CD40-CD40L interaction

(Fig 2G). Finally, nephrin was barely detectable by Western blot in cell lysates from sCD40L-

stimulated GECs, whereas it appeared preserved in cell lysates obtained from GECs that were

pre-treated with inhibitors ofCD40-CD40L interaction (Fig 2I).

Effect of sCD40L on glomerular permselectivity in isolated rat glomeruli

The effect of sCD40L on glomerular permselectivity was evaluated by using an ex-vivo bioassay

based on measuring the increase in albumin permeability (Palb) in isolated rat glomeruli [19,

33]. sCD40L induced a significant increase of Palb, expressed by values greater than 0.5 (Fig 3;

black bar), which was blunted by pre-treating sCD40L with an inhibitory CD40-muIg fusion

protein or a neutralizing antibody against CD40L, or by pre-incubating the glomeruli with a

CD40L-muCD8 fusion protein (Fig 3, dashed bars).

Effect of in vivo injection of sCD40L

In vivo i.v. administration of sCD40L, but not of heat-inactivated sCD40L, induced a marked

decrease in nephrin expression in mouse glomeruli at 24 hours from the injection (Fig 4, pan-

els B and C). Analogously, the injection of sCD40L, but not of heat-inactivated sCD40L,

through the tail vein provoked a profound reduction of the glomerular expression of podocin

(Fig 4, panels E and F). However, in vivo i.v. injection of sCD40Ldid not induce a significant

increase in urine protein/creatinine ratio (Fig 4G).

Fig 3. Permeability activity of albumin (Palb) induced by sCD40L in isolated rat glomeruli. Palb was

determined after the incubation of rat glomeruli for 30 min with hr-sCD40L (100 ng/ml + 1 μg/ml enhancer). A

significant increase in glomerular permeability is expressed by values of Palb greater than 0.5 (black bar).

Using CD40-muIg fusion protein (20 ng/ml) and the neutralizing antibody against CD40L (5 μg/ml), hr-sCD40L

was pre-treated for 10 minutes prior to glomerulus stimulation, whereas the CD40L-muCD8 fusion protein (50

ng/ml) was added to the glomeruli 30 minutes before adding hr-sCD40L (dashed bars) (see Methods for

details). At least five animals were studied per each experimental group. *P < 0.05 and **P < 0.01 versus

unstimulated controls; #P < 0.01 versus rh-sCD40L.

https://doi.org/10.1371/journal.pone.0188045.g003
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Fig 4. (A-F) Effect of in vivo injection of sCD40L on the glomerular expression of nephrin and podocin.

(A-B) Micrographs representative of immunofluorescence staining for nephrin in glomeruli from female C57BL/

6 mice injected in vivo with 200 ng sCD40L (C) or, as negative control, 200 ng heat-inactivated sCD40L (B)

(x63). Bars = 10 μm. (C) Semiquantitative analysis of nephrin expression as detected by immunofluorescence

staining in glomeruli from female C57BL/6 mice injected in vivo with sCD40L or, as negative control, heat-

inactivated sCD40L (Ctrl). (D-E) Micrographs representative of immunofluorescence staining for podocin in

glomeruli from female C57BL/6 mice injected in vivo with 200 ng sCD40L (F) or, as negative control, 200 ng

heat-inactivated sCD40L (E) (x63). Bars = 10 μm. (F) Semiquantitative analysis of podocin expression as

detected by immunofluorescence staining in glomeruli from female C57BL/6 mice injected in vivo with 200 ng

sCD40L or, as negative control, 200 ng heat-inactivated sCD40L (Ctrl). Glomerular expression of nephrin and

podocin was evaluated by indirect immunofluorescence by confocal microscopy on frozen kidney sections

obtained twenty-four hours after injection, as detailed in the Methods section. Six animals were studied per

experimental group. (G) Urine protein/creatinine ratio 24 hours after a single injection of 5% bovine serum

albumin (BSA–white bars), sCD40L (black bars), or heat-inactivated sCD40L (dashed bars) in female C57BL/6

mice. Each bar is representative of a single experiment.

