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Abstract: We discuss the theoretical bases that underpin the automation of the compu-

tations of tree-level and next-to-leading order cross sections, of their matching to parton

shower simulations, and of the merging of matched samples that differ by light-parton mul-

tiplicities. We present a computer program, MadGraph5 aMC@NLO, capable of handling

all these computations — parton-level fixed order, shower-matched, merged — in a unified

framework whose defining features are flexibility, high level of parallelisation, and human

intervention limited to input physics quantities. We demonstrate the potential of the pro-

gram by presenting selected phenomenological applications relevant to the LHC and to a

1-TeV e+e− collider. While next-to-leading order results are restricted to QCD corrections

to SM processes in the first public version, we show that from the user viewpoint no changes

have to be expected in the case of corrections due to any given renormalisable Lagrangian,

and that the implementation of these are well under way.
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1 Introduction

Quantum Chromo Dynamics is more than forty years old [1, 2], and perturbative calcula-

tions of observables beyond the leading order are almost as old, as is clearly documented in

several pioneering works (see e.g. refs. [3–9]), where the implications of asymptotic freedom

had been quickly understood. The primary motivation for such early works was a theoreti-

cal one, stemming from the distinctive features of QCD (in particular, the involved infrared

structure, and the fact that its asymptotic states are not physical), which imply the need

of several concepts (such as infrared safety, hadron-parton duality, and the factorisation of

universal long-distance effects) that come to rescue, and supplement, perturbation theory.

On the other hand, the phenomenological necessity of taking higher-order effects into ac-

count was also acknowledged quite rapidly, in view of the structure of jet events in e+e−

collisions and of the extraction of αS from data.

Despite this very early start, the task of computing observables beyond the Born level

in QCD has remained, until very recently, a highly non-trivial affair: the complexity of

the problem, due to both the calculations of the (tree and loop) matrix elements and the

need of cancelling the infrared singularities arising from them, has generated a very signif-

icant theoretical activity by a numerous community. More often than not, different cases

(observables and/or processes) have been tackled in different manners, with the introduc-

tion of ad-hoc solutions. This situation has been satisfactory for a long while, given that

beyond-Born results are necessary only when precision is key (and, to a lesser extent, when

large K factors are relevant), and when many hard and well-separated jets are crucial for

the definition of a signature; these conditions have characterized just a handful of cases in

the past, especially in hadronic collisions (e.g., the production of single vector bosons, jet

pairs, or heavy quark pairs).

The advent of the LHC has radically changed the picture since, in a still relatively

short running time, it has essentially turned hadronic physics into a high-precision do-

main, and one where events turning up in large-pT tails are in fact not so rare, in spite

of being characterised by small probabilities. Furthermore, the absence so far of clear

signals of physics beyond the Standard Model implies an increased dependence of discov-

ery strategies upon theoretical predictions for known phenomena. These two facts show
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that presently the phenomenological motivations are extremely strong for higher-order and

multi-leg computations of all observables of relevance to LHC analyses.

While a general solution is not known for the problem of computing exactly the pertur-

bative expansion for any observable up to an arbitrarily large order in αS, if one restricts

oneself to the case of the first order beyond the Born one (next-to-leading order, NLO

henceforth), then such a solution does actually exist; in other words, there is no need

for ad-hoc strategies, regardless of the complexity of the process under study. This re-

markable fact results from two equally important theoretical achievements. Namely, a

universal formalism for the cancellation of infrared singularities [10–14], and a technique

for the algorithmic evaluation of renormalised one-loop amplitudes [15–25], both of which

must work in a process- and observable independent manner. At the NLO (as opposed

to the NNLO and beyond) there is the further advantage that fixed-order computations

can be matched to parton-shower event generators (with either the MC@NLO [26] or the

POWHEG [27] method — see also refs. [28–37] for early, less-developed, or newer related

approaches), thus enlarging immensely the scope of the former, and increasing significantly

the predictive power of the latter.

It is important to stress that while so far we have explicitly considered the case of

QCD corrections, the basic theoretical ideas at the core of the subtraction of infrared

singularities, of the computation of one-loop matrix elements, and of the matching to

parton showers will require no, or minimal, changes in the context of other renormalisable

theories, QCD being essentially a worst-case scenario. This is evidently true for tree-

level multi-leg computations, as is proven by the flexibility and generality of tools such as

MadGraph5 [38], that is able to deal with basically any user-defined Lagrangian.

In summary, there are both the phenomenological motivations and the theoretical

understanding for setting up a general framework for the computation of (any number of)

arbitrary observables in an arbitrary process at the tree level or at the NLO, with or without

the matching to parton showers. We believe that the most effective way of achieving this

goal is that of automating the whole procedure, whose technological challenges can be

tackled with high-level computer languages capable of dealing with abstract concepts, and

which are readily available.

The aim of this paper is that of showing that the programme sketched above has

been realised, in the form of a fully automated and public computer code, dubbed Mad-

Graph5 aMC@NLO. As the name suggests, such a code merges in a unique framework all

the features of MadGraph5 and of aMC@NLO, and thus supersedes both of them (and

must be used in their place). It also includes several new capabilities that were not avail-

able in these codes, most notably those relevant to the merging of event samples with

different light-parton multiplicities. We point out that MadGraph5 aMC@NLO contains

all ingredients (the very few external dependencies that are needed are included in the

package) that are necessary to perform an NLO, possibly plus shower (with the MC@NLO

formalism), computation: it thus is the first public (since Dec. 16th, 2013) code, and so

far also the only one, with these characteristics. Particular attention has been devoted to

the fact that calculations must be doable by someone who is not familiar with Quantum

Field Theories, and specifically with QCD. We also show, in general as well as with explicit
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examples, how the construction of our framework lends itself naturally to its extension to

NLO corrections in theories other than QCD, in keeping with the fact that such a flexibility

is one of the standard features of the tree-level computations which were so far performed

by MadGraph, and that has been inherited by MadGraph5 aMC@NLO.

It is perhaps superfluous to point out that approaches to automated computations con-

stitute a field of research which has a long history, but which has had an exponential growth

in the past few years, out of the necessities and possibilities outlined above. The number of

codes which have been developed, either restricted to leading order (LO henceforth) predic-

tions [38–53], or including NLO capabilities [54–82] is truly staggering. The level of automa-

tion and the physics scope of such codes, not to mention other, perhaps less crucial, char-

acteristics, is extremely diverse, and we shall make no attempt to review this matter here.

We have organized this paper as follows. In section 2, we review the theoretical bases

of our work, and discuss new features relevant to future developments. In section 3 we

explain how computations are performed. Section 4 presents some illustrative results,

relevant to a variety of situations: total cross sections at the LHC and future e+e− colliders,

differential distributions in pp collisions, and benchmark one-loop pointwise predictions, in

the Standard Model and beyond. We finally conclude in section 5. Some technicalities are

reported in appendices A to D.

2 Theoretical bases and recent progress

At the core of MadGraph5 aMC@NLO lies the capability of computing tree-level and one-

loop amplitudes for arbitrary processes. Such computations are then used to predict phys-

ical observables with different perturbative accuracies and final-state descriptions. Since

there are quite a few possibilities, we list them explicitly here, roughly in order of increasing

complexity, and we give them short names that will render their identification unambiguous

in what follows.

1. fLO: this is a tree- and parton-level computation, where the exponents of the coupling

constants are the smallest for which a scattering amplitude is non zero. No shower

is involved, and observables are reconstructed by means of the very particles that

appear in the matrix elements.

2. fNLO: the same as fLO, except for the fact that the perturbative accuracy is the

NLO one. As such, the computation will involve both tree-level and one-loop matrix

elements.

3. LO+PS: uses the matrix elements of an fLO computation, but matches them to

parton showers. Therefore, the observables will have to be reconstructed by using

the particles that emerge from the Monte Carlo simulation.

4. NLO+PS: same as LO+PS, except for the fact that the underlying computation is

an NLO rather than an LO one. In this paper, the matching of the NLO matrix

elements with parton showers is done according to the MC@NLO formalism.
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5. MLM-merged: combines several LO+PS samples, which differ by final-state multi-

plicities (at the matrix-element level). In our framework, two different approaches,

called kT -jet and shower-kT schemes, may be employed.

6. FxFx-merged: combines several NLO+PS samples, which differ by final-state multi-

plicities.

We would like to stress the fact that having all of these different simulation possibilities

embedded in a single, process-independent framework allows one to investigate multiple

scenarios while being guaranteed of their mutual consistency (including that of the physical

parameters such as coupling and masses), and while keeping the technicalities to a minimum

(since the majority of them are common to all types of simulations). For example, one

may want to study the impact of perturbative corrections with (NLO+PS vs LO+PS) or

without (fNLO vs fLO) the inclusion of a parton shower. Or to assess the effects of the

showers at the LO (LO+PS vs fLO) and at the NLO (NLO+PS vs fNLO). Or to check how

the inclusion of different-multiplicity matrix elements can improve the predictions based

on a fixed-multiplicity underlying computation, at the LO (MLM-merged vs LO+PS) and

at the NLO (FxFx-merged vs NLO+PS).

In the remainder of this section we shall review the theoretical ideas that constitute the

bases of the computations listed above in items 1–6. Since such a background is immense,

we shall sketch the main characteristics in the briefest possible manner, and rather discuss

recent advancements that have not yet been published.

2.1 Methodology of computation

The central idea of MadGraph5 aMC@NLO is the same as that of the MadGraph family.

Namely, that the structure of a cross section, regardless of the theory under consideration

and of the perturbative order, is essentially independent of the process, and as such it can

be written in a computer code once and for all. For example, phase spaces can be defined

in full generality, leaving only the particle masses and their number as free parameters (see

e.g. ref. [83]). Analogously, in order to write the infrared subtractions that render an NLO

cross section finite, one just needs to cover a handful of cases, which can be done in a uni-

versal manner. Conversely, matrix elements are obviously theory- and process-dependent,

but can be computed starting from a very limited number of formal instructions, such as

Feynman rules or recursion relations. Thus, MadGraph5 aMC@NLO is constructed as a

meta-code, that is a (Python) code that writes a (Python, C++, Fortran) code, the latter

being the one specific to the desired process. In order to do so, it needs two ingredients:

• a theory model;

• a set of process-independent building blocks.

A theory model is equivalent to the Lagrangian of the theory plus its parameters, such as

couplings and masses. Currently, the method of choice for constructing the model given a

Lagrangian is that of deriving its Feynman rules, thatMadGraph5 aMC@NLO will eventu-

ally use to assemble the matrix elements. At the LO, such a procedure is fully automated in

– 4 –
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FeynRules [84–89]. NLO cross sections pose some extra difficulties, because Feynman rules

are not sufficient for a complete calculation — one needs at least UV counterterms, possibly

plus other rules necessary to carry out the reduction of one-loop amplitudes (we shall gener-

ically denote the latter by R2, adopting the notation of the Ossola-Papadopoulos-Pittau

method [18]). These NLO-specific terms are presently not computed by FeynRules1 and

have to be supplied by hand,2 as was done for QCD corrections to SM processes. Therefore,

while the details are unimportant here, one has to bear in mind that there are “LO” and

“NLO” models to be employed in MadGraph5 aMC@NLO — the former being those that

could also be adopted by MadGraph5, and the latter being the only ones that permit the

user to exploit the NLO capabilities of MadGraph5 aMC@NLO.

Given a process and a model, MadGraph5 aMC@NLO will build the process-specific

code (which it will then proceed to integrate, unweight, and so forth) by performing two

different operations. a) The writing of the matrix elements, by computing Feynman di-

agrams in order to define the corresponding helicity amplitudes, using the rules specified

by the model. b) Minimal editing of the process-independent building blocks. In the ex-

amples given before, this corresponds to writing definite values for particles masses and

the number of particles, and to select the relevant subtraction terms, which is simply done

by assigning appropriate values to particle identities. The building blocks modified in this

manner will call the functions constructed in a). Needless to say, these operations are

performed automatically, and the user will not play any role in them.

We conclude this section by emphasising a point which should already be clear from the

previous discussion to the reader familiar with recent MadGraph developments. Namely

that, in keeping with the strategy introduced in MadGraph5 [38], we do not include among

the process-independent building blocks the routines associated with elementary quantities

(such as vertices and currents), whose roles used to be played by the HELAS routines [91]

in previous MadGraph versions [39, 51]. Indeed, the analogues of those routines are now

automatically and dynamically created by the module ALOHA [92] (which is embedded

in MadGraph5 aMC@NLO), which does so by gathering directly the relevant information

from the model, when this is written in the Universal FeynRules Output (UFO [93])

format. See section 2.3.1 for more details on this matter.

2.2 General features for SM and BSM physics

Since the release of MadGraph5 a significant effort, whose results are now included in

MadGraph5 aMC@NLO, went into extending the flexibility of the code at both the in-

put and the output levels. While the latter is mostly a technical development (see ap-

pendix B.6), which allows one to use different parts of the code as standalone libraries

and to write them in various computer languages, the former extends the physics scope of

MadGraph5 aMC@NLO w.r.t. that of MadGraph5 in several ways, and in particular for

what concerns the capability of handling quantities (e.g., form factors, particles with spin

larger than one, and so forth) that are relevant to BSM theories. Such an extension, to be

1We expect they will in the next public version [90], since development versions exist that are already

capable of doing so — see e.g. section 4.3.
2Note that these are a finite and typically small number of process-independent quantities.
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discussed in the remainder of this section and partly in section 2.3.1, goes in parallel with

the analogous enhanced capabilities of FeynRules, and focuses on models and on their use.

Thus, it is an overarching theme of relevance to both LO and NLO simulations, in view of

the future complete automation of the latter in theories other than the SM. Some of the

topics to which significant work has been lately devoted in MadGraph5 aMC@NLO, and

which deserve highlighting, are the following:

1. Complex mass scheme (section 2.2.1).

2. Support of various features, of special relevance to BSM physics (section 2.2.2).

3. Improvements to the FeynRules/UFO/ALOHA chain (section 2.3.1).

4. Output formats and standalone libraries (appendix B.6).

5. Feynman gauge in the SM (section 2.4.2).

6. Improvements to the front-end user interface (the MadGraph5 aMC@NLO shell —

appendix A).

7. Hierarchy of couplings: models that feature more than one coupling constant order

them in terms of their strengths, so that for processes with several coupling combi-

nations at the cross section level only the assumed numerically-leading contributions

will be simulated (unless the user asks otherwise) — section 2.4 and appendix B.1.

We would finally like to emphasise that in the case of LO computations, be they fLO,

LO+PS, or merged, one can always obtain from the short-distance cross sections a set of

physical unweighted events. The same is not true at the NLO: fNLO cross sections cannot

be unweighted, and unweighted MC@NLO events are not physical if not showered. This

difference explains why at the LO we often adopt the strategy of performing computations

with small, self-contained modules whose inputs are Les Houches event (LHE henceforth)

files [94, 95], while at the NLO this is typically not worth the effort — compare e.g. appen-

dices B.3 and B.4, where the computation of scale and PDF uncertainties at the NLO and

LO, respectively, is considered. Further examples of modules relevant to LO simulations

are given in section 2.3.3.

2.2.1 Complex mass scheme

In a significant number of cases, the presence of unstable particles in perturbative calcu-

lations can be dealt with by using the Narrow Width Approximation (NWA).3 However,

when one is interested in studying either those kinematical regions that correspond to such

unstable particles being very off-shell, or the production of broad resonances, or very in-

volved final states, it is often necessary to go beyond the NWA. In such cases, one needs

to perform a complete calculation, in order to take fully into account off-shell effects, spin

correlations, and interference with non-resonant backgrounds in the presence of possibly

large gauge cancellations. Apart from technical difficulties, the inclusion of all resonant

3See section 2.5 for a general discussion of the NWA and of other related approaches.
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and non-resonant diagrams does not provide one with a straightforward solution, since the

(necessary) inclusion of the widths of the unstable particles — which amounts to a resum-

mation of a specific subset of terms that appear at all orders in perturbation theory —

leads, if done naively, to a violation of gauge invariance. While this problem can be evaded

in several ways at the LO (see e.g. refs. [96–101]), the inclusion of NLO effects complicates

things further. Currently, the most pragmatic and widely-used solution is the so-called

complex mass scheme [102, 103], that basically amounts to an analytic continuation in the

complex plane of the parameters that enter the SM Lagrangian, and which are related

to the masses of the unstable particles. Such a scheme can be shown to maintain gauge

invariance and unitarity at least at the NLO, which is precisely our goal here.

In MadGraph5 aMC@NLO it is possible to employ the complex mass scheme in the

context of both LO and NLO simulations, by instructing the code to use a model that in-

cludes the analytical continuation mentioned above (see the Setup part of appendix B.1 for

an explicit example). For example, at the LO this operation simply amounts to upgrading

the model that describes SM physics in the following way [102]:

• The masses mk of the unstable particles are replaced by
√
m2

k − imkΓk .

• The EW scheme is chosen where α(mZ), mZ , and mW (the former a real number, the

latter two complex numbers defined as in the previous item) are input parameters.

• All other parameters (e.g., GF and θW ) assume complex values. In particular, Yukawa

couplings are defined by using the complex masses introduced in the first item.

At the NLO, the necessity of performing UV renormalisation introduces additional com-

plications. At present, the prescriptions of ref. [103] have been explicitly included and

validated. As was already mentioned in section 2.1, this operation will not be necessary in

the future, when it will be replaced by an automatic procedure performed by FeynRules.

2.2.2 BSM-specific capabilities

One of the main motivations to have very precise SM predictions, and therefore to include

higher order corrections, is that of achieving a better experimental sensitivity in the context

of New Physics (NP) searches. At the same time, it is necessary to have as flexible,

versatile, and accurate simulations as is possible not only for the plethora of NP models

proposed so far, but for those to be proposed in the future as well. These capabilities have

been one of the most useful aspects of the MadGraph5 suite; they are still available in

MadGraph5 aMC@NLO and, in fact, have been further extended.

As was already mentioned, the required flexibility is a direct consequence of using the

UFO models generated by dedicated packages such as FeynRules or SARAH [104], and of

making MadGraph5 aMC@NLO compatible with them. Here, we limit ourselves to listing

the several extensions recently made to the UFO format and the MadGraph5 aMC@NLO

code, which have a direct bearing on BSM simulations.

• The possibility for the user to define the analytic expression for the propagator of a

given particle in the model [105].
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• The implementation of the analytical formulae for two-body decay widths [106], which

allows one to save computing time when the knowledge of the widths of all unstable

particles in the model is needed (see section 2.3.2).

• The possibility to define form factors (i.e., coupling constants depending on the kine-

matic of the vertex) directly in the UFO model. Note that, since form factors cannot

be derived from a Lagrangian, they cannot be dealt with by programs like FeynRules,

and have therefore to be coded by hand in the models. In order to be completely

generic, the possibility is also given to go beyond the format of the current UFO

syntax, and to code the form factors directly in Fortran.4

• Models and processes are supported that feature massive and massless particles of

spin 3/2 [105]. This implies that all spins are supported in the set {0, 1/2, 1, 3/2, 2}.

• The support of multi-fermion interactions, including the case of identical particles

in the final state, and of UFO models that feature vertices with more than one

fermion flow. Multi-fermion interactions with fermion-flow violation, such as in the

presence of Majorana particles, are not supported. Such interactions, however, can

be implemented by the user by splitting the interaction in multiple pieces connected

via heavy scalar particles, a procedure that allows one to define unambiguously the

fermion flow associated with each vertex.

While not improved with respect to what was done in MadGraph5, we remind the reader

that the module responsible for handling the colour algebra is capable of treating particles

whose SUc(3) representation and interactions are non-trivial, such as the sextet and ϵijk-

type vertices respectively.

2.3 LO computations

The general techniques and strategies used in MadGraph5 aMC@NLO to integrate a tree-

level partonic cross section, and to obtain a set of unweighted events from it, have been

inherited from MadGraph5; the most recent developments associated with them have been

presented in ref. [38], and will not be repeated here. After the release of MadGraph5, a

few optimisations have been introduced in MadGraph5 aMC@NLO, in order to make it

more efficient and flexible than its predecessor. Here, we limit ourselves to listing the two

which have the largest overall impact.

1. The phase-space integration of decay-chain topologies has been rewritten, in order

to speed up the computations and to deal with extremely long decay chains (which

can now easily extend up to sixteen particles). In addition, the code has also been

optimised to better take into account invariant-mass cuts, and to better handle the

case where interference effects are large.

4Which obviously implies that this option is not available should other type of out-

puts be chosen (see appendix B.6). Further details are given at: https://cp3.irmp.ucl.ac.be

/projects/madgraph/wiki/FormFactors.
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2. It is now possible to integrate matrix elements which are not positive-definite.5 This is

useful e.g. when one wants to study a process whose amplitude can be written as a sum

of two terms, which one loosely identifies with a “signal” and a “background”. Rather

than integrating |S +B|2, one may consider |S|2 + 2ℜ(SB⋆) and |B|2 separately,

which is a more flexible approach (e.g. by giving one the possibility of scanning a

parameter space, in a way that affects S while leaving B invariant), that also helps

reduce the computation time by a significant amount. One example of this situation

is the case when |B|2 is numerically dominant, and thus corresponds to a very large

sample of events which can however be generated only once, while smaller samples

of events, that correspond to |S|2 + 2ℜ(SB⋆) for different parameter choices, can be

generated as many times as necessary. Another example is that of an effective theory

where a process exists (S) that is also present in the SM (B). In such a case, it

is typically |B|2 + 2ℜ(SB⋆) which is kept at the lowest order in 1/Λ (with Λ being

the cutoff scale). Finally, this functionality is needed in order to study the large-

Nc expansion in multi-parton amplitudes, where beyond the leading 1/Nc terms the

positive definiteness of the integrand is not guaranteed.

In the following sections, we shall discuss various topics relevant to the calculation of

LO-accurate physical quantities. Section 2.3.1 briefly reviews the techniques employed

in the generation of tree-level amplitudes, emphasising the role of recent UFO/ALOHA

developments. Section 2.3.2 presents the module that computes the total widths of all

unstable particles featured in a given model. Section 2.3.3 describes reweighting techniques.

Finally, in section 2.3.4 we review the situation of MLM-merged computations.

2.3.1 Generation of tree-level matrix elements

The computation of amplitudes at the tree level in MadGraph5 aMC@NLO has a scope

which is in fact broader than tree-level physics simulations, since all matrix elements used

in both LO and NLO computations are effectively constructed by using tree-level tech-

niques. While this is obvious for all amplitudes which are not one-loop ones, in the case of

the latter it is a consequence of the L-cutting procedure, which was presented in detail in

ref. [68] and which, roughly speaking, stems from the observation that any one-loop diagram

can be turned into a tree-level one by cutting one of the propagators that enter the loop.

Furthermore, as was also explained in ref. [68] and will be discussed in section 2.4.2, all

of the companion operations of one-loop matrix element computations (namely, UV renor-

malisation and R2 counterterms) can also be achieved through tree-level-like calculations,

which are thus very central to the whole MadGraph5 aMC@NLO framework.

The construction of tree-level amplitudes in MadGraph5 aMC@NLO is based on three

key elements: Feynman diagrams, helicity amplitudes, and colour decomposition. Helicity

amplitudes [107–113] provide a convenient and effective way to evaluate matrix elements

for any process in terms of complex numbers, which is quicker and less involved than one

5We stress that this statement is non-trivial just because it applies to LO computations. In the context

of NLO simulations this is the standard situation, and aMC@NLO has obviously been always capable of

handling it.
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based on the contraction of Lorentz indices. As the name implies, helicity amplitudes

are computed with the polarizations of the external particles fixed. Then, by employing

colour decompositions [114–116], they can be organised into gauge-invariant subsets (often

called dual amplitudes), each corresponding to an element of a colour basis. In this way,

the complexity of the calculation grows linearly with the number of diagrams instead of

quadratically; furthermore, the colour matrix that appears in the squared amplitude can

be easily computed automatically (to any order in 1/Nc) once and for all, and then stored

in memory. If the number of QCD partons entering the scattering process is not too large

(say, up to five or six), this procedure is manageable notwidthstanding the fact that the

number of Feynman diagrams might grow factorially. Otherwise, other techniques that

go beyond the Feynman-diagram expansion have to be employed [45, 49, 52, 117]. The

algorithm used in MadGraph5 aMC@NLO for the determination of the Feynman diagrams

has been described in detail in ref. [38]. There, it has been shown that it is possible to

efficiently “factorise” diagrams, such that if a particular substructure shows up in several

of them, it only needs to be calculated once, thus significantly increasing the speed of the

calculation. In addition, a not-yet-public version of the algorithm can determine directly

dual amplitudes by generating only the relevant Feynman diagrams, thereby reducing the

possible factorial growth to less than an exponential one.

The diagram-generation algorithm of MadGraph5 aMC@NLO is completely general,

though it needs as an input the Feynman rules corresponding to the Lagrangian of a given

theory. The information on such Feynman rules is typically provided by FeynRules, in a

dedicated format (UFO). We remind the reader that FeynRules is a Mathematica-based

package that, given a theory in the form of a list of fields, parameters and a Lagrangian, re-

turns the associated Feynman rules in a form suitable for matrix element generators. It now

supports renormalisable as well as non-renormalisable theories, two-component fermions,

spin-3/2 and spin-2 fields, superspace notation and calculations, automatic mass diagonal-

ization and the UFO interface. In turn, a UFO model is a standalone Python module, that

features self-contained definitions for all classes which represent particles, parameters, and

so forth. With the information from the UFO, the dedicated routines that will actually per-

form the computation of the elementary blocks that enter helicity amplitudes are built by

ALOHA. Amplitudes are then constructed by initializing a set of external wavefunctions,

given their helicities and momenta. The wavefunctions are next combined, according to the

interactions present in the Lagrangian, to form currents attached to the internal lines. Once

all of the currents are determined, they are combined to calculate the complex number that

corresponds to the amplitude for the diagram under consideration. Amplitudes associated

with different diagrams are then added (as complex numbers), and squared by making use

of the colour matrix calculated previously, so as to give the final result. We point out

that versions of MadGraph earlier than MadGraph5 used the HELAS [91, 118] library

instead of ALOHA. By adopting the latter, a significant number of limitations inherent to

the former could be lifted. A few examples follow here. ALOHA is not forced to deal with

pre-coded Lorentz structures; although its current implementation of the Lorentz algebra

assumes four space-time dimensions, this could be trivially generalised to any even integer,

as the algebra is symbolic and its actual representation enters only at the final stage of the
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output writing; its flexibility has allowed the implementation of the complex mass scheme

(see section 2.2.1), and of generic UV and R2 computations (see section 2.4.2); it includes

features needed to run on GPU’s, and the analogues of the Heget [119, 120] libraries

can be automatically generated for any BSM model; finally, it caters to matrix-element

generators other than MadGraph, such as those now used in Herwig++ [121, 122] and

Pythia8 [123]. Since its release in 2011 [92], several important improvements have been

made in ALOHA. On top of the support to the complex mass scheme and to the Feynman

gauge, and of specific features relevant to one-loop computations (which are discussed in

sects. 2.2.1 and 2.4.2), we would like to mention here that there has been a conspicuous gain

in speed, both at the routine-generation phase as well as in the actual evaluation, thanks

to the extensive use of caching. In addition, the user is now allowed to define the form of

a propagator (which is not provided by FeynRules), while previously this was determined

by the particle spin: non-trivial forms, such as those relevant to spin-2 particles in ADD

models [124], or to unparticles, can now be used.

2.3.2 Width calculator

Among the basic ingredients for Monte Carlo simulations of new-physics models are the

masses and widths of unstable particles; which particle is stable and which unstable may

depend on the particular parameter benchmark chosen. Masses are typically obtained by

going to the mass eigenbasis and, if necessary, by evolving boundary conditions from a large

scale down to the EW one. Very general codes exist that perform these operations starting

from a FeynRules model, such as AsperGe [89]. The determination of the corresponding

widths, on the other hand, requires the explicit calculation of all possible decay channels

into lighter (SM or BSM) states. The higher the number of the latter, the more daunting

it is to accomplish this task by hand. Furthermore, depending on the mass hierarchy

and interactions among the particles, the computation of two-body decay rates could be

insufficient, as higher-multiplicity decays might be the dominant modes for some of the

particles. The decay channels that are kinematically allowed are highly dependent on the

mass spectrum of the model, so that the decay rates need to be re-evaluated for every choice

of the input parameters. The program MadWidth [106] has been introduced in order to

address the above issues. In particular, MadWidth is able to compute partial widths for

N -body decays, with arbitrary values of N , at the tree-level and by working in the narrow-

width approximation.6 The core of MadWidth is based on new routines for diagram

generation that have been specifically designed to remove certain classes of diagrams:

• Diagrams with on-shell intermediate particles. If the kinematics of an A→ n-

particles decay allows an internal particle B, that appears in an s-channel, to be

on shell, the corresponding diagram can be seen as a cascade of two decays, A →
B+(n−k)-particles followed by B → k-particles. It is thus already taken into account

in the calculation of lower-multiplicity decay channels, and the diagram is discarded.

6Even if those two assumptions are quite generic, there are particles for which they do not give

sufficiently-accurate results, such as the Standard Model Higgs, which has significant loop-induced decay

modes.

– 11 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

• Radiative diagrams. Roughly speaking, if one or more zero-mass particles are

radiated by another particle, the diagram is considered to be a radiative correction

to a lower-multiplicity decay — the interested reader can find the precise definition

in ref. [106]. Such a diagram is therefore discarded, because it should be considered

only in the context of a higher-order calculation. Furthermore, all diagrams with the

same coupling-constant combination and the same external states are also discarded,

so that gauge invariance is preserved.

MadWidth begins by generating all two-body decay diagrams, and then iteratively adds

extra final state particles with the condition that any diagram belonging to either of the

classes above is forbidden. This iterative procedure stops when all N = 4 modes have

been considered, or estimated to be numerically irrelevant.7 All diagrams thus generated

are integrated numerically. MadWidth uses several methods to reduce significantly the

overall computation time. Firstly, it features two fast (and conservative) estimators, one

for guessing the impact of adding one extra final-state particle before the actual diagram-

generation phase, and another one for evaluating the importance of a single integration

channel. Both of these estimators are used to neglect parts of the computation which are

numerically irrelevant. Secondly, if the model is compatible with the recent UFO extension

of ref. [106], and thus includes the analytical formulae for two-body decays, then the code

automatically uses those formulae and avoids the corresponding numerical integrations.

We conclude this section by remarking that, although essential for performing BSM

cross-section computations, MadWidth should be seen as a complement for the existing

tools that generate models. This is because the information it provides one with must

be available before the integration of the matrix elements is carried out but, at the same

time, really cannot be included in a model itself, since it depends on the chosen bench-

mark scenario. For more details on the use of this model-complementing feature in Mad-

Graph5 aMC@NLO, and of its mass-matrix diagonalisation analogue to which we have

alluded above, see the Setup part of appendix B.1.

2.3.3 Event reweighting

The generation of large samples of events for experimental analyses can be a very time-

consuming operation, especially if it involves a full simulation of the detector response.

It is therefore convenient, whenever possible, to apply corrections, or to study systemat-

ics of theoretical or modelling nature, by using reweighting techniques. The reweighting

of either one-dimensional distributions or that performed on a event-by-event basis are

equally-common practices in experimental physics. Although the basic idea (that a non-

null function can be used to map any other function defined in the same domain) behind

these two procedures is the same, one must bear in mind that they are not identical, and

in particular that the former can never be proven to be formally correct, since correlations

(with other, non-reweighted variables) may be lost or modified, while the latter is correct

in general, at least in the limit of a large number of events. For this reason, we consider

only event-by-event reweighting approaches in what follows.

7Both of these conditions can be controlled by the user.
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Thanks to its flexibility and the possibility of accessing a large amount of information

in a direct and straightforward manner (model and running parameters, matrix elements,

PDFs, and so forth) MadGraph5 aMC@NLO provides one with an ideal framework for

the implementation of such approaches. The strategy is rather simple: one starts with a

set of hard events, such as those contained in an LHE file, and rescales their weights:

wnew = r wold (2.1)

without modifying their kinematics. The rescaling factor r is not a constant, and may

change on an event-by-event basis. This implies that, even when the original sample of

events is unweighted (i.e., the wold’s are all equal), the reweighted one will be in general

weighted (i.e., the wnew’s may be different), and therefore degraded from a statistical point

of view. If, however, the spread of the new weights is not too large (i.e., the r’s are

close to each other, and feature a small number of outliers), the reweigthing is typically

advantageous with respect to generating a new independent sample from scratch.

While eq. (2.1) is completely general, its practical implementation depends on the kind

of problems one wants to solve. We shall consider three of them in this section, two of

which constitute a direct application of the basic formula (2.1), and a third one which

is more sophisticated. Since these procedures address different types of physics, they are

conveniently associated with different modules in MadGraph5 aMC@NLO, but they are

all fully embedded into our framework and easily accessible through it, as we shall briefly

explain in what follows and in appendices B.4 and B.5.

The simplest example is that of the evaluation of the uncertainties through to the

variations of the renormalisation and factorisation scales, and of the PDFs. In such a case

r is easily determined by using the identities i and j of the initial-state partons, and the

power (b) of αS in the Born matrix elements:8

r =
fnew
i (x1, µnew

F )fnew
j (x2, µnew

F )αb
S(µ

new
R )

fold
i (x1, µold

F )fold
j (x2, µold

F )αb
S(µ

old
R )

. (2.2)

It should be stressed that, although scale and PDF systematics can also be computed with

reweighting techniques at the NLO (see ref. [125]), in general they cannot be written in the

very simple form of eq. (2.1), which is that of an overall rescaling. For a direct comparison

of the NLO and LO techniques employed in this context by MadGraph5 aMC@NLO, and

for fuller details about them, see appendices B.3 and B.4 respectively.

Another rather simple example is that of the case where one is interested in studying

the implications of changing the modelling of a process, with the sole constraint that its

initial and final states be the same. Such a situation can for example occur when the

numerical values of the coupling constants are modified, or when the contributions of

classes of diagrams are included or eliminated (e.g., Higgs exchange in EW vector boson

scattering). The common feature of all examples of this kind is that they are associated

8There may be cases where such matrix elements do not factorise a single αS factor — see e.g. section 2.4.