https://doi.org/10.1371/journal.pone.0188045.g004

sCD40L and glomerular permeability

PLOS ONE | https://doi.org/10.1371/journal.pone.0188045 November 20, 2017 10 / 21

https://doi.org/10.1371/journal.pone.0188045.g004
https://doi.org/10.1371/journal.pone.0188045


Inhibition of CD40-CD40L interaction abrogates the effect of PF from

patients with FSGS on nephrin expression in cultured GECS

We then examined whether sCD40L could represent the so-called Permeability Factor (PF)

previously described as crucial effector of proteinuria in primary FSGS and post-transplant

recurrence of FSGS [20–23]. This putative molecule described in FSGS patients shares with

sCD40L many structural and biological features, such as the production by activated T-lym-

phocytes, and its molecular weight [1–4]. Therefore, we have evaluated whether the effects of

the partially purified PF in GECs could be prevented by inhibiting the biological activity of

sCD40L. In this part of the study, we utilized a partially purified plasmatic fraction prepared

from plasmapheresis eluates from 6 patients who presented post-transplant recurrence of

FSGS (Table 1). The inhibition of CD40-CD40L interaction completely abrogated the effects

of the purified PF on nephrin expression in GECs, as shown both by indirect immunofluores-

cence (Fig 5A) and Western blot (Fig 2F).

Inhibition of CD40-CD40L interaction abrogates the effect of PF from

patients with FSGS on glomerular permselectivity in isolated rat

glomeruli

Analogously to what we observed in cultured GECs, the inhibition of CD40-CD40L interac-

tion abrogated the increase of Palb induced by purified PF in isolated rat glomeruli (Fig 5B).

Effect of in vivo injection of PF from patients with FSGS on glomerular

expression of nephrin

Analogously to what we observed with sCD40L, the in vivo i.v. administration of PF, but not of

heat-inactivated PF, induced a marked decrease in nephrin expression in mouse glomeruli

(Fig 6, panels A and B). However, in vivo PF injection did not induce a significant increase in

urine protein/creatinine ratio at 24 hours from the injection (Fig 6C).

Detection of sCD40L in plasma fractions obtained by plasmapheresis

eluates of FSGS patients

Western blotting analysis of plasma fractions prepared from plasmapheresis eluates obtained

from different patients with post-transplant recurrence of FSGS revealed the presence of two

bands, at 17 and 34 kDa, identical to those of human recombinant sCD40L, which correspond

to the monomeric and dimeric forms of sCD40L (Fig 7). The pre-adsorption of the antibody

with human recombinant sCD40L completely prevented the appearance of the two bands,

showing the specificity of the signal detected by Western blotting (data not shown).

sCD40L is increased in serum of patients with FSGS

Serum sCD40L was measured in several cohorts of children with nephrotic syndrome (NS),

subdivided according to the sensitivity to steroids, all with preserved renal function (eGFR

>60 ml/min). Overall, 38 children were studied, 23 with steroid-dependence, 15 with steroid-

resistance, who were treated with a multidrug approach and had a renal biopsy.

Children who developed NS under the 1st year of age, defined as congenital nephrotic syn-

drome (cNS), underwent a bioptic approach, and were studied with molecular tests. ACTN4

and TRCP mutations were found in two cases.

All adults with NS had a renal biopsy at the onset of proteinuria, and those presenting FSGS

were treated with steroids in association with calcineurin inhibitors. Forty adults had a histol-

ogy diagnosis of iMN, and underwent a different therapeutic approach.
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Data on serum levels of sCD40L are given in Fig 8. In general, sCD40L levels were higher

in patients with NS than in healthy subjects (Fig 8, panels A and C). Moreover, sCD40L was

Fig 5. Effect of the partially purified Permeability Factor (PF), prepared from plasmapheresis eluates

from patients who presented post-transplant recurrence of FSGS, on nephrin expression in cultured

GECs (A) and on Permeability activity of albumin (Palb) in isolated rat glomeruli (B). (A) Semiquantitative

analysis of nephrin expression as detected by immunofluorescence staining in GECs incubated with PF (500

ng/ml) for 30 min in the absence (black bar) or presence of different inhibitors of CD40-CD40L interaction.