We limit ourselves to discussing the simplest, and more common, situation here.
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with changes to matrix elements, all computed with the same kinematic configuration.

Therefore, one can simply write:

r = |Anew|2/|Aold|2 , (2.3)

which for obvious reasons is dubbed matrix-element reweighting. Despite its simplicity,

this method has very many different applications, from parameter scanning in new-physics

models (where one starts with a single sample of events, that corresponds to a given bench-

mark point, and generates as many new ones as the number of parameter configurations of

interest), to more advanced approaches, such as the inclusion of exact loop effects (Anew)

in processes that can be also, and more simply, described by effective theories (Aold) —

see refs. [126, 127] for recent results of the latter type that make use of MadGraph5 and

MadGraph5 aMC@NLO. Some further comments on matrix-element reweighting and its

practical usage in MadGraph5 aMC@NLO are given in appendix B.5.

We finally turn to discussing the matrix-element method [128–130], which can be seen

as a reweighting one because the weights determined at the parton level through matrix-

element computations are possibly modified by a convolution to take into account a variety

of blurring effects (such as those due to a detector). On the other hand, from the practical

point of view it turns out to be more convenient, rather than talking about reweighting

factors, to introduce a likelihood P (q|α) for the observation of a given kinematic configu-

ration (q) given a set of theoretical assumptions (α). By doing so, one can just re-express

eq. (2.3) in a different language:

P (q|α) = V
σ̂α

|Aα(q)|2 , (2.4)

with V a suitable volume factor, and σ̂α the total rate associated with the given assump-

tions α. The advantage of eq. (2.4) is that it is suitable to handle cases which are much

more complicated than the purely-theoretical exercise of eq. (2.3), which has led to its in-

troduction here. For example, in the first approximation one may think of q as the actual

kinematic configuration measured by an experiment, whose accuracy is such that it can

be directly used as an argument of the matrix elements, as is done in eq. (2.4). Note that

this is a rather strong assumption, that in practice identifies hadron-level with parton-level

quantities, and assumes that the knowledge of the final state is complete (such as that which

one can ideally obtain in Drell-Yan production, pp→ Z → ℓ+ℓ−). It is clear that there are

many ways in which this simple approximation (which is used, for example, in refs. [131–

135]) can break down: the effects of radiation, of the imperfect knowledge of the detector,

of the impossibility of a strict identification of parton- with hadron-level quantities, the

uncertainties that plague the latter, the fact that all the relevant four-momenta cannot

in general be measured, are but a few examples. It is therefore necessary to generalise

eq. (2.4), which one can do as follows:

P (q|α) = 1

σα

∫
dx1dx2dφ(p)f

(1)(x1)f
(2)(x2) |Aα(p)|2W (q,p) . (2.5)

In eq. (2.5), we have denoted by p the parton kinematic configuration. All effects that

may turn p into the detector-level quantity q (whose dimensionality therefore need not
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coincide with that of p) are parametrised by W (q,p), called transfer function. As for any

hadron-collision measurable quantity, eq. (2.5) features the convolution with the PDFs.

The likelihood introduced in this way can be used in the context e.g. of an hypothesis test

in order to determine which among various choices of α is the most probable.

Although this method is both conceptually simple and very attractive, the numeri-

cal evaluation of P (q|α) is difficult because the transfer function W (q,p) behaves in a

way which cannot be probed efficiently by phase-space parametrisations that work well

for just the matrix elements. In order to address this issue, a dedicated program, dubbed

MadWeight [136], has been introduced that includes an optimised phase-space treatment

specifically designed for eq. (2.5). The new version of the code [137] embedded in Mad-

Graph5 aMC@NLO features several improvements w.r.t. that of ref. [136]. It includes the

method for the approximate description of higher-order effects due to initial-state radia-

tion, as proposed in ref. [138]. Furthermore, several optimizations have been achieved that

render the computations much faster (sometimes by orders of magnitude); this allows one

to use this approach also in the case of very involved final states, such as those relevant to

Higgs production in association with a tt̄ pair [139]. Further details on MadWeight and

its use within MadGraph5 aMC@NLO can be found in appendix B.5.

2.3.4 Tree-level merging

The goal of merging is that of combining samples associated with different parton multi-

plicities in a consistent manner, that avoids double counting after showering, thus allowing

one to effectively define a single fully-inclusive sample. The tree-level merging algorithms

implemented in MadGraph5 aMC@NLO are a hybrid version of those available in Alp-

gen [45] and SHERPA [140]; they work for both SM and BSM hard processes, but are

fully automated only when the shower phase is performed with either Pythia6 [141] or

Pythia8 [123] (however, there are no reasons in principle which prevents these schemes

from working with HERWIG6 [142, 143] or Herwig++ [121, 122]). They are based on the

use of a kT -measure [144] to define hardness and to separate processes of different multiplici-

ties, and do not perform any analytic-Sudakov reweighting of events; rather, this operation

is effectively achieved by rejecting showered events under certain conditions (see later),

which implies a direct use of the well-tuned showering and hadronization mechanisms of

the parton shower Monte Carlos.

There are two merging schemes that can be used in conjunction with Pythia6 and

Pythia8; in the case of the latter, one is also given the possibility of considering CKKW-

L approaches [145–147] (after having generated the samples relevant to various parton

multiplicities with MadGraph5 aMC@NLO); in what follows, we shall limit ourselves to

briefly describe the former two methods. Firstly, one has the kT -jet MLM scheme [148],

where final-state partons at the matrix-element level are clustered according to a kT jet

algorithm to find the “equivalent parton shower history” of the event. In our implemen-

tation the Feynman diagram information from MadGraph5 aMC@NLO is used to retain

only those clusterings that correspond to actual Feynman diagrams. In order to mimic the

behaviour of the parton shower, the kT value for each clustering vertex associated with a

QCD branching is used as the renormalisation scale for αS in that vertex. All factorisation
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scales squared, and the renormalisation scale squared for the hard process (the process with

the zero-extra-parton multiplicity), are constructed by clustering back to the irreducible

2→ 2 system and by using the transverse mass in the resulting frame: µ2 = p2T +m2. The

smallest kT value found in the jet-reconstruction procedure is restricted to be larger than

some minimum cutoff scale, which we denote by QME
cut ; if this condition is not satisfied,

the event is rejected. The hard events are then showered by Pythia: at the end of the

perturbative-shower phase, final-state partons are clustered into jets, using the very same kT

jet algorithm as before, with the jets required to have a transverse momentum larger than a

given scale Qmatch, with Qmatch > QME
cut . The resulting jets are compared to the partons at

the hard subprocess level (i.e., those that result from the matrix-element computations): a

jet j is said to be matched to a parton p if the distance between the two, defined according

to ref. [144], is smaller than the minimal jet hardness: kT (j, p) < Qmatch. The event is then

rejected unless each jet is matched to a parton, except in the case of the largest-multiplicity

sample, where extra jets are allowed if softer than the kT of the softest matrix-element par-

ton in the event, QME
softest. Secondly, and with the aim to give one a non-parametric way

to study merging systematics, one has the shower-kT scheme, which can be used only with

Pythia’s pT -ordered shower. In this case, events are generated by MadGraph5 aMC@NLO

as described above and then showered, but information is also retained on the hardest

(which is also the first, in view of the pT -ordered nature of Pythia here) emission in the

shower, QPS
hardest; furthermore, one sets Qmatch = QME

cut , which cannot be done in the con-

text of the kT -jet MLM scheme. For all samples but the largest-multiplicity one, events are

rejected if QPS
hardest > Qmatch, while in the case of the largest-multiplicity sample events are

rejected when QPS
hardest > QME

softest. This merging scheme is simpler than the kT -jet MLM one,

but it rather effectively mimics it. Furthermore, it probes the Sudakov form factors used

in the shower in a more direct manner. Finally, the treatment of the largest-multiplicity

sample is fairly close to that used in the CKKW-inspired merging schemes. In both the

kT -jet MLM and shower-kT methods, merging systematics are associated with variations

of Qmatch; in the former case, changes to Qmatch must be done by keeping Qmatch −QME
cut a

constant. For applications of the two schemes described here, see e.g. refs. [126, 148–151].

2.4 NLO computations

When discussing the problem of perturbative corrections, one should bear in mind that one

usually considers an expansion in terms of a single quantity (which is a coupling constant

for fixed-order computations). However, this is just a particular case of the more general

scenario in which that expansion is carried out simultaneously in two or more couplings,

all of which are thus treated as “small” parameters — we shall refer to such a scenario

as mixed-coupling expansion. Despite the fact that there is typically a clear numerical

hierarchy among these couplings, a mixed-coupling situation is far from being academic;

in fact, as we shall show in the following, there are cases when one is obliged to work with

it. In order to study a generic mixed-coupling expansion without being too abstract, let

us consider an observable Σ which receives contributions from processes that stem from

both QCD and QED interactions. The specific nature of the interactions is in fact not

particularly relevant (for example, QED here may be a keyword that also understands the
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pure-EW contributions); what matters, for the sake of the present discussion, is that Σ

may depend on more than one coupling constant. We assume that the regular function

Σ(αS,α) (2.6)

admits a Taylor representation:

Σ(αS,α) =
∞∑

n=0

∞∑

m=0

αn
Sα

m

n!m!

[
∂n+mΣ

∂nαS∂mα

]

(αS ,α)=(0,0)

, (2.7)

which is by definition the perturbative expansion of Σ. The first few terms of the sums in

eq. (2.7) will be equal to zero, with the number of such vanishing terms increasing with the

complexity of the process under consideration — this is because n andm are directly related

to the number of vertices that enter a given diagram. In general, it is clear that for a given

pair (n,m) which gives a non-vanishing contribution to eq. (2.7), there may exist another

pair (n′,m′), with n ̸= n′, m ̸= m′, and n+m = n′ +m′ whose contribution to eq. (2.7) is

also non zero. It appears therefore convenient to rewrite eq. (2.7) with a change of variables:

k = n+m, l = n−m, (2.8)

whence:

Σ(αS,α) =
∞∑

k=0

k∑

l=−k

Pk,l α
(k+l)/2
S α(k−l)/2

((k + l)/2)!((k − l)/2)!

[
∂kΣ

∂(k+l)/2αS∂(k−l)/2α

]

(αS ,α)=(0,0)

, (2.9)

where

Pk,l = δ
(
mod(k, 2),mod(l, 2)

)
, (2.10)

which enforces the sum over l to run only over those integers whose parity is the same as

that of k (therefore, there are k+1 terms in each sum over l for a given k). Equation (2.9)

implies that we need to call Born the sum (over l) of all the contributions with the smallest

k ≡ k0 which are non-vanishing. Hence, the NLO corrections will correspond to the sum

over l of all terms with k = k0 +1. This notation is compatible with the usual one used in

the context of the perturbation theory of a single coupling: the QCD- or QED-only cases are

recovered by considering l = k or l = −k respectively. In a completely general case, for any

given k there will exist two integers lm(k) and lM (k) which satisfy the following conditions:

− k ≤ lm(k) ≤ lM (k) ≤ k , (2.11)

and such that all contributions to eq. (2.9) with

l < lm(k) or l > lM (k) (2.12)

vanish, and l = lm(k), l = lM (k) are both non-vanishing. This implies that in the range

lm(k) ≤ l ≤ lM (k) , (2.13)
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there will be at least one (two if lm(k) ̸= lM (k)) non-null contribution(s) to eq. (2.9) (the

typical situation being actually that where all the terms in eq. (2.13) are non-vanishing).

Given eq. (2.13), one can re-write eq. (2.9) in the following way:

Σ(αS,α) =
∞∑

k=k0

αcs(k)
S αc(k)

∆(k)∑

q=0

Σk,q α
∆(k)−q
S αq , (2.14)

where

cs(k) =
1

2
(k + lm(k)) , (2.15)

c(k) =
1

2
(k − lM (k)) , (2.16)

∆(k) =
1

2
(lM (k)− lm(k)) . (2.17)

The coefficients Σk,l of eq. (2.14) can be expressed in terms of the quantities that appear

in eq. (2.9), but this is unimportant here. A typical situation is where:

lM (k + 1) = lM (k) + 1 , (2.18)

lm(k + 1) = lm(k)− 1 , (2.19)

so that:

cs(k + 1) = cs(k) , (2.20)

c(k + 1) = c(k) , (2.21)

∆(k + 1) = ∆(k) + 1 , (2.22)

whence:

Σ(αS,α) = αcs(k0)
S αc(k0)

∞∑

p=0

∆(k0)+p∑

q=0

Σk0+p,q α
∆(k0)+p−q
S αq , (2.23)

where the Born and NLO contributions correspond to p = 0 and p = 1 respectively. Note

that eq. (2.23) is the most general form of the observable Σ(αS,α) if one allows the pos-

sibility of having Σk0+p,0 = 0 or Σk0+p,∆(k0)+p = 0 (or both) for p > k0, since this renders

eqs. (2.18) and (2.19) always true. Equation (2.23) has the advantage of a straightforward

interpretation of the role of NLO corrections.

An example may help make the points above more explicit. Consider the contribution

to dijet production due to the partonic process uu → uu; the corresponding lowest-order

t- and u-channel Feynman diagrams feature the exchange of either a gluon or a photon (or

a Z, but we stick to the pure-U(1) theory here). The Born matrix elements will therefore

be the sum of terms that factorise the following coupling combinations:

α2
S , αSα , α2 , (2.24)

which implies k0 = 2, ∆(2) = 2, and cs(2) = c(2) = 0. Therefore, according to eq. (2.23),

the NLO contribution p = 1 will feature the following coupling combinations:

α3
S , α2

Sα , αSα
2 , α3 . (2.25)
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αs

3 αs

2α α2αs
α3

αs

2 αsα α2

Figure 1. QCD (blue, right-to-left arrows) corrections and QED (red, left-to-right arrows) correc-
tions to dijet production. See the text for details.

From the procedural point of view, it is convenient to identify QCD and QED corrections

according to the relationship between one coupling combination in eq. (2.24) and one in

eq. (2.25), as follows:

αn
Sα

m QCD−→ αn+1
S αm , (2.26)

αn
Sα

m QED−→ αn
Sα

m+1 , (2.27)

which has an immediate graphic interpretation, depicted in figure 1. Such an interpretation

has a Feynman-diagram counterpart in the case of real-emission contributions, which is

made explicit once one considers cut-diagrams, like those presented in figure 2. Loosely

speaking, one can indeed identify the diagram on the left of that figure as representing QED

(since the photon is cut) real-emission corrections to the α2
S Born contribution. On the

other hand, the diagram on the right represents QCD (since the gluon is cut) real-emission

corrections to the αSα Born contribution. This immediately shows that, in spite of being

useful in a technical sense, QCD and QED corrections are not physically meaningful if

taken separately: in general, one must consider them both in order to arrive at a sensible,

NLO-corrected result. This corresponds to the fact that a given coupling combination in

the bottom row of figure 1 can be reached by means of two different arrows when starting

from the top row (i.e., the Born level). Therefore, figure 1 also immediately shows that

when one considers only the Born term associated with the highest power of αS (α), then

QCD-only (QED-only) corrections are sensible (because only a right-to-left or left-to-right

arrow is relevant, respectively): they coincide with the NLO corrections as defined above

(see the paragraph after eq. (2.10)). It also should be clear that the above arguments have a

general validity, whatever the values of cs(k0), c(k0), and ∆(k0) in eq. (2.23) — the former

two quantities never play a role in the analogues of figure 1, while by increasing ∆(k0)

one simply inserts more blobs (i.e., coupling combinations) in both of the rows of figure 1.

Finally, note that reading eqs. (2.26) and (2.27) in terms of diagrams, as has been done

for those of figure 2, becomes much harder when one considers virtual contributions. For

example, the one whose O(α2
Sα) cut-diagram is shown in figure 3 (and its analogues) can

indeed be equally well interpreted as a QED loop correction to a QCD×QCD O(α2
S) Born

cut-diagram, or as a QCD loop correction to a QCD×QED O(αSα) Born cut-diagram.

MadGraph5 aMC@NLO has been constructed by having eq. (2.23) in mind; although

the majority of the relevant features are not yet available in the public version of the code,
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Figure 2. Real-emission contributions to dijet production at the NLO and O(α2
S
α). The saw-

shaped lines represent Cutkosky cuts.

Figure 3. Virtual contribution to dijet production at the NLO and O(α2
S
α). The saw-shaped line

represents a Cutkosky cut.

all of them have already been thoroughly tested in the module responsible for computing

one-loop matrix elements (see sects. 2.4.2 and 4.3), which is by far the hardest from this

point of view, and the checks on the real-emission part are also at quite an advanced

stage. The basic idea is that of giving the user the choice of which coupling combinations

to retain either at the Born or at the NLO level; this corresponds to choosing a set of

blobs in the upper or lower row of figure 1, respectively. MadGraph5 aMC@NLO will

then automatically also consider the blobs in the row not involved in the selection by the

user, in order to construct a physically-meaningful cross section, compatible with both

the user’s choices, and the constraints due to a mixed-coupling expansion (the arrows in

figure 1). It should be stressed that, although the results for the coefficients Σk0+p,q can be

handled separately by MadGraph5 aMC@NLO, such coefficients are not (all) independent

from each other from a computational viewpoint, because a single Feynman diagram (an

amplitude-level quantity) may contribute to several Σk0+p,q’s (the latter being amplitude-

squared quantities). For this reason, as far as the CPU load is concerned the choice of which
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coupling combinations to consider can be equivalently made at the amplitude level. Indeed,

this is the only option presently available in the public version of MadGraph5 aMC@NLO;

more detailed explanations are given in appendix B.1.

2.4.1 NLO cross sections and FKS subtraction: MadFKS

In this section, we briefly review the FKS subtraction [10, 12] procedure, and emphasise the

novelties of its implementation in MadGraph5 aMC@NLO w.r.t. its previous automation

in MadFKS [61], the dedicated module included in aMC@NLO.

We shall denote by n the number of final-state particles relevant to the Born con-

tributions to a given cross section. The set of all the partonic 2 → n subprocesses that

correspond to these contributions will be denoted by Rn; each of these subprocesses can

be represented by the ordered list of the identities of its 2 + n partons, thus:

r = (I1, . . . In+2) ∈ Rn . (2.28)

The first operation performed byMadGraph5 aMC@NLO is that of constructingRn, given

the process and the theory model. For example, if one is interested in the hadroproduction

of a W+Z pair in association with a light jet

pp −→ W+Zj (2.29)

as described by the SM, MadGraph5 aMC@NLO will obtain:

R3 =
{(

u, d̄,W+, Z, g
)
, . . .

(
u, g,W+, Z, d

)
, . . .

}
. (2.30)

Since the processes in Rn are tree-level, MadGraph5 aMC@NLO will construct them very

efficiently using the dedicated algorithms (see section 2.3.1). Beyond the Born level, an

NLO cross section receives contributions from the one-loop and real-emission matrix ele-

ments. As is well known, the set of the former subprocesses coincides9 with that of the

Born, Rn. Real-emission processes are by nature tree-level, and can therefore be obtained

by using the very same algorithms as those employed to generate the Born contributions.

This is achieved by making the code generate all tree-level processes that have the same

final-state as the Born’s, plus one light jet — using the example of eq. (2.29), these would

correspond to:

pp −→ W+Zjj . (2.31)

Such was the strategy adopted in the original MadFKS implementation [61]. There is

however an alternative procedure, which we have implemented in MadGraph5 aMC@NLO

because it is more efficient than the previous one in a variety of ways. Namely, for any

given r0 ∈ Rn, one considers all possible a → bc branchings for each non-identical a ∈ r0
with a strongly-interacting (i.e., g → gg, g → qq̄, and q → qg, but also Q → Qg, with

Q a quark with non-zero mass). For each of these branchings, a new list is obtained

9This is because we are considering here only those cases where one-loop matrix elements are obtained

by multiplying the one-loop amplitudes times the Born ones. Loop-induced processes, in which the LO

contribution is a one-loop amplitude squared, are not to be treated as part of an NLO computation.
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by removing a from r0, and by inserting the pair (b, c) in its place. By looping over r0
one thus constructs the set10 of real-emission processes Rn+1. As a by-product, one also

naturally obtains, for each r ∈ Rn+1, the pairs of particles which are associated with a

soft and/or a collinear singularity of the corresponding matrix element (which we denote

by M(n+1,0)(r)); by definition [61], these pairs form the set of FKS pairs, PFKS(r), which

is central in the FKS subtraction procedure. We point out, finally, that regardless of

the type of strategy adopted to construct Rn+1 and PFKS, it is immediate to apply it in

MadGraph5 aMC@NLO to theories other than QCD, such as QED.

After having obtained PFKS(r), MadGraph5 aMC@NLO constructs the S functions

that are used by FKS in order to achieve what is effectively a dynamic partition of the

phase space: in each sector of such a partition, the structure of the singularities of the

matrix elements is basically the simplest possible, amounting (at most) to one soft and one

collinear divergence. The properties of the S functions are:

Sij(r) −→ 1 i, j collinear , (2.32)
∑

j

(i,j)∈PFKS(r)

Sij(r) −→ 1 i soft , (2.33)

Sij(r) −→ 0 all other IR limits , (2.34)
∑

(i,j)∈PFKS(r)

Sij(r) = 1 . (2.35)

One exploits eq. (2.35) by rewriting the real matrix elements as follows:

M(n+1,0)(r) =
∑

(i,j)∈PFKS(r)

Sij(r)M(n+1,0)(r) ≡
∑

(i,j)∈PFKS(r)

M(n+1,0)
ij . (2.36)

Thanks to eqs. (2.32)–(2.34), M(n+1,0)
ij has the very simple singularity structure mentioned

above. Furthermore, the terms in the sum on the r.h.s. of eq. (2.36) are independent of

each other, and MadGraph5 aMC@NLO is thus able to handle them in parallel.

The FKS method exploits the fact that phase-space sectors associated with different Sij

functions are independent of each other by choosing different phase-space parametrisations

in each of them. There is ample freedom in such a choice, bar for two integration variables:

the rescaled energy of parton i (denoted by ξi), and the cosine of the angle between partons

i and j (denoted by yij), both defined in the incoming-parton c.m. frame. The idea is that

these quantities are in one-to-one correspondence with the soft (ξi → 0) and collinear (yij →
1) singularities respectively, which renders it particularly simple to write the subtracted

cross section. The (n+ 1)-body phase space is then written as follows:

dφn+1 = Φ(n+1)
ij

(
Kn+1(χ

(ij)
n+1)

)
dχ(ij)

n+1 , (2.37)

where χ(ij)
n+1 collectively denote the 3n− 1 independent integration variables, with

{ξi, yij} ⊂ χ(ij)
n+1 , (2.38)

10The exceedingly rare cases of non-singular real-emission contributions can be obtained by crossing; one

example is qq̄ → Hg, which is the crossed process of qg → Hq.
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and where

Kn+1 = {k3, k4, · · · kn+3} (2.39)

is the set of final-state momenta. Given eq. (2.38), MadGraph5 aMC@NLO chooses the

other 3n − 3 integration variables and thus determines Φ(n+1)
ij and the functional depen-

dence Kn+1(χ
(ij)
n+1) according to the form of the integrand, gathered from the underlying

Feynman diagrams. In general, this implies splitting the computation in several integra-

tion channels, which are independent of each other and can be dealt with in parallel. Such

multi-channel technique is irrelevant here, and will be understood in the following. More

details can be found in refs. [152, 153] and [61]. Implicit in eq. (2.37) are the maps that al-

low one to construct soft and collinear kinematic configurations starting from a non-special

configuration (i.e., one where no parton is soft, and no two partons are collinear). This we

shall denote as follows. Given:

K(E)
n+1 = {k3, k4, · · · kn+3} non special (2.40)

MadGraph5 aMC@NLO constructs its soft, collinear, and soft-collinear limits with:

K(S)
n+1 = K(E)

n+1(ξi = 0) , (2.41)

K(C)
n+1 = K(E)

n+1(yij = 1) , (2.42)

K(SC)
n+1 = K(E)

n+1(ξi = 0, yij = 1) . (2.43)

Furthermore, all the phase-space parametrisations employed by MadGraph5 aMC@NLO

are such that:11

K(S)
n+1 = K(C)

n+1 = K(SC)
n+1 , (2.44)

which is beneficial from the point of view of the numerical stability of observables computed

at the NLO, and is necessary in view of matching with the parton shower according to

the MC@NLO formalism. As is usual in the context of NLO computations, we call the

non-special and the IR-limit configurations (and, by extension, the corresponding cross-

section contributions) the event and the soft, collinear, and soft-collinear counterevents

respectively.

Given a real-emission process rR ∈ Rn+1 and an Sij contribution, the FKS-subtracted

cross section consists of four terms:

dσ(NLO)

ij (rR) ←→
{
dσ(NLO,α)

ij (rR)
}

α=E,S,C,SC
(2.45)

dσ(NLO,α)

ij (rR) = L(α)
(
rR;χ

(ij)
Bj

)
W (α)

ij (rR) dχ
(ij)
Bj dχ(ij)

n+1 , (2.46)

where dχ(ij)
Bj is the integration measure over Bjorken x’s, L(α) is the corresponding parton-

luminosity factor,12 and the short-distance weights W (α)
ij are reported in refs. [61, 125].

11Equation (2.44) holds for all particles except the FKS-pair partons; for the latter, it is the sum of

their four-momenta that is the same in the three configurations. This is sufficient owing to the underlying

infrared-safety conditions.
12Whose dependence on α is a consequence of eq. (2.44) when j = 1, 2 — see ref. [26] for more details.
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In ref. [61], in particular, an extended proof is given that all contributions to an NLO

cross section which are not naturally (n + 1)-body ones (such as the Born, virtual, and

initial-state collinear remainders) can be cast in a form formally identical to that of the

soft or collinear counterterms, and can thus be dealt with simultaneously with the latter.

The fully differential cross section that emerges from eqs. (2.45) and (2.46) is:

dσ(NLO)

ij (rR)

dK = δ
(
K −K(E)

n+1

) dσ(NLO,E)

ij (rR)

dχ(ij)
Bj dχ

(ij)
n+1

dχ(ij)
Bj dχ

(ij)
n+1

+δ
(
K −K(S)

n+1

) ∑

α=S,C,SC

dσ(NLO,α)

ij (rR)

dχ(ij)
Bj dχ

(ij)
n+1

dχ(ij)
Bj dχ

(ij)
n+1 , (2.47)

where we have understood the complete integration over the measures on the r.h.s.. Mad-

Graph5 aMC@NLO scans the phase space by generating randomly {χ(ij)
Bj ,χ

(ij)
n+1}. For each

of these points, an event kinematic configuration K(E)
n+1 and its weight, and a counterevent

kinematic configuration K(S)
n+1 and its weight are given in output; with these, any number

of (IR-safe) observables can be constructed. As can be seen from eq. (2.47), the weight

associated with the single counterevent kinematics is the sum of the soft, collinear, soft-

collinear, Born, virtual, and initial-state collinear remainders contributions, which reduces

the probability of mis-binning and thus increases the numerical stability of the result.

In order for the results of eq. (2.47) to be physical, they must still be summed over

all processes rR ∈ Rn+1 and all FKS pairs (i, j) ∈ PFKS(rR). As far as the latter sum is

concerned, it is easy to exploit the symmetries due to identical final-state particles, and

thus to arrive at the set [61]:

PFKS ⊆ PFKS , (2.48)

whose elements give non-identical contributions to the sum over FKS pairs. Therefore:

∑

rR∈Rn+1

∑

(i,j)∈PFKS(rR)

dσ(NLO)

ij (rR)

dK =
∑

rR∈Rn+1

∑

(i,j)∈PFKS(rR)

ς(n+1)
ij

dσ(NLO)

ij (rR)

dK , (2.49)

with ς(n+1)
ij a suitable symmetry factor. The sum on the r.h.s. of eq. (2.49) is obviously more

convenient to perform than that on the l.h.s.; it is customary to include the symmetry factor

in the short-distance weights (see e.g. ref. [125]). The number of elements in PFKS(rR) can

indeed be much smaller than that in PFKS(rR). For example, when rR is a purely gluonic

process, we have #(PFKS(rR)) = 3 (i.e., independent of n), while #(PFKS(rR)) = (n+1)(n+

2). While the former figure typically increases when quarks are considered, it remains true

that, for asymptotically large n’s, #(PFKS) is a constant while #(PFKS) scales as n2.

The sum on the r.h.s. of eq. (2.49) is what has been originally implemented in MadFKS.

It emphasises the role of the real-emission processes, which implies that for quantities which

are naturally Born-like (such as the Born matrix elements themselves) one needs to devise

a way to map unambiguously Rn onto Rn+1. The interested reader can find the definition

of such a map in section 6.2 of ref. [61], which we summarise here using the Born cross
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section dσ(LO) as an example:

dσ(LO)(rR) =
∑

(i,j)∈PFKS(rR)

δgIiSij(ξi = 0)dσ(LO)(ri\R) , (2.50)

where

rR = (I1, . . . Ii, . . . Ij , . . . In+3) =⇒ ri\R = (I1, . . . I\i, . . . Ij , . . . In+3) . (2.51)

In other words, through the r.h.s. of eq. (2.50) one is able to define a Born-level quantity

as a function of a real-emission process. In MadGraph5 aMC@NLO we have followed the

opposite strategy, namely that of defining real-emission level quantities as functions of a

Born process. The proof that this can indeed be done is given in appendix E of ref. [61];

here, we limit ourselves to summarising it as follows, using the event contribution dσ(NLO,E)

ij

to the NLO cross section as an example. One has the identity:

∑

rR∈Rn+1

∑

(i,j)∈PFKS(rR)

ς(n+1)
ij dσ(NLO,E)

ij (rR) =
∑

rB∈Rn

dσ(NLO,E)(rB) . (2.52)

Here we have defined:

dσ(NLO,E)(rB) =
∑

rR∈Rn+1

∑

(i,j)∈PFKS(rR)

δ
(
rB, r

j⊕i,i\
R

)
ς(n+1)
ij (rR) dσ

(NLO,E)

ij (rR) , (2.53)

where the generalised Kronecker symbol δ(. . .) is equal to one if its arguments are equal,

and to zero otherwise, and

rj⊕i,i\
R = (I1, . . . I\i, . . . Ij⊕i, . . . In+3) . (2.54)

Although the first sum in eq. (2.53) might seem to involve a very large number of terms,

MadGraph5 aMC@NLO knows immediately which terms will give a non-zero contribution,

thanks to the procedure used to construct Rn+1 which was outlined at the beginning of

this section. On top of organising the sums over processes and FKS pairs in a different way

w.r.t. the first version of MadFKS, MadGraph5 aMC@NLO also performs some of these

(and, specifically, those in eq. (2.53)) using MC techniques (whereas all sums are performed

explicitly in ref. [61]). In particular, for any given rB ∈ Rn, one real-emission process and

one FKS pair are chosen randomly among those which contribute to eq. (2.53); these

choices are subject to importance sampling, and are thus adaptive. In summary, while the

procedure adopted originally in MadFKS takes a viewpoint from the real-emission level,

that adopted in MadGraph5 aMC@NLO emphasises the role of Born processes. The two

are fully equivalent, but the latter is more efficient in the cases of complicated processes,

and it offers some further advantages in the context of matching with parton showers.

2.4.2 One-loop matrix elements: MadLoop

Both MadGraph5 aMC@NLO and its predecessor aMC@NLO are capable of computing

the virtual contribution to an NLO cross section in a completely independent manner (while
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still allowing one to interface to a third-party one-loop provider if so desired), through a

module dubbed MadLoop [68]. However, there are very significant differences between

the MadLoop embedded in aMC@NLO (i.e., the one documented in ref. [68]), and the

MadLoop currently available in MadGraph5 aMC@NLO; hence, in order to avoid confu-

sion between the two, we shall call the former MadLoop4, and the latter MadLoop5. The

aim of this section is that of reviewing the techniques for automated one-loop numerical

computations, and of giving the first public documentation of MadLoop5.

As the above naming scheme suggests, core functionalities relevant to the handling of

tree-level amplitudes were inherited fromMadGraph4 inMadLoop4, whileMadLoop5 uses

MadGraph5. This was a necessary improvement in view of the possibility of computing

virtual corrections in arbitrary renormalisable models (i.e., other than the SM). More in

general, one can identify the following three items as strategic capabilities, that were lacking

in MadLoop4, and that are now available in MadLoop5:13

A. The adoption of the procedures introduced with MadGraph5, and in particular the

UFO/ALOHA chain for constructing amplitudes starting from a given model.

B. The possibility of switching between two reduction methods for one-loop integrals,

namely the Ossola-Papadopoulos-Pittau (OPP [18]) and the Tensor Integral Reduc-

tion (TIR [154, 155]) procedures.

C. The organization of the calculation in a way consistent with the mixed-coupling

expansion described in section 2.4, and in particular with eq. (2.23).

It should be clear that these capabilities induce an extremely significant broadening of the

scope of MadLoop (in particular, extending it beyond the SM). As a mere by-product,

they have also completely lifted the limitations affecting MadLoop4, which were described

in section 4 of ref. [68]. It is instructive to see explicitly how this has happened. Item A.

is responsible for lifting MadLoop4 limitation #1 (MadLoop4 cannot generate a process

whose Born contains a four-gluon vertex, because the corresponding R2 routines necessary

in the OPP reduction were never validated, owing to the technically-awkward procedure

for handling them in MadGraph4; this step is now completely bypassed thanks to the

UFO/ALOHA chain). Limitation #2 (MadLoop4 cannot compute some loops that feature

massive vector bosons, which is actually a limitation of CutTools [156], in turn due to

the use of the unitary gauge) is now simply absent because of the possibility of adopting

the Feynman gauge, thanks again to item A. Limitation #4 (MadLoop4 cannot handle

finite-width effects in loops) is removed thanks to the implementation of the complex

mass scheme, a consequence of item A. Finally, item C. lifts MadLoop4 limitation #3

(MadLoop4 cannot generate a process if different contributions to the Born amplitudes do

not factorise the same powers of all the relevant coupling constants).