Using CD40-muIg fusion protein (20 ng/ml) and the neutralizing antibody against CD40L (5 μg/ml), hr-sCD40L

was pre-treated for 10 minutes prior to GEC stimulation, whereas the CD40L-muCD8 fusion protein (10 μg/ml)

was added to cultured GECs 30 minutes before adding hr-sCD40L (see Methods for details). **P < 0.01

versus unstimulated control and PF + inhibitors of CD40-CD40L interaction. Values are derived from 5 or more

experiments for each experimental condition and expressed as percent variations from baseline value. (B)

Permeability activity of albumin (Palb) induced by PF on isolated rat glomeruli: Palb was determined after the

incubation of rat glomeruli with PF (500 ng/ml), as detailed in the Methods section. A significant increase in

glomerular permeability is expressed by values of Palb greater than 0.5 (black bar). Using CD40-muIg fusion

protein (20 ng/ml) and the neutralizing antibody against CD40L (5 μg/ml), hr-sCD40L was pre-treated for 10

minutes prior to glomerulus stimulation, whereas the CD40L-muCD8 fusion protein (10 μg/ml) was added to

the glomeruli 10 minutes before adding PF. At least five animals were studied per each experimental group.

https://doi.org/10.1371/journal.pone.0188045.g005
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significantly higher in patients both with steroid-dependent and with steroid-resistant NS, at any

age, than in healthy subjects (Fig 8A), and in patients with steroid-resistant NS who had protein-

uria>0.5 than in those with proteinuria<0.5g/day (Fig 8B). However, we did neither found a

direct correlation between sCD40L and proteinuria, nor between sCD40L and eGFR. On the

contrary, the patients with congenital NS had very low sCD40L levels (Fig 8A). In addition,

patients with biopsy-proven FSGS, at any age, had significantly higher sCD40L concentrations

than healthy subjects (Fig 8C). Finally, sCD40L in patients with membranous nephropathy,

Fig 6. Effect of in vivo injection of PF on the glomerular expression of nephrin and urine protein/

creatinine ratio. (A) Micrographs representative of immunofluorescence staining for nephrin in glomeruli from

female SCID mice injected in vivo with PF (left image) or, as negative control, heat-inactivated PF (right image)

(x63). Bars = 10 μm.(B) Semiquantitative analysis of nephrin expression as detected by immunofluorescence

staining in glomeruli from female SCID mice injected in vivo with PF or, as negative control, heat-inactivated PF

(Ctrl). At least five animals were studied per each experimental group. (C) Urine protein/creatinine ratio 24

hours after a single injection of PF (black bars) or heat-inactivated PF (dashed bar) in female SCID mice. Each

bar is representative of a single experiment.

https://doi.org/10.1371/journal.pone.0188045.g006
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although slightly, but still not significantly, higher than in the healthy subjects, resulted signifi-

cantly lower than in patients with steroid-resistant NS (Fig 8C).

Discussion

In this study, we describe a novel role for sCD40L as a modifier of glomerular permselectivity

that acts directly on GECs. The expression of CD40 by GECs has been previously reported by

Fig 7. Detection of sCD40L in plasma fractions obtained by plasmapheresis eluates of FSGS patients by Western blotting. Western blot analysis

of sCD40L in PF preparations obtained from plasmapheresis eluates of different FSGS patients with elevated Palb (lanes A-F), and from a normal patient

with negative Palb (lane G). In the former case, PF was prepared utilizing plasma from FSGS patients undergoing plasmapheresis and separated on Protein