The advances presented in items A.–C. above are underpinned by many technical

differences and improvements w.r.t. MadLoop4. Here, we limit ourselves to listing the

most significant ones:

13Some of them are not yet public, but are fully tested.
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• MadLoop5 is written in Python, the same language which was adopted for Mad-

Graph5 (MadLoop4 was written in C++).

• The UV-renormalisation procedure has been improved and rendered fully general

(that ofMadLoop4 had several hard-coded simplifying solutions, motivated by QCD).

• An extensive use is made of the optimisations proposed in ref. [24] (OpenLoops).

• The self-diagnostic numerical-stability tests, and the procedures for fixing

numerically-unstable loop-integral reductions, have been redesigned.

More details on these points will be given in what follows. Before turning to that, we shall

discuss the basic principles used by MadLoop5 for the automation of the computation of

one-loop integrals.

Generalities. Given a 2 → n partonic process r (see eq. (2.28)), MadLoop computes

the quantity:

V (r) =
∑

colour
spin

2ℜ
{
A(n,1)(r)A(n,0)(r)

⋆
}
, (2.55)

with A(n,0) and A(n,1) being the relevant tree-level and UV-renormalised one-loop ampli-

tudes respectively; the averages over initial-state colour and spin degrees of freedom are

understood. The result for V (r) is given as a set of three numbers, corresponding to the

residues of the double and single IR poles, and the finite part, all in the ’t Hooft-Veltman

scheme [157]. In the case of a mixed-coupling expansion, each of these three numbers is

replaced by a set of coefficients, in the form given by eq. (2.23). There may be processes

for which A(n,0) is identically equal to zero, and A(n,1) is finite; for these processes (called

loop-induced), MadLoop computes the quantity:

VLI(r) =
∑

colour
spin

∣∣∣A(n,1)(r)
∣∣∣
2
. (2.56)

Only eq. (2.55) is relevant to NLO computations proper, and we shall mostly deal with it in

what follows. In the current version of MadGraph5 aMC@NLO, the loop-induced VLI(r)

cannot be automatically integrated (for want of an automated procedure for multi-channel

integration), and hence in this case the code output by MadLoop5 must be interfaced in an

ad-hoc way to any MC integrator (including MadGraph5 aMC@NLO — see e.g. ref. [127]

for a recent application).

The basic quantity which MadLoop needs to compute and eventually renormalise in

order to obtain A(n,1) that enters eq. (2.55) is the one-loop UV-unrenormalised amplitude:

A(n,1)
U =

∑

diagrams

C , (2.57)

where C denotes the contribution of a single Feynman diagram after loop integration, whose

possible colour, helicity, and Lorentz indices need not be specified here, and are understood;
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they will be re-instated later. A standard technique for the evaluation of C is a so-called

reduction procedure, pioneered by Passarino and Veltman [154], which can be written as

follows:

C = Red [C] =
∑

i

ci(C)J (Red)

i +R(C) . (2.58)

The quantities J (Red)

i are one-loop integrals, independent of C. The essence of any reduction

procedure is that it is an algebraic operation that determines the coefficients ci and R

(which are functions of external momenta and of masses, and some of which may be equal

to zero); the intricacies of loop integration are dealt once and for all in the computations

of the J (Red)

i ’s (which are much simpler than any C). As the leftmost equality in eq. (2.58)

indicates, from the operator point of view Red[ ] is the identity; its meaning is that of

replacing C with the linear combination in the rightmost member of eq. (2.58). As the

notation {J (Red)

i } suggests, different reduction procedures can possibly make use of different

sets of one-loop integrals.

Equation (2.58) is basically what one would do if one were to compute C in a non-

automated manner. In automated approaches, however, additional problems arise, for

example due to the necessity of relying on numerical methods, which have obvious diffi-

culties in dealing with the non-integer dimensions needed in the context of dimensional

regularisation, and with the analytical information on the integrand of C, which is ex-

tensively used in non-automated reductions. In order to discuss how these issues can be

solved, let us write C in the following form:

C =

∫
ddℓ̄ C̄(ℓ̄) , C̄(ℓ̄) =

N̄(ℓ̄)
∏m−1

i=0 D̄i

, (2.59)

where d = 4 − 2ϵ, and we have assumed the diagram to have m propagators in the loop

and have defined:

D̄i = (ℓ̄+ pi)
2 −m2

i , 0 ≤ i ≤ m− 1 , (2.60)

with mi the mass of the particle relevant to the ith loop propagator, and pi some linear

combination of external momenta. For any four-dimensional quantity x, its (4 − 2ϵ)-

dimensional counterpart is denoted by x̄, and its (−2ϵ)-dimensional one by x̃. The fact

that pi, rather than p̄i, enters eq. (2.60) is a consequence of the use of the ’t Hooft-Veltman

scheme. The loop momentum is decomposed as follows:

ℓ̄ = ℓ+ ℓ̃ with ℓ·ℓ̃ = 0 , (2.61)

with similar decompositions holding for the Dirac matrices γ̄µ and metric tensor ḡµν . One

can thus define [158] the purely four-dimensional part of the numerator that appears in

eq. (2.59):

N(ℓ) = lim
ϵ→0

N̄(ℓ̄ = ℓ; γ̄µ = γµ, ḡµν = gµν) , (2.62)

from whence one can obtain its (−2ϵ)-dimensional counterpart:

Ñ(ℓ, ℓ̃) = N̄(ℓ̄)−N(ℓ) . (2.63)
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The quantity defined in eq. (2.62), not involving non-integer dimensions, can be treated by

a computer with ordinary techniques. By using eq. (2.63) in eq. (2.59) one obtains:

C = Cnon−R2 +R2 , (2.64)

where

Cnon−R2 =

∫
ddℓ̄

N(ℓ)
∏m−1

i=0 D̄i

, (2.65)

R2 =

∫
ddℓ̄

Ñ(ℓ, ℓ̃)
∏m−1

i=0 D̄i

. (2.66)

Both integrals in eq. (2.65) and eq. (2.66) still depend on (4−2ϵ)-dimensional quantities, but

they do so in a way that allows one to further manipulate and cast them in a form suitable

for a fully numerical treatment. In particular, one can show [158] that the computation

of R2 is equivalent to that of a tree-level amplitude, constructed with a universal set of

theory-dependent rules (see ref. [159], refs. [160–162], and refs. [163–165] for the QCD,

QED+EW, and some BSM cases respectively), analogous to the Feynman ones and that

can be derived once and for all (for each model) by just considering the one-particle-

irreducible amplitudes with up to four external legs [166]. On the other hand, eq. (2.65)

is still potentially divergent in four dimensions. The details of how this is dealt with may

vary, but the common characteristic is that all of them are entirely defined by a reduction

procedure. In other words, we shall use the following identity:

C = Red [Cnon−R2 ] +R2 , (2.67)

which is a consequence of eqs. (2.58) and (2.64). The general idea is that all things that

are inherently (4 − 2ϵ)-dimensional in Red[Cnon−R2 ] can be parametrized in terms of the

one-loop integrals J (Red)

i , so that any piece of computation that would require an analytical

knowledge of the integrand and an analytical treatment of the (−2ϵ)-dimensional terms is

indeed treated analytically, but in a universal manner through J (Red)

i .

We emphasise that, although the decomposition of eq. (2.64) is inspired by the OPP

reduction method, it is universal, in the sense that the operator Red[ ] in eq. (2.67) does

not need to be OPP-inspired, and that the definition of R2 has nothing to do with the OPP

procedure as such, but rather with the interplay of (4−2ϵ)-dimensional quantities and their

four-dimensional counterparts. There are of course several alternative approaches, but the

majority of them do not lend themselves to the numerical computation of the rational

part R(Cnon−R2) +R2. The two methods which have been used for complicated numerical

simulations are bootstrap [17] and D-dimensional unitarity [19, 20, 23]. However, they

also involve rather non-trivial issues, such as the presence of spurious singularities (for

bootstrap), or the necessity of performing additional computations in 6 and 8 dimensions

(for D-dimensional unitarity). The latter problem can be bypassed by means of a mass

shift [167], which however might imply additional complications in the case of axial cou-

plings in massive theories. In summary, while it is true that there are advantages and

disadvantages in each of these approaches, we point out that R2 must not really be seen

as an extra issue in the context of a complete calculation, simply because one has to carry

out UV renormalisation anyhow, which is similar to R2 but more involved.
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Integral reduction in MadLoop. We now turn to discussing the way in which the

previous formulae are handled by MadLoop. In order to do so, we shall re-instate in the

notation the dependence of the amplitudes on the relevant quantities; in particular, we

work with scalar sub-amplitudes that have definite helicities (i.e., all Lorentz indices are

contracted away, and all Dirac matrices are sandwiched between spinors), and that factorise

a single colour factor. The latter condition implies that, in general, our sub-amplitudes are

not in one-to-one correspondence with Feynman diagrams (typically when these feature at

least a four-gluon vertex), but that they can be written as follows:

A(n,0)
h =

∑

b

λ(0)b Bh,b , (2.68)

for the Born amplitude. Here, h denotes a given helicity configuration, and b runs over all

possible single-colour factors. The quantity λ(0)b is one such colour factor, that collects all

the colour indices, which are understood. Hence, Bh,b is a scalar quantity which does not

contain any colour index. In the case of one-loop diagrams, we shall use a similar notation,

thus replacing the quantities that appear in eqs. (2.65) and (2.66) with:

N(ℓ) −→ λ(1)l Nh,l(ℓ) , (2.69)

D̄i −→ D̄i,l , (2.70)

R2 −→ R2,h,l . (2.71)

The quantity λ(1)l in eq. (2.69) has the same meaning as λ(0)b in eq. (2.68), but is relevant

to one-loop amplitudes rather than tree-level ones, hence the different notation. Since

the index l unambiguously identifies a single-colour-structure subamplitude, and the latter

has a non-trivial kinematic dependence, different l’s may correspond to different one-loop

Feynman diagrams, and thus the necessity of inserting a dependence on l on the r.h.s. of

eq. (2.70). Finally, we did not factor out the colour structure in eq. (2.71), since this will

not be relevant in the following. We remark that decompositions such as those on the

r.h.s.’s of eqs. (2.68) and (2.69) are easily handled by MadGraph5 aMC@NLO, which has

inherited the treatment of the colour algebra from MadGraph5 (see section 2.3 of ref. [38]).

It should be stressed that such a treatment is symbolic and that, although introduced to

deal with tree-level quantities, is perfectly capable of computing one-loop ones such as

λ(1)l . Furthermore, the colour algebra is internally decomposed in terms of colour flows (for

which several different representations are available); although this information is presently

not used in the integral-reduction procedure, it will be trivial to exploit it in the future,

should this need arise. By using eqs. (2.68)–(2.71) one obtains:

A(n,1)
U A(n,0)⋆ =

∑

colour

∑

h

(
∑

l

λ(1)l

∫
ddℓ̄

Nh,l(ℓ)∏ml−1
i=0 D̄i,l

+
∑

l

R2,h,l

)(
∑

b

λ(0)b Bh,b

)⋆

.

(2.72)

As was already mentioned, the R2 term gives rise to what is effectively a tree-level compu-

tation; therefore, we shall drop it in what follows, and just deal with:

A(n,1)
U A(n,0)⋆

∣∣∣
non−R2

=
∑

h

∑

l

∑

b

∫
ddℓ̄

Nh,l(ℓ)∏ml−1
i=0 D̄i,l

Λlb B⋆
h,b , (2.73)
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Λlb =
∑

colour

λ(1)l λ(0)b

⋆
. (2.74)

The integral-reduction procedure of MadLoop4 [68] can be read directly from eq. (2.73),

and is as follows:

A(n,1)
U A(n,0)⋆

∣∣∣
non−R2

=
∑

h

∑

l

∑

b

Red

[∫
ddℓ̄

Nh,l(ℓ)∏ml−1
i=0 D̄i,l

]

Λlb B⋆
h,b , (2.75)

where Red ≡ OPP, since in MadLoop4 only OPP reduction has been considered. Equa-

tion (2.75) is not particularly satisfactory from an efficiency point of view, for two reasons,

both of which have to do with the fact that the integral-reduction operation is quite time-

consuming. Firstly, the Red[ ] operator is called #h×#l number of times (we recall that,

by construction, #l is equal to or larger than the number of loop diagrams). Secondly, each

of these calls involves the recomputation of Nh,l(ℓ) a large number of times (determined

by the OPP procedure), but which involve only changing the numerical value of ℓ, without

affecting any other quantity entering it. The first issue is solved by reducing the number

of integral-reduction operations, while the second by rendering more efficient the compu-

tation of Nh,l(ℓ). The strategies adopted in MadLoop5 are the following. One begins by

observing that the operator Red[ ] acts on the “space” of one-loop integrals. Therefore,

Born amplitudes must be seen as c-numbers as far as this operator is concerned. One can

thus exploit the fact that Red[ ] is linear. Furthermore, what really drives integral reduc-

tion is the structure of the denominators (numerators are just numbers computed with

suitable values of ℓ, specific to the given Red[ ] operator). Hence, one can organize loop

integrals in sets of topologies, the latter being defined as subsets of integrals with the same

denominator combinations:

ml−1∏

i=0

D̄i,l =

mp−1∏

i=0

D̄i,p , ∀ l, p ∈ t , t ∈ topologies . (2.76)

By exploiting eq. (2.76), one can rewrite eq. (2.75) as follows:

A(n,1)
U A(n,0)⋆

∣∣∣
non−R2

=
∑

t

Red

[∫
ddℓ̄

∑
h

∑
l∈t

∑
bNh,l(ℓ)Λlb B⋆

h,b
∏mlt

−1
i=0 D̄i,lt

]

, (2.77)

for any lt ∈ t. Eq. (2.77) is optimal from the viewpoint of reducing the number of calls to

Red[ ], and thus addresses the first of the issues mentioned before. As far as the second of

those issues is concerned, MadLoop5 makes a systematic use of the fact that any numerator

Nh,l(ℓ) admits the following representation:

Nh,l(ℓ) =
rmax∑

r=0

C(r)
µ1...µr ;h,l

ℓµ1 . . . ℓµr , (2.78)

where the coefficients C(r) are independent of the loop momentum; when r = 0, we un-

derstand that no Lorentz indices and no loop momenta appear on the r.h.s. of eq. (2.78).

The quantity rmax is the largest rank in Nh,l, and in the Feynman gauge in renormalisable
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theories is always lower than or equal to the number of loop propagators. However, since

different Nh,l functions appear in the inner sums in eq. (2.77), it is actually convenient

(just for the sake of using the present simplified notation) to regard it as the largest rank

in the whole one-loop amplitude; for a given Nh,l, this simply implies that some of the

C(r) coefficients will be equal to zero. Equation (2.78) can be exploited in two ways. One

starts by determining the C(r)’s once and for all. Then, in the context of the OPP reduc-

tion, the numerical computation of Nh,l(ℓ) becomes much faster, as suggested originally

in OpenLoops (see ref. [24]), because for each new value of ℓ generated within the OPP

reduction one simply needs to perform the sums and multiplications explicit in eq. (2.78),

without recomputing the C(r)’s. Furthermore, when eq. (2.78) is symbolically (as opposed

to numerically) replaced in eq. (2.77), the structures of tensor integrals naturally emerge.

Thus, eq. (2.78) paves the way to performing a Tensor Integral Reduction (TIR) as well.

Therefore, regardless of whether an OPP or TIR procedure will be applied, the inputs to

the Red[ ] operator in MadLoop5 are the sets:
{∫

ddℓ̄
ℓµ1 . . . ℓµr

∏mlt
−1

i=0 D̄i,lt

,
∑

h

∑

l∈t

∑

b

C(r)
µ1...µr;h,l

Λlb B⋆
h,b

}rmax

r=0

. (2.79)

Then, when using OPP the Lorentz indices of the two members of these sets are contracted

in order to give OPP the scalar functions it needs. On the other hand, when using TIR the

first members in eq. (2.79) are all that is needed for this type of reduction to work. It is

clear that the practical success of the decomposition in eq. (2.78) relies on the capability of

a fast and efficient computation of the coefficients C(r). MadLoop5 has a fully independent

implementation of the recursion-construction procedure presented in ref. [24] (thanks to a

dedicated treatment by ALOHA), and its own internal system of caching and retrieving

the C(r)’s. At variance with what is done in ref. [24], MadLoop5 does not assume rmax

to be less than or equal to the number of loop propagators, i.e. it admits the possibility

that the contribution of any given vertex to the rank of Nh,l(ℓ) be larger than one. This

is useful, for example, in the context of the computation of QCD corrections to processes

stemming from a Higgs EFT Lagrangian. See appendix C.3 for more details.

We conclude this part with a few diverse observations. Firstly, given the advantages

of an efficient caching and recycling of the coefficients C(r), in the case of a mixed-coupling

expansion MadLoop5 starts from determining all of the coefficients that will contribute

to Σk0+1,0 (we recall that we always associate the largest power of the dominant coupling

constant, as defined by the hierarchy of the model, with the terms q = 0: see section 2.4).

Some of the C(r)’s thus computed will also contribute to Σk0+1,1, for which MadLoop5 will

only calculate those C(r)’s not yet found, and just recycle the others. This procedure is

then iterated till necessary, in the sense that it can be stopped when reaching the largest q’s

among those selected by the user; it is maximally efficient when the smallest user-selected q

is equal to zero, which is justified from a physics viewpoint given the coupling hierarchy of

the model. Secondly, in general the kinematic configurations which are potentially unstable

in TIR are rather different than with OPP; therefore, the possibility of using TIR as an

alternative to OPP before turning to quadruple-precision calculations (see below) is very

beneficial for reducing the overall computing time when numerically-unstable situations
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are encountered. Finally, since TIR essentially performs integral reduction at the level

of amplitudes, rather than at that of amplitude squared as OPP, it allows one to use

efficiently the decomposition of eq. (2.78) and its caching-and-recycling system also in the

case of loop-induced matrix elements, eq. (2.56).

UV renormalisation and R2 contribution. In order to obtain V (r) as defined in

eq. (2.55), MadLoop must sum to the result of the integral-reduction procedure, eq. (2.77),

the R2 (see eq. (2.72)) and the UV-renormalisation contributions. Both of these can be

cast in the form of a tree-level-like amplitude A(n,X) times the Born amplitude, whose

contribution to eq. (2.55) will therefore be:

∑

colour
spin

2ℜ
{
A(n,X)(r)A(n,0)(r)

⋆
}
, X = R2 , UV . (2.80)

In an automated approach, the computation of A(n,X) may be performed in the same man-

ner as that of A(n,0), provided that the usual Feynman rules are supplemented by new UV

and R2 rules, and by imposing that A(n,X) contain one and only one UV- or R2-type ver-

tex.14 This was indeed the procedure adopted by MadLoop4 for the R2 computation. As

far as UV renormalisation was concerned, the fact that MadLoop4 was limited to consider-

ing QCD corrections to SM processes allowed significant simplifications, and eq. (2.80) was

effectively computed in a simpler way, by taking the Born amplitude squared multiplied

by suitable UV factors. Mass insertions cannot be accounted for in this way; however,

their structure being identical to that of the R2 two-point vertex, the two could always be

treated together (see ref. [68] for more details).

The above solution is not tenable when considering an arbitrary renormalisable theory,

and therefore MadLoop5 must explicitly compute eq. (2.80) for both the UV and R2 con-

tributions. This is not the only significant difference between MadLoop4 and MadLoop5.

According to the general philosophy of the current MadGraph5 aMC@NLO approach, the

UV and R2 rules are part of the NLO theory model15 chosen by the user, and that Mad-

Loop adopts when performing a computation: they are not (as opposed to what happened

with MadLoop4) hard-coded UV or R2 computer routines corresponding to n-point coun-

terterms, but a set of instructions in UFO, that ALOHA will dynamically translate into

the latter routines.

After including the UV and R2 rules into a UFO model (an operation that, we remind

the reader, has to be performed once and for all per theory and per type of corrections, and

which FeynRules will soon be able to perform automatically), it should be clear that the

computation by MadGraph5 aMC@NLO of A(n,X) becomes identical to that of a regular

tree-level amplitude for which only Feynman rules are relevant; thus, we shall call this a

tree-matching construction. In order to increase the flexibility of MadLoop5, in particular

for what concerns the exclusion of the contributions of certain loop integrals, and to allow

developers more freedom when debugging, an alternative but fully equivalent procedure

14Note that in this context a “vertex” can have two external legs.
15In fact, it is their very presence that tells NLO and LO models apart. See also section 2.1.
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has been implemented, which we shall call loop-matching construction. The tree-matching

and loop-matching constructions (an explanation of which will be given below) can be

understood by considering the physics contents of the generic UV and R2 counterterm G,

which we shall denote as follows:

G =

{{
I(e)
1 , . . . I(e)

m

}
;
{
I(lk)
1 , . . . I(lk)

nk

}kloop

k=1
;W, L,λ, c,X

}
. (2.81)

The quantity X determines the kind of counterterm one is working with — UV wave-

function, or internal n-point UV and R2 functions; it also allows the builder of the model

to specify whether G will be used in the context of a tree-matching or loop-matching

construction. In other words, and in order to stress this point again: MadLoop5 can

handle both types of construction, which are simply seen as attributes of the model used

for the computation. This flexibility is important for example because models constructed

“by hand” are set up in a different way w.r.t. that adopted by FeynRules. The quantity c

is symbolically (i.e., not numerically) set equal to a coupling constant, with that implying

that G is a counterterm relevant to NLO corrections in the theory whose perturbative

expansion is governed by that coupling. Note that in a model there may be several subsets

of counterterms, each associated with a different type of correction; in the example of the

mixed QCD-QED case discussed at the beginning of section 2.4, when c = αS one has

counterterms for QCD corrections (eq. (2.26)), and when c = α one has counterterms for

QED corrections (eq. (2.27)). The quantities L and λ in eq. (2.81) denote the Lorentz and

colour structures of G respectively. The set {I(e)
1 , . . . I(e)

m } is the list of “external” particle

identities associated with G. For example, if G is the contribution to αS renormalisation

due to the guū vertex, then this set is equal to {g, u, ū}; if G corresponds to the mass

insertion for the top quark, then one has16 {t, t̄}. The counterterm G in general receives

contributions from kloop ≥ 1 different types of loop diagrams, and {I(lk)
1 , . . . I(lk)

nk } is called

the kth loop topology, i.e. the set of the identities of the particles circulating in the kth

type of loop.17 When counting these loops, one needs to take into account the physical

meaning of G. By using again the example of the guū vertex, one may be tempted to

conclude that kloop = 1, which corresponds to the triangle corrections to such a vertex.

This would be incorrect: in fact, since G is a contribution to αS renormalisation, it must

include wave-function renormalisation factors; therefore, in the kloop types of loops one

must include the bubble diagrams relevant to the g, u, and ū external legs. Thus, in this

example one will need to consider both {g, u} (for triangles and the u self-energy) and

{g}, {q}, {b}, {t} (for the gluon self-energy; q is a massless quark, and b and t are heavy

quarks). It should be clear that this complication (there are more loop topologies that

contribute to G than the list of its external particles would suggest) is basically due to

wave-function renormalisation, which physically corresponds to the fact that renormalised

16A mass insertion is treated in a similar manner as vertices; therefore, all external particles must be

outgoing, whence the t̄.
17The term “set” implies that two or more identical particles contribute one particle identity to this set,

as opposed to the case of external particles, which are all explicitly present in the list {I(e)
1 , . . . I(e)

m }. Note

that, when circulating in a loop, a quark and its antiquark can be identified. Furthermore, it should be

clear that the present “topology” has nothing to do with that introduced in eq. (2.76).
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couplings are defined in terms of renormalised Green functions. When this is not the case,

and notably for mass insertions, and for R2 contributions (because the latter are directly

defined in terms of specific loop integrals — see eq. (2.66)), loop topologies are indeed in

one-to-one correspondence with those naively deduced from the list of external particles.

Finally, in eq. (2.81) W represents the actual value of the counterterm G. By following

the usual textbook procedure which makes use of renormalised coupling constants, and by

ignoring the Lorentz and colour structures, one may e.g. have:

W ∝ 1− Z−1
coupling = 1− Z−1

vertex

∏

i

Zwf,i , W = 0 , (2.82)

for coupling and internal 2-point (bubble) renormalisation respectively, and

W ∝ δm, W ∝WR2,vertex , (2.83)

for UV mass insertions and an R2 correction, respectively. From the discussion presented

before, it follows that the Z and δm terms in eqs. (2.82) and (2.83) will be related to the sets

{I(lk)
1 , . . . I(lk)

nk }. On the other hand, MadLoop5 leaves the model builder the possibility of

implementing coupling-constant renormalisation by directly working at the level of vertex

renormalisation. This can be simply done for example by adopting:

W ∝ 1− Z−1
vertex , W ∝ 1− Zwf,i , (2.84)

instead of the settings of eq. (2.82). One may (slightly improperly, since the physics

contents are exactly the same) refer to the procedures induced by eq. (2.82) and eq. (2.84) as

coupling-constant and vertex renormalisation respectively. The latter is the current method

of choice for the extension of FeynRules to NLO. Note that, when working with vertex

renormalisation, wave-function factors for external legs need not be included (as opposed

to the usual case of coupling-constant renormalisation), which can be easily specified in

the model definition. Again, no assumption is made in MadLoop5 on the treatment of

external legs, and full flexibility is maintained by reading the relevant information from

the model.

Now we suppose that an NLO model is given, and thus eq. (2.81) is fully specified

for all counterterms relevant to all types of corrections dealt with by the model. We

shall now discuss how MadLoop5 exploits such information. First of all, one may want to

exclude some loops from the calculation (this can be motivated by physics requirements, for

example when leaving out heavy-flavour contributions, or done for debugging purposes); we

call this operation loop-content filtering (not to be confused with diagram filtering, which

discards over-counting L-cut diagrams at generation time — see section 3.2.1 of ref. [68]).

This filtering is basically trivial in the generation of diagrams: one simply does not include

the undesired particles in the list of L-cut particles. The presence of {I(lk)
1 , . . . I(lk)

nk } in

eq. (2.81) allows one to do the same when computing the UV and R2 contributions: if

this set contains the particle(s) to be discarded, the corresponding contributions are not

included in eqs. (2.82)–(2.84). Apart from loop-content filtering, eq. (2.81) can be exploited

in the context of the tree-matching construction in the same way as all other elementary
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building blocks derived from ordinary Feynman rules, by using the information on external

particles, and Lorentz and colour structures. As far as the loop-matching construction

is concerned, one starts from a given loop integral C, and determines what we call its

associated tree topology:

C −→ Γ(C) =
({

T1, . . . TT (C)

}
,
{
I(lC)
1 , . . . I(lC)

n

})
. (2.85)

The notation understands that there are T (C) trees Tα attached to the loop18 (see figure 2

of ref. [68] for a graphical example of such trees); {I(lC)
1 , . . . I(lC)

n } is the set of particles

that flow in the loop. Since different loops can have the same associated tree topology,

MadLoop5 first collects all of the different tree topologies relevant to the computation

being performed. Next, for each of these, all counterterm vertices G (that have survived

loop-content filtering) are found that fulfill the following equation:

{
I(e)
1 , . . . I(e)

m

}
=
{
R (T1) , . . .R

(
TT (C)

)}
, (2.86)

where by R(Tα) we have denoted the root of the αth tree Tα (the root being obviously the

single particle that stems from the loop, and branches into the tree); note that eq. (2.86)

implies m = T (C). Among the counterterms thus found, one further considers the UV

mass insertion and R2 ones, and discards those that do not fullfil the equation:

{
I(lk)
1 , . . . I(lk)

nk

}
=
{
I(lC)
1 , . . . I(lC)

n

}
. (2.87)

Equation (2.87) guarantees a rather strict correlation between a generated diagram and

its UV and R2 counterterms, which is quite useful for example when establishing the cor-

rectness of a model. It should be pointed out, however, that such a correlation can never

be turned into a one-to-one map, because of coupling-constant or vertex renormalisation,

in which case eq. (2.87) cannot be imposed (since vertex corrections and wave-function

renormalisation are always strictly related, and this is true also when carrying out a vertex-

renormalisation procedure). Finally, for each counterterm G selected as explained above,

MadLoop5 builds the corresponding tree amplitude by attaching to G the off-shell currents

relevant to the tree structures {T1, . . . TT (C)}. When performing coupling-constant renor-

malisation, MadLoop5 also constructs additional tree-amplitude counterterms by multi-

plying each Born amplitude by the suitable combination of external wave-function factors.

We conclude this part by re-iterating its main message: MadLoop5 has a fully-flexible

structure that allows it to handle on equal footing several different strategies, such as tree-

matching vs loop-matching construction, or coupling vs vertex renormalisation, thanks to

its capability of obeying the relevant instructions encoded in the model. This includes the

prescription for the renormalisation scheme, which now must be simply seen as one of the

model characteristics.

18A four-gluon vertex, with two gluons belonging to the loop, gives rise to two trees, both of which are

attached to the loop at the same point.
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Checks, stability, and recovery of numerically-unstable integral reductions.

MadLoop4 featured many self-consistency checks, that served to establish the correct-

ness of any one-loop matrix element generated by the code; they are described extensively

in section 3.3 of ref. [68], and all of them are inherited by MadLoop5. On top of those, in

MadLoop5 we have included two new checks: firstly, we verify that the matrix elements are

Lorentz scalars, by recomputing them using a kinematic configuration obtained by boosting

and rotating the original one; and secondly, in the case of QCD corrections we test whether

the matrix elements computed in the unitary gauge are identical to those computed in the

Feynman gauge.19 The experience with MadLoop4 and MadLoop5 has shown that there

is a vast amount of redundancy in all of these checks; therefore, in MadLoop5 we have

decided to perform only one of them before proceeding to integrate the matrix elements.

We have chosen the most complete one, namely that on the residues of the infrared poles

(where the numerical values of such residues as returned by MadLoop are compared to

those known analytically from the subtraction of real-emission singularities), which has the

virtue of being an indirect test on the UV-renormalisation procedure as well. The other

checks can still be performed if need be, by simply executing a single command from the

MadGraph5 aMC@NLO interactive shell.20

Integral-reduction procedures are fairly involved, and some kinematic configurations

may give rise to numerically-unstable results. Any automated approach must therefore

have solid self-diagnostic and recovery strategies: those of MadLoop4 have been presented

in section 3.4 of ref. [68]. In view of the extended scope of MadLoop5 w.r.t. that of

MadLoop4, both of these strategies have been completely redesigned, for the technical

reasons which we shall now discuss. Firstly, MadLoop4 based the instability diagnostics

on the results of tests performed within CutTools, on a loop-by-loop basis. Therefore,

the capability of MadLoop5 to exploit both the OPP and TIR methods has forced us to

set up a CutTools-independent diagnostic tool. Furthermore, a loop-by-loop method is in

any case not ideal, because it is never trivial to determine the threshold that decides when

a computation is flagged as unstable (e.g., a single loop integral may be unstable, but give

a totally negligible contribution to the full amplitude). This problem is exacerbated when

increasing the final-state multiplicity, and indeed suggests to use an “inclusive” (i.e., at the

level of the amplitude, rather than of the individual loop integral) type of test inMadLoop5,

which can handle more complicated processes than MadLoop4. Secondly, the recovery

strategy used by MadLoop4 (which involved a small deformation of the kinematics) is on

the one hand related to the loop-by-loop diagnostic (because when one considers two or

more integrals simultaneously, the deformation of the kinematics that renders stable an

unstable integral can turn a stable integral into an unstable one), and on the other hand

not particularly satisfactory when increasing the process multiplicity (because it becomes

more difficult to obtain a stable result out of the deformed kinematic configuration).

The diagnostic procedure of MadLoop5 works as follows. Let us write the result

of eq. (2.55), obtained by MadLoop after integral reduction and UV renormalisation, as

19Incidentally, these tests can also be performed in the context of tree-level matrix-element computations.
20Apart from that on the dependence on the mass of an heavy quark, which is still available but too

process-specific to be worth automating.
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follows:

V (r) =
(4π)ϵ

Γ(1− ϵ)

(
µ2

F

Q2

)ϵ (c−2

ϵ2
+

c−1

ϵ
+ c0

)
. (2.88)

For any given kinematic configuration, the coefficients cj of eq. (2.88) are evaluated 1 + ntest

times (in a way specified below), which we denote as follows:

cj −→ c(i)j , i = 0, . . . ntest , for j = −2,−1, 0 . (2.89)

These coefficients are used to define the following quantities:

c̄j =
1

2

(
max

{∣∣∣c(i)j

∣∣∣
}ntest

i=0
+min

{∣∣∣c(i)j

∣∣∣
}ntest

i=0

)
, (2.90)

∆cj = max
{∣∣∣c(i)j

∣∣∣
}ntest

i=0
−min

{∣∣∣c(i)j

∣∣∣
}ntest

i=0
, (2.91)

which in turn enter the definition of the relative accuracy of the MadLoop evaluation:

χ =

∑0
j=−2∆cj
∑0

j=−2 c̄j
. (2.92)

A computation is deemed unstable, and the corresponding kinematic configuration called

an Unstable Phase-Space point (UPS), when:

χ > ε , (2.93)

with ε a quantity which can be defined by the user, but whose default value is 10−3.