A at different conditions; in the second case, normal plasma without Palb activity was obtained as unbound to Protein A material. PF preparations (5μg) were

immunoblotted with anti-sCD40L antibody, which identified two bands, at 17 and 34 kDa, corresponding to the monomeric and dimeric forms of the

molecule, respectively. hr-sCD40L (500 ng) was used as positive control. Each lane corresponds to an individual patient.

https://doi.org/10.1371/journal.pone.0188045.g007

Fig 8. sCD40L concentrations in serum samples from children and adult patients with idiopathic

nephrotic syndrome and from healthy subjects. (A) Serum sCD40L levels in healthy controls and in patients

with idiopathic nephrotic syndrome (NS), subdivided according to clinical features (i.e. age at onset and

response to steroids). Baseline clinical characteristic of the patients with idiopathic nephrotic syndrome are

reported in Table 2. Children who presented proteinuria under the 1st year of age underwent biopsy and had a

diagnostic molecular approach for several genes implicated in NS; they were classified as congenital NS (cNS).

(B) Serum sCD40L levels in healthy controls and in patients with steroid-resistant idiopathic nephrotic syndrome

according to the levels of proteinuria (< or > 0.5 g/day). (C) Serum sCD40L levels in patients with nephrotic

syndrome and a biopsy-proven diagnosis of FSGS or of iMN. Patients with FSGS were further subdivided

according to their age in < or > 18 years. Patients with iMN were always older than 40 years.All patients had

eGFR >60 ml/min at the time of serum sampling for sCD40L measurement.

https://doi.org/10.1371/journal.pone.0188045.g008
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several research groups [9, 14–17]. Delville M. and coll. [14] have shown CD40 expression in

cultured human podocytes and on podocyte surface in kidney tissue of FSGS patients, but not

of normal subjects [14]. Other studies have independently confirmed that podocytes express

CD40 on their plasma membrane, both in human kidney tissue sections, by using immunohis-

tochemistry and electron microscopy [15], and in rat [16] and mouse glomeruli [9]. Moreover,

a recent paper by Kuo H.L. and coll. demonstrated that podocytes express CD40 and that its

stimulation by CD40L up-regulates inflammatory mediators in the context of early diabetic

nephropathy [17]. In our study, we were able to confirm, by different techniques, that human,

mouse and rat cultured podocytes, as well as glomeruli of normal mice and rats express CD40.

In addition, we have shown that CD40 stimulation by sCD40L induces several biological

effects, suggesting a central role for CD40-CD40L dyad in regulating glomerular permselectiv-

ity. sCD40L induces, indeed, the redistribution and loss of nephrin, and the reorganization of

cell cytoskeleton in cultured GECs (phenomena previously associated with the development of

proteinuria [33, 35, 39]), alters the permselectivity of isolated rat glomeruli, and, when injected

i.v. in mice, markedly reduces nephrin and podocin glomerular expression.

Based on these experimental results, we hypothesized that sCD40L could represent the so-

called Permeability Factor (PF), which is considered a crucial effector of proteinuria in pri-

mary FSGS and post-transplant recurrence of FSGS, but, notwithstanding the research effort

of several groups, had not been identified yet [20–29]. It has been previously shown that the

putative PF may be bound to an immunoglobulin, if it is not an immunoglobulin itself [41],

and has a molecular weight of 30–50 kDa [42]. In the last 15–20 years several molecules have

been proposed as potential candidate circulating PF, either circulating or locally produced

within the glomerulus, including cytokines and growth factors such as vascular permeability

factor (VPF) [43], tumor necrosis factor (TNF)-α [44], transforming growth factor (TGF)-β
[45], and hemopexin [46]. In the last years, soluble urokinase receptor (suPAR) has received

extensive attention, since it increases in patients with recurrent FSGS and correlates with dis-

ease activity, although not all the molecular forms of suPAR were shown to be equally patho-

genic for podocytes [47–50]. In addition, cardiotrophin-like cytokine (CLCF)-1, a member of

IL-6 family of cytokines produced by T-cells, has been recently identified as a candidate cyto-

kine based on its ability to mimic the Palb activity of FSGS sera in vitro [51]. Finally, several

autoantibodies, for instance directed against actin, adenosine triphosphate synthase, angioten-

sin II type 1 receptor, protein tyrosine phosphatase receptor type O (PTPro), and nephrin,

some of them also showing the ability to increase Palb [52], have also been recently implicated

in FSGS pathogenesis [52–55]. Interestingly, autoantibodies against PTPro have been also

identified in a recent study in sera of patients with recurrent FSGS [14].