The c(i=0)
j results in eqs. (2.89)–(2.91) are those obtained by applying the OPP reduction

with the given kinematic configuration. The c(i>0)
j are obtained in two different ways,

by performing again the integral reduction either: a) by using a kinematic configuration

obtained by rotating the original one (hence, by following the same procedure as is used in

one of the self-consistency checks previously discussed); or b) by using a different ordering of

the loop propagators D̄i as input to OPP (this changes the inner workings of the reduction

procedure, and is thus numerically different from, although physically completely equivalent

to, what one does with the original ordering). These two re-computation procedures are

called Lorentz test and Direction test respectively. By default, MadLoop5 sets ntest =

2, and performs one Lorentz test and one Direction test. Both ntest and the type of

tests performed can be controlled by the user. Note that any Direction test re-uses the

coefficients C(r) of eq. (2.78) computed in the context of the first evaluation (c(i=0)
j ), and is

thus less time-consuming than Lorentz tests, despite the fact that both require the integral

reduction to be performed from scratch. In the case of a mixed-coupling expansion, each

of the c(i)j is expanded as is done in eq. (2.23), so that it will correspond to a set {c(i)j,q}. By
fixing q (which is associated with a given combination of coupling constants, see section 2.4),

one defines χq as in eqs. (2.90)–(2.92); a kinematic configuration is a UPS if, following

eq. (2.93), χq > ε for any q.

When a UPS is found, MadLoop5 has two main methods for recovery, which are

attempted in turn. It starts by changing the integral-reduction procedure, from OPP to
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TIR. The results of TIR depend on the specific TIR library MadLoop5 is linked to. In

principle, any library might be used; in practice, so far we have considered IREGI [168]

and PJFry++ [169, 170]. A given TIR library has a maximal number of propagators it

can handle (presently, up to hexagons for IREGI and up to pentagons for PJFry++);

in the case one particular loop integral exceeds that number, OPP is used again for it

and only for it.21 More than one TIR library can be linked to MadLoop5 at the same

time. After having found a UPS with OPP, MadLoop5 switches to the first of such TIR

libraries, and repeats the diagnostic tests mentioned above. If the result is again classified

as a UPS, the next TIR library is used, and so forth. If none of the available TIR libraries

is able to give a numerically-stable reduction, MadLoop5 resorts to the second method

of recovery, namely the OPP integral reduction with all relevant quantities (Nh,l and the

internal CutTools algebra) computed in quadruple precision. This is usually extremely

effective, but has the disadvantage of being extremely slow. In the case when the recovery

in quadruple precision fails as well, MadLoop5 gives up, sets c0 = 0, and proceeds to the

next kinematic configuration; the user is warned when this happens. We emphasise that

the order in which the various integral-reduction procedures are used in the context of UPS

recovery (OPP, TIR library #1 to TIR library #n) can be controlled through an input

card. So in the present public version of MadGraph5 aMC@NLO, where TIR reduction is

not yet included, only OPP and quadruple-precision calculations are employed.

2.4.3 Integration of one-loop contributions

The way in which the virtual contributions are integrated by MadGraph5 aMC@NLO in

either an fNLO or an NLO+PS computation is quite different w.r.t. what was done in

aMC@NLO. In the latter, one-loop matrix elements were integrated separately from the

other contributions, and eventually combined with them at the level of either distributions

(in the case of fNLO), or unweighted events (in the case of NLO+PS); on the other hand,

in MadGraph5 aMC@NLO all contributions are integrated simultaneously. The original

strategy of aMC@NLO had been adopted because it allowed one to control, in a very

direct manner, the number of phase-space points for which the virtual corrections were

computed, and by doing so to reduce such a number, without this implying a degradation

of the overall accuracy of the physical results.22 The fact that the accuracy of the final

result does not change significantly despite the reduction mentioned above stems from the

following two observations. a) n-body phase-space integrals are significantly simpler than

(n + 1)-body ones, and therefore require to be sampled a smaller number of times than

the latter. b) Virtual corrections are usually smaller than the Born, which implies that

a smaller number of phase-space points has to be used to integrate the former than the

latter, in order to obtain the same absolute precision for the two resulting integrals. The

21This being a single integral, it should be clear that this procedure will not necessarily result again in

being classified as a UPS — the original UPS was due to all integrals being reduced with OPP.
22The reduction of the number of evaluations of the one-loop matrix elements was (and still is) highly

desirable because virtual contributions are typically the numerical bottleneck in our NLO computations

(owing to the efficiency of the FKS subtraction, which leads to a relatively fast convergence of the real-

emission contributions).

– 39 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

possibility of exploiting observation a) in a flexible manner was the main reason why in

aMC@NLO the virtual contributions were integrated separately. In fact, without a separate

integration, n-body matrix elements were previously evaluated the same number of times

as (n + 1)-body ones (see eq. (2.50) for an explicit example, relevant to the Born). This

could of course be bypassed in several ways, none of which however is simpler than a sep-

arate treatment, and better suited to an adaptive multi-channel integration. As explained

in section 2.4.1, MadGraph5 aMC@NLO combines n- and (n + 1)-body contributions in

the opposite way w.r.t. that of aMC@NLO, taking an n-body viewpoint. This is what

allows MadGraph5 aMC@NLO to naturally use observation a) while integrating one-loop

matrix elements together with all other contributions.

The simultaneous versus separate integration is only one of the differences between

the current treatment in MadGraph5 aMC@NLO and what was done previously. While

the former has several advantages over the latter,23 if applied straightforwardly it implies

that the same number of evaluations are performed for the one-loop as for the Born matrix

elements, which is not ideal in view of observation b). In order to amend this situation, and

thus to increase the speed of MadGraph5 aMC@NLO without a loss of accuracy, several

solutions have been devised. They are based on the properties of the following quantity:24

Vh∣∣∣A(n,0)
h

∣∣∣
2 ≡

2ℜ
{
A(n,1)

h A(n,0)
h

⋆}

∣∣∣A(n,0)
h

∣∣∣
2 , (2.94)

where A(n,0)
h has been introduced in eq. (2.68), and Vh can be obtained e.g. from eq. (2.72)

by not performing the sum over h there (and similarly for the corresponding UV countert-

erms). The ratio in eq. (2.94) is a slowly-varying function over the phase space (behaving

essentially as logarithms or dilogarithms), and is to a good extent independent of the he-

licity configuration h (note that the same helicity configuration h is used in the numerator

and in the denominator): in other words, one-loop and Born matrix elements have very

similar dependencies on helicity configurations and, in particular, there are no helicity

configurations for which A(n,0)
h is null while Vh is not. This also implies that the ratio of

eq. (2.94) is numerically of the same order as its helicity-summed counterpart:

V
∣∣A(n,0)

∣∣2
≡

∑
h Vh

∑
h′

∣∣∣A(n,0)
h′

∣∣∣
2 . (2.95)

In MadGraph5 aMC@NLO we exploit the behaviour w.r.t. to h of eq. (2.94) by performing

the sum over helicities implicit in V by means of MC methods: for each phase-space point,

a single helicity configuration is chosen, according to the relative weights of
∣∣∣A(n,0)

h

∣∣∣
2
. What

23On top of item a) discussed above: all other things being equal, two or more contributions integrated

together lead to a better accuracy than when integrated separately, in the case of cancellation among them,

as it often happens with NLO cross sections; also, a smaller number of integration channels implies a

reduction of negative-weighted NLO+PS events.
24With some abuse of notation, V here denotes only the finite part of the one-loop contribution, i.e. the

coefficient c0 of eq. (2.88) up to overall factors, which are irrelevant for the present discussion.
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has been said above guarantees the efficiency and the fast convergence of this procedure, as

well as a reduction of the time spent in computing the one-loop contribution (see eq. (2.79)

— such a reduction is due to the fact that the numerator is simpler and therefore less

time-consuming: the time spent carrying out the integral reduction is not affected).

Let us finally see how the fact that the quantity in eq. (2.95) is a slowly-varying function

of the kinematics helps reduce further the CPU load necessary to compute the integral of

V . In order to shorten the notation introduced in section 2.4.1, we symbolically write the

integral of the NLO cross section as follows:
∫

dφn (EV + V ) , (2.96)

where EV denotes all contributions other than V (the integration over the extra degrees of

freedom relevant to the real matrix elements plays no role here, and is understood). Inte-

grals such as that of eq. (2.96) are performed by adaptive methods, which entail successive

estimates (called iterations) of quantities relevant to the integrals. For the generic integral:
∫

dφnF (2.97)

we shall denote by

Ik(F ) , σk(F ) , (2.98)

the results of the kth iteration for the mean (i.e., the integral itself) and the standard

deviation. One expects that:

lim
k→∞

Ik(F ) =

∫
dφnF , lim

k→∞
σk(F ) = 0 . (2.99)

It will be convenient for what follows to have an explicit expression for the mean:

Ik(F ) =
1

pk

pk∑

i=1

Φn

(
φ(k,i)n

)
F
(
φ(k,i)n

)
. (2.100)

Here, we have denoted by φ(k,i)n the ith phase-space point, generated at random during the

course of the kth iteration; a total of pk points are considered. The quantity Φn collects all

normalisation and jacobian factors. We point out that, when applying eqs. (2.97)–(2.100)

to the case of interest, eq. (2.96), one is able to obtain not only the integral of the sum

EV + V , but also those of EV and V individually, by keeping track of Ik(EV ) and Ik(V )

respectively (despite the fact that the two terms are still integrated simultaneously). This

is useful in view of the following manipulation: we introduce an approximant of V , that

we denote by Ṽk, which we use in the identity:
∫

dφnV =

∫
dφn

[
Ṽk +

(
V − Ṽk

)]
. (2.101)

As the notation suggests, the approximant Ṽk is a function of the adaptive-integration

iteration, where it is used according to the following formula:

Ik(V ) =
1

pk

pk∑

i=1

Φ
(
φ(k,i)n

)
Ṽk

(
φ(k,i)n

)
+

1

pkfk

pkfk∑

i=1

Φ
(
φ(k,i)n

) [
V
(
φ(k,i)n

)
− Ṽk

(
φ(k,i)n

)]
.

(2.102)
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A number 0 < fk ≤ 1 has been introduced in eq. (2.102), which implies that the difference

V − Ṽk is computed only in a fraction fk of the total number of point thrown.25 For an

explicit evaluation of eq. (2.102), we need to define what enters it. We have:

Ṽk = ck
∣∣∣A(n,0)

∣∣∣
2
, (2.103)

with ck a quantity to be determined iteration-by-iteration, similarly to what happens for

fk. The initial conditions are:

f1 = 1 , c1 = 0 , (2.104)

and for k > 1 we define:

ck =
grid {Ik−1(V )}

grid
{
Ik−1

(∣∣A(n,0)
∣∣2
)} , (2.105)

fk = fk−1max

{

min

{
2σk−1(V − Ṽk−1)

σk−1(EV + V )
, 2

}

,
1

4

}

. (2.106)

The value of fk obtained from eq. (2.106) is further constrained to be in the range

0.005 ≤ fk ≤ 1 . (2.107)

A few explanations are in order. Firstly, ck and fk are dynamically constructed, using

the information that the numerical integrator (we use a modified version of MINT [171])

has gathered during the previous iteration. One such piece of information is a grid, which

among other things stores the averages of the function that is being integrated in non-

overlapping phase-space regions which cover the whole phase space. Therefore, ck as defined

in eq. (2.105) is a piecewise-constant function. Because of the properties of eq. (2.95), we

expect it to be close to an overall constant, and Ṽk defined in eq. (2.103) to be a good

approximant of V . Secondly, if indeed Ṽk is an increasingly (with k) good approximant of

V , we expect the quantity σk−1(V − Ṽk−1) that appears in eq. (2.106) to decrease faster

than the estimated error on the integral of EV + V , thus inducing the values of fk to

decrease. On the other hand, eq. (2.106) prevents the series of fk’s to be fluctuating:

w.r.t. the preceding value fk−1, fk can be at most a factor of 2 larger, or a factor 1/4

smaller — these values are simply sensible, but can of course be changed, as the absolute

minimum for fk given in eq. (2.107).

The rationale behind eqs. (2.101)–(2.107) should now be clear, and it has to do with

the fact that one can compute Ṽk much faster than V . One starts in the first iteration

by always computing V ; while doing so, MadGraph5 aMC@NLO gathers the information

that will allow it to construct the approximant Ṽ2 to be used in the next iteration. While

this procedure is iterated, the relative26 number of times V (Ṽk) is computed is decreased

(increased). The procedure is exact, being based on the local identity (2.101). Furthermore,

25Although eq. (2.102) literally implies that these are the first pkfk points, in the actual computation

they are chosen randomly in the whole set of the pk points, so that biases are avoided.
26MadGraph5 aMC@NLO, following MadGraph, starts with a relatively small number of points

p1 ≃ 80Ndim, and doubles it at each iteration.
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the code is protected against any pathological behaviour: if, for example, Ṽk does not turn

out to be a good approximant of V , one will have fk ≃ 1 for all k’s, so that Ṽk will not

play any role (see eq. (2.102)). In practice, this situation has not been encountered so far.

2.4.4 Matching to showers: MC@NLO

In this section, we review the MC@NLO formalism [26] and its implementation in Mad-

Graph5 aMC@NLO, making extensive use of the results given in section 2.4.1. We start by

considering the formulation where the short-distance cross sections are defined for a given

real-emission process rR ∈ Rn+1, which also allows one to symplify the notation, since the

dependence on rR can thus be easily understood. We shall eventually arrive at expressions

which lend themselves to the same manipulations as those carried out at the end of sec-

tion 2.4.1, which MadGraph5 aMC@NLO exploits in order to deal with MC@NLO cross

sections defined at given Born processes, precisely as for their NLO counterparts.

In essence, MC@NLO defines two short-distance cross sections, associated with real-

emission-type kinematics (i.e., (n + 1)-body) and Born-type kinematics (i.e., n-body),

dubbed H- and S-event contributions respectively. Their forms are written as follows:

dσ(H) =
∑

(i,j)∈PFKS

dσ(NLO,E)

ij − dσ(MC) , (2.108)

dσ(S) = dσ(MC) +
∑

(i,j)∈PFKS

∑

α=S,C,SC

dσ(NLO,α)

ij , (2.109)

where dσ(NLO,E)

ij and dσ(NLO,α)

ij are exactly the same quantities (eqs. (2.45) and (2.46)) that

appear in the NLO cross section (eq. (2.47)). The only new (w.r.t. the NLO) ingredient

in MC@NLO is thus dσ(MC), which is the cross section one obtains from the parton shower

Monte Carlo (PSMC) one interfaces to by truncating the perturbative expansion atO(αb+1
S )

(the Born matrix elements being of O(αb
S)), in the case of resolved emission (eq. (2.108))

and of no resolved emission (eq. (2.109)) — indeed, as is implicit in the notation these

two cases result in the same cross section, up to a sign. The crucial point is that, since

the leading IR behaviour of any PSMC must be the same as that resulting from an exact

matrix-element computation in QCD, eqs. (2.108) and (2.109) are locally finite.27 This is

the reason why the dσ(MC) terms are called the MC counterterms, and the MC@NLO cross

section, contrary to the NLO one, can be unweighted.

The definition of the MC counterterms immediately implies that their actual expres-

sions depend on the specific PSMC one interfaces to. These expressions have therefore to

be worked out case-by-case, which has been done for the following PSMCs, whose matching

with NLO calculations has been fully validated in MadGraph5 aMC@NLO: Pythia8 [123],

Herwig++ [121, 122], HERWIG6 [142, 143], and Pythia6 [141] (in the case of pT -ordered

Pythia6, only processes with no strongly-interacting particles in the final state are sup-

ported). The details of the construction of the MC counterterms for some of these PSMCs

are given in refs. [26, 172–175]. On the other hand, the general structure of the MC coun-

terterms is actually PSMC-independent, and it is easy to convince oneself that they can

27In fact, this locality property may be spoiled by certain approximations inherent in the PSMC. It is

not difficult to restore it [26], as we shall briefly discuss later.
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always be written in the following way:

dσ(MC) =
∑

(i,j)∈PFKS

dσ(MC)

ij , (2.110)

since FKS pairs are in one-to-one correspondence with IR singularities, which in turn are

at the core of the shower mechanism. It is important to bear in mind that this implies

that eq. (2.110) is therefore valid not only for those PSMCs based on a 1 → 2 branching

picture (such as those just mentioned), but more generally for any PSMC consistent with

QCD (in particular, those that adopt a dipole picture [34, 176–182]). The functional form

of the terms dσ(MC)

ij is the same for all of the PSMCs considered here,28 and we shall briefly

describe its construction in what follows. One starts with the PSMC cross section that

results from a single branching:29

dσ(MC,0)
ij =

∑

c

∑

l∈c

dσ(MC,0)
ij,cl , (2.111)

dσ(MC,0)
ij,cl = L(MC)

(
x(l)1,2

) δi⊕j∈l

Ni⊕j

αS

2π

PIjIi⊕j
(z(l)ij )

ξ(l)ij

M(n,0)
c Θ(MC)dξ(l)ij dz

(l)
ij

dϕ

2π
dφn . (2.112)

As the notation suggests, although dσ(MC,0)
ij does not necessarily coincide with dσ(MC)

ij (the

possible differences between the two will be explained below), it does fully include its

physics contents, which we now turn to describing.

The sums in eq. (2.111) run over all possible planar colour configurations (c), and the

individual colour lines belonging to them (l). In MadGraph5 aMC@NLO we represent a

colour configuration as a list, c = {l1, . . . lm}, where the individual colour line is represented
as an ordered pair, lk = (s(k), e(k)), whose meaning is that of a connection between particle

Is(k) (the starting point of the line) and particle Ie(k) (the end point of the line). This

implies that, for any given c, a quark or an antiquark will belong to a single colour line

(through its colour or anticolour respectively), while a gluon will belong to two colour lines

(one for colour and one for anticolour). This is the reason for the factor Ni⊕j in eq. (2.112),

which is equal to 1(2) if i⊕j is a quark or an antiquark (a gluon). MadGraph5 aMC@NLO

constructs the colour configurations during an initialisation phase, by gathering the relevant

information from the underlying matrix elements. ξ(l)ij and z(l)ij are the PSMC shower

variables; as the notation indicates, in general their forms depend on the branching particle

i ⊕ j (in particular, on whether it is in the final or initial state), and on the colour line

(which determines the colour partner of i ⊕ j). The actual shower variables are very

PSMC-dependent, and they are coded in MadGraph5 aMC@NLO for all the PSMCs one

may match with. The colour connections in general also determine the choice of Bjorken

x’s made by the PSMC (see e.g. ref. [26]), which is the reason for the dependence on l in the

28Different classes of PSMCs may be conceived, for example dipole-shower-based or by going beyond the

leading-Nc approximation (see e.g. refs. [183–186]), which could induce a different form. However, the idea

of MC counterterms in general, and of eq. (2.110) in particular, would still be valid.
29In order to simplify the notation, we understand the universal, azimuthal-dependent part of the branch-

ing (see e.g. appendix B of ref. [10]).

– 44 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

argument of the luminosity factor L(MC) in eq. (2.112). Pba(z) is the Altarelli-Parisi one-

loop kernel [187], for parton b emerging from the branching of parton a with momentum

fraction z. M(n,0)
c is the Born matrix element multiplied by a factor determined by the

colour configuration c, according to the prescription of ref. [188]. Finally, Θ(MC) symbolically

denotes all kind of kinematics constraints, such as generation-level cuts (an n-body Born

must have n well-separated partons), possible dead-zone conditions, and so forth.

Implicit in eq. (2.112) is the choice of a shower scale, which roughly speaking sets

an upper bound for the hardness of each branching. Since PSMCs are based on a small-

scale approximation, it is clear that the larger the shower scale, the worse the description of

physics by any PSMC. While in the context of standalone-PSMC simulations it may be nec-

essary to consider shower scales that stretch that approximation (simply to fill phase-space

regions otherwise inaccessible), such an attitude is not justified when PSMC are matched

with NLO computations, since the latter provide a much better description of hard-emission

regions. Note that in MC@NLO these undesirable large-shower-scale effects are indeed re-

moved completely at O(αb+1
S ) by the MC counterterms (see eqs. (2.108) and (2.109)).

However, at O(αb+2
S ) and beyond the PSMC may still radiate in the hard regions, poten-

tially giving effects which are simply not sensible from the physics viewpoint. Furthermore,

even at O(αb+1
S ) it does not make much sense to allow the PSMC to produce radiation

only to eventually remove it. Fortunately, it is possible to give the PSMC an external mass

scale in input; during the course of the shower, the PSMC will generate branchings after

choosing the smallest between this external scale and its internally-generated shower scale.

In MadGraph5 aMC@NLO, we exploit this possibility in the following way.30 Firstly, we

introduce a function of a mass scale µ:

D(µ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 µ ≤ µ1 ,

monotonic µ1 < µ ≤ µ2 ,

0 µ > µ2 ,

(2.113)

with µ1 ≤ µ2 two given mass scales. While we typically regard D as a smooth function, it

is perfectly fine to consider its sharp version:

D(µ) = Θ (µQ − µ) , µQ = µ1 = µ2 , (2.114)

which is a particular case of eq. (2.113). Secondly, on an event-by-event basis we determine

a mass scale by using:

µr = D−1(r) , (2.115)

with r a flat random number (note that with eq. (2.114) one obtains µr ≡ µQ). Thirdly, we

give µr in input to the PSMC, where it acts as an upper bound to the internally-generated

shower scales as explained before. The physical meaning of µr (be it a relative transverse

momentum, a virtuality, or whatever else) depends on the specific PSMC chosen, but is

irrelevant here and need not be specified. The crucial thing is the following: by means of

this procedure, we are effectively changing the shower w.r.t. what the PSMC would do if

30This technique has been used sparingly in MC@NLO v3.3 and higher.
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left alone. This change must therefore correspond to a change in the MC counterterms,

because of the very definition of the latter. This amounts to:

dσ(MC,D)

ij = D (µ(Kn+1)) dσ
(MC,0)
ij . (2.116)

Note that the argument of D in eq. (2.116) is computed by using the underlying kinematic

configuration (after having taken into account its PSMC-specific form: pT ,
√
Q2, and so

forth), and must not be generated randomly. Equation (2.116) can always be used in place

of eq. (2.112), the latter being a particular case of the former, which one can formally

obtain by setting µ1 = µ2 =∞.

As was discussed before, the function D controls perturbative effects higher than NLO;

hence, its variations can be used to assess the NLO+PS matching systematics (which is,

by definition, the size of terms beyond the formal accuracy of the computation) of the

MC@NLO method. Although this is expected to be small,31 its actual size is observable-,

process- and (especially) PSMC-dependent,32 and it is therefore convenient to be able to

study it in a straightforward way. This is the case in MadGraph5 aMC@NLO, where one

can control the values of the scales µi of eq. (2.113) through the external parameters fi,

with µi = fi
√
ŝ0, and ŝ0 the Born-level partonic c.m. energy squared.

Equation (2.116) would give the desired MC counterterms if the corresponding PSMC

behaved as expected in the IR regions, namely if it gave exactly the same result as a QCD

matrix-element computation in both the collinear and the soft limits, whence the local

cancellations in eqs. (2.108) and (2.109). Unfortunately, this is not the case in the soft

limit, at least for Herwig and Pythia, where this deficiency is basically a consequence of

the necessity of having a Markovian shower. What is true, however, is that the amount of

soft radiation predicted by the PSMCs is correct; in other words, only its angular pattern

is not consistent with the one required by QCD. Fortunately, such an undesirable feature of

certain PSMCs will not have dramatic consequences on physical observables, because of the

infrared-safety of the latter (the interested reader can find a fuller discussion of this issue in

section A.5 of ref. [26]). The technical problem of the local finiteness of the MC@NLO short-

distance cross sections can be solved by the following definition of the MC counterterms:

dσ(MC)

ij = (1− G) dσ(MC,D)

ij + G dσ(NLO,S)

ij |real . (2.117)

Here, G is a smooth function defined so that G → 1 in the soft limit, and G = 0 outside

of the soft region; dσ(NLO,S)

ij |real is the soft part of the NLO cross section, eq. (2.46), where

only the real-emission matrix element contribution is kept.33

A few comments concerning eq. (2.117) are in order. Given that what the PSMC is

supposed to do is dσ(MC,D)

ij , while what MC@NLO assumes the PSMC does is dσ(MC) of

31The main reason being that MC@NLO short-distance cross sections have no contributions of O(αb+2
S )

or higher; terms of these orders in the physical cross sections can only be generated through MC radiation.
32On top of being, obviously, matching-method dependent. We stress that the results of D variations in

MadGraph5 aMC@NLO can not be used, even as a mere indication, of the matching systematics that

affects other matching methods, such as POWHEG.
33An analogous solution is adopted when the azimuthal part of the PSMC branching kernel does not

agree with that predicted by the matrix elements.
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eq. (2.117), there is a mismatch of O(αb+1
S ) between the two. This mismatch, however, is

utterly irrelevant for several reasons. Firstly, because of the properties of G, it is confined
to the soft regions, where effects of all orders in αS are equally important. Secondly, in

practice in the soft region the PSMC does not even correspond to dσ(MC,D)

ij if not in a

fully inclusive sense, since the PSMC is unable to handle emissions below the IR cutoffs,

which are of the order of the typical hadron mass (and this for a very fundamental reason:

QCD does not have infinite resolution power). Thirdly, because of the previous point all

NLO+PS matching schemes are liable to have O(αb+1
S ) effects in small-scale regions which

are not in formal agreement with fixed-order results at the NLO, even if the second term

on the r.h.s. of eq. (2.117) were not present (see appendix B.3 of ref. [26] for a discussion

specific to the MC@NLO formalism). Ultimately, then, the differences driven by the G
function are power suppressed (see e.g. ref. [189]); eq. (2.117) is nothing but a formal trick

to render the O(αb+1
S ) MC@NLO cross sections non-divergent (which is important in view

of their numerical integration) in a region where not even the perturbative predictions of

PSMCs are sensible, let alone those of fixed-order computations.

Equation (2.117) also gives us the opportunity of commenting briefly on the alternative

implementation of the MC@NLO method presented in ref. [36]. There, the function G
does not appear, for the simple reason that the two short-distance cross sections on the

r.h.s. of eq. (2.117) coincide in the soft limit and, as explained above, this is a sufficient

condition for not having to introduce G. In turn, this situation occurs because the shower

used in ref. [36], and in subsequent papers, in the context of NLO-matched simulations

is constructed to have the same soft behaviour of the matrix elements (see, in particular,

eq. (2.5) of ref. [190]). Once this is done, the form of the MC counterterms is uniquely

determined, lest one has a mismatch of O(αb+1
S ) (everywwhere in the phase space). One

may opt (as is done in ref. [36]) to see this as a choice made at the level of short-distance

cross sections (the soft behaviour of the MC counterterms), that forces one to modify

the shower in order to preserve the perturbative accuracy. While the point of view of

ref. [26] and of this paper is the opposite one (namely that it is the chosen PSMC which

determines the MC counterterms), the fundamental idea is just the same, and therefore the

MC@NLO subtractions of ref. [36] do not differ in any significant way from those that had

been adopted in MC@NLO and are now used in MadGraph5 aMC@NLO. What has been

changed in the approach of ref. [36] (w.r.t. the previous default) is the shower adopted in

conjunction with the NLO matching performed there (which happens not to be the same as

that used in simulations which are not matched to NLO results). We point out that should

a version of the Pythia or Herwig showers become available with a matrix-element-type

soft behaviour, the relevant MC counterterms would be constructed without a G function.

Furthermore, we stress that the NLO accuracy of the MC@NLO method (including, in

particular, the whole 1/Nc expansion) is maintained, and that the O(αb+1
S ) results are thus

in agreement with those of the corresponding matrix elements (up to power-suppressed

effects, as explained above), regardless of the behaviour of the PSMC and thus of the

presence of a G function. On the other hand, if some aspect of the PSMC is deficient (for

example the treatment of subleading-colour contributions), the MC@NLO method itself

cannot provide an improvement in the MC-dominated kinematic regions — any issue of

this kind must be addressed at the level of the PSMC itself.
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Equation (2.117) is the final form to be used in eq. (2.110); when the latter is in turn

replaced in eqs. (2.108) and (2.109), one immediately realises that it is convenient to define

the H- and S-event contributions at fixed FKS pair:

dσ(H)

ij = dσ(NLO,E)

ij − dσ(MC)

ij , (2.118)

dσ(S)

ij = dσ(MC)

ij +
∑

α=S,C,SC

dσ(NLO,α)

ij . (2.119)

It is easy to see that these quantities are locally finite (by construction of the shower

variables ξ(l)ij and z(l)ij ), precisely as their summed counterparts of eqs. (2.108) and (2.109).

Eqs. (2.118) and (2.119) can now be used to define the MC@NLO generating functional. In

order to do that we also introduce, for consistency with the standard notation and in view

of the discussion to be given in section 2.4.5, the H- and S-event kinematic configurations:

K(H)
n ≡ K(E)

n+1 , K(S)
n ≡ K(S)

n+1 , (2.120)

so that the generating functional finally reads as follows:

FMC@NLO =
∑

rR∈Rn+1

∑

(i,j)∈PFKS

⎧
⎨

⎩
FMC

(
K(H)

n

) dσ(H)

ij (rR)

dχ(ij)
Bj dχ

(ij)
n+1

+ FMC

(
K(S)

n

) dσ(S)

ij (rR)

dχ(ij)
Bj dχ

(ij)
n+1

⎫
⎬

⎭
,

(2.121)

where FMC is the generating functional of the PSMC one interfaces to, and its argument

indicates the parton configuration to be adopted as the starting condition for the shower. In

eq. (2.121) we have reinstated the formal dependence of the short-distance cross sections on

the real-emission process rR. In this way, the complete similarity between the MC@NLO

and NLO cross sections in terms of sums over partonic processes and FKS pairs (i.e.,

between the r.h.s. of eq. (2.121) and the l.h.s. of eq. (2.49)) is evident. Thus, as was

anticipated at the beginning of this section, all the manipulations performed at the end of

section 2.4.1 apply to the MC@NLO case as well. In particular, the formulation where the

MC@NLO short-distance cross sections are defined by fixing the Born-level process is the

one adopted in MadGraph5 aMC@NLO. Among other things, this renders it particularly

easy to obtain S events by integrating over ξi and yij before unweighting (which is expected

to reduce the number of negative-weight events, as advocated in ref. [26] in the context

of the MC@NLO formalism; the same idea, dubbed “folding”, has been independently

proposed and implemented in POWHEG).

Before concluding this section, we present two variants of what was discussed so far,

that we shall want to consider for future MadGraph5 aMC@NLO developments. The first

one concerns the definition of the MC counterterms. The advantage of using eqs. (2.118)

and (2.119) is a one-to-one correspondence between the shower variables (z(l)ij , ξ
(l)
ij ) and the

FKS integration variables (ξi, yij). Apart from a transparent way of identifying the IR

singular structure (which in turn is related to dσ(H)

ij and dσ(S)

ij being locally finite at fixed

(i, j)), this implies that, when the integration measure over the MC variables is expressed

in terms of dχ(ij)
n+1, as it must according to eq. (2.121), one can factorise the jacobian

∂
(
z(l)ij , ξ

(l)
ij

)

∂ (ξi, yij)
; (2.122)
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in the current version of MadGraph5 aMC@NLO, this jacobian is computed analytically.

The definitions of eqs. (2.118) and (2.119) might however have a numerical drawback, due

to the presence of the factor Sij only in the terms dσ(NLO,α)

ij . Its absence in the MC countert-

erms could induce differences in the damping of singularities not due to the FKS pair (i, j),

that in turn could result in an unnecessary large fraction of events with negative weights.

This situation can be amended as follows: by using eq. (2.35) one obtains the identity:

dσ(MC) =
∑

(i,j)∈PFKS

dσ(MC)

ij =
∑

(i,j)∈PFKS

∑

(k,p)∈PFKS

Skp dσ
(MC)

ij (2.123)

which implies

dσ(MC) =
∑

(i,j)∈PFKS

dσ̂(MC)

ij , (2.124)

dσ̂(MC)

ij = Sij

∑

(k,p)∈PFKS

dσ(MC)

kp . (2.125)

By using dσ̂(MC)

ij in place of dσ(MC)

ij in eqs. (2.118) and (2.119), one can factor out a term

Sij . The disadvantage of course is that the pair (z(l)kp , ξ
(l)
kp ) is not in one-to-one correspon-

dence with (ξi, yij) any longer, which implies that the relevant jacobians will be much more

involved than that in eq. (2.122). However, this is clearly only a technical problem, which

can be overcome by giving up the requirement that jacobians be computed analytically.

With modern routines for the numerical evaluation of derivatives this appears definitely

feasible, and it would also pave the way for a leaner interface to new PSMCs.

We now turn to the second variant, which concerns the MC@NLO formulation proper.

A good feature of the MC@NLO cross section is that it gives a clear separation of matrix

element and Monte Carlo effects. A drawback is that one is forced to ignore the fact that in

the MC-dominated region (i.e., at small scales) real-emission matrix elements do not give a

good description of the underlying physics, which implies that the contribution of H events

there is important only in terms of total rate, but not in terms of shapes, which indeed

are dominated by showered S events. From the viewpoint of final (physical) results this is

irrelevant, but it entails a loss of efficiency, since typically H events have negative weights

in the MC-dominated region. A possible way to address this problem is the following.

Consider a function ∆ with the properties:

∆ = 1 +O(αS) , (2.126)

∆ −→ 0 IR limits . (2.127)

It is immediate to see that the following definitions:

dσ(H)

ij =
(
dσ(NLO,E)

ij − dσ(MC)

ij

)
∆ , (2.128)

dσ(S)

ij = dσ(MC)

ij ∆+
∑

α=S,C,SC

dσ(NLO,α)

ij + dσ(NLO,E)

ij (1−∆) . (2.129)

result in a generating MC@NLO functional with the same formal accuracy as that of

eq. (2.121). It is clear that, while this conclusion holds regardless of the form of ∆, provided
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that the conditions in eqs. (2.126) and (2.127) are satisfied, from the physical viewpoint

one would identify ∆ with a suitable combination of Sudakovs, whose explicit forms would

ideally be extracted from the same PSMC one interfaces to. Although at present there is no

straightforward way to obtain (numerically) the Sudakovs from a PSMC, there is no reason

of principle which prevents the implementation of such a possibility in future versions of

modern PSMCs. In the meanwhile, MadGraph5 aMC@NLO will have the means to test

eqs. (2.128) and (2.129), by using the analytical expression for the Sudakovs which are

currently used in the context of the FxFx NLO merging method (see section 2.4.5).

2.4.5 Merging