Since the putative PF described in FSGS patients shares with sCD40L many structural and

biological features, such as the production by activated T-lymphocytes, and its molecular

weight [1–4], we hypothesized that the partially purified PF isolated from plasmapheresis elu-

ates of FSGS patients could contain sCD40L. The results of the present study showed that

blocking the CD40-CD40L dyad prevents the biological effects of PF both in GECs (nephrin

loss and cytoskeleton reorganization) and in isolated glomeruli (Palb increase). Further support

to our hypothesis derives from the observation that the in vivo i.v. injection of PF, but not of

heat-inactivated PF, induced a marked decrease in nephrin expression in mouse glomeruli,

although not associated with increased proteinuria. Finally, we have directly shown by West-

ern blotting the presence of sCD40L in plasma fractions prepared from plasmapheresis eluates

obtained from different patients with post-tranplant recurrence of FSGS. Taken together,

these results suggest that sCD40L may be identified as a soluble PF, whose existence in FSGS

patients has been widely hypothesized, but never clearly documented. Our results are in line

with and independently confirm those reported by Delville M. and coll. [14], who have shown
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that anti-CD40 antibodies purified from patients with recurrent FSGS are pathogenic in cul-

tured podocytes, and enhance in vivo the proteinuric effect of suPAR injection [14]. Therefore,

in addition to autoantibodies directed against CD40, also the presence of high circulating levels

of sCD40L could contribute to the pathogenesis of FSGS engaging the GEC-expressed CD40

receptor.

We then measured the concentrations of sCD40L in pediatric and adult patients with NS,

due to steroid-dependent and steroid resistant NS, or membranous nephropathy, and, as nega-

tive controls, in healthy subjects. sCD40L was significantly more elevated in pediatric and

adult patients affected by both steroid-dependent and steroid-resistant NS than in healthy sub-

jects. Patients with FSGS, at any age, had higher sCD40L than healthy subjects, while children

with congenital NS had very low sCD40L levels. Finally, patients with iMN had sCD40L con-

centrations significantly lower than those measured in patients with steroid-resistant NS.

These results, although preliminary, seems coherent with the hypothesized role of sCD40L as

permeability factor acting specifically in glomerular diseases affecting podocyte function, such

as FSGS.

A tendency versus lower concentrations of sCD40L in older patients than in children could

be also noted. We have no clear explanation for this result that could be, at least partially, due

to a generically less pronounced inflammatory reactivity in older people.

Since we could not find a correlation of sCD40L levels with eGFR, it seems reasonable to

exclude that increased serum sCD40L would be secondary to reduced filtration, as hypothe-

sized for other putative permeability factors, such as suPAR [56]. However, larger studies

would be needed to definitely address this issue.

Several limits should be taken into account in interpreting our results on circulating

sCD40L levels. First, we did not strictly standardize, mainly due to the difficulties secondary to

the low incidence and clinical heterogeneity of the disease, the exact timing of serum sampling

for the measurement of sCD40L levels. In addition, neither we systematically studied sCD40L

before and after transplantation, nor before and after plasmapheresis therapy. Finally, the

exclusion of patients with severely damaged/loss of renal function does not allow us to defi-

nitely rule out the hypothesis that circulating sCD40L may also increase, at least partially, as a

consequence of reduced clearance of sCD40L due to a reduction of the filtration rate. For all

these reasons, our clinical results must be considered preliminary and need to be confirmed in

larger studies. Interestingly though, a recent study has shown that plasma levels of circulating

CD40 are negatively associated, whereas sCD40L levels are directly associated with declines in

eGFR in an all-cause chronic kidney disease cohort [57], suggesting that the increase in

sCD40L levels may precede the loss of renal function.

High levels of sCD40L have been described in several inflammatory diseases [1–4, 58–60]

and cancer [61–63]. Yet, these conditions are not automatically associated with proteinuria,

thus questioning the possible causative role of elevated sCD40L in altering glomerular perms-

electivity. Interesting observations potentially useful to explain these apparently contradictory

data derive from the study by Delville and coll. [14] Anti-CD40 antibodies prepared from

patients with recurrent FSGS, indeed, do not recognize human CD40, yet they are able to pro-

duce podocyte damage in vitro and in vivo [14]. This effect may be related to the unmasking of

cryptic podocyte epitopes caused by other inflammatory stimuli simultaneously acting on this

cell-type, a condition not present in other diseases not affecting the kidney. The same can be

hypothesized for sCD40L, which could access to its receptor CD40 and induce proteinuria

only acting in an additive or synergistic manner with other mediators. Furthermore, the same

authors suggested that a perturbation in the conformation of the CD40 protein may be needed

in order to alter its immunogenicity and cause the production of pathogenic anti-CD40
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autoantibodies [14]. This phenomenon could also be needed for sCD40L binding and the full

expression of its pathogenic effect.

The in vivo injection of sCD40L and PF, although able to induce a reduction in nephrin

expression, did not induce a significant increase in proteinuria, although, in 2 out of the 4 ani-

mals injected with sCD40L and in both mice injected with PF, urine protein/creatinine ratio

was slightly increased. This result could be ascribed to different factors. First, recombinant

sCD40L and sCD40L contained in the partially purified fractions of plasmapheresis eluates

could not be able to reach, in vivo, the concentrations needed to effectively stimulate CD40.

Moreover, the lack of a concomitant inflammatory “milieu” in normal animals could prevent

sCD40L and PF from inducing a significant proteinuric effect in vivo. Inflammatory signals

enhance, indeed, CD40 expression [1–4], which could not result high enough in normal mice.

Furthermore, the presence of other inflammatory mediators may be required for sCD40L to

trigger proteinuria, as already shown for anti-CD40 antibodies purified from patients with

recurrent FSGS, whose administration in mice was not sufficient per se to cause robust albu-

minuria, but enhanced the proteinuria induced by suPAR [14].

Finally, we must acknowledge that we only studied the effect of sCD40L and PF infusion at

24 hours, a time when histologic damage could not be expected to develop. Although we were

able to show that acute injection of sCD40L and PF reduced nephrin expression and increased

urine protein/creatinine ration in some animals, we do not know whether repeated or continu-

ous administration of sCD40L or PF would be able to induce an FSGS-like glomerulosclerosis

over longer time scales.

Taken together, our results suggest that sCD40L could be indicated as an additional puta-

tive PF involved in the pathogenesis of primary and/or recurrent FSGS. Moreover, they seem

coherent with the hypothesis that more than one mediator, either circulating or locally pro-

duced within the glomerulus, could participate in this process, or even an entire cytokine

“milieu” need to be present, as already pointed-out by other authors [14, 44]. This condition

could eventually make even more difficult to find a strong correlation between the concentra-

tion of a putative PF and disease severity or proteinuria.

In conclusion, the results of our study suggest that sCD40L may directly affect podocyte

function interacting with its receptor CD40, and act as a circulating permeability factor that can

participate, presumably in collaboration with other mediators, in the pathogenesis of FSGS.

Further studies are needed in order to elucidate the mechanisms of CD40 activation in sponta-

neous human glomerular pathology, and to develop possible new therapeutic approaches to

block the CD40-CD40L axis with the aim to inhibit progression and/or recurrence of FSGS.
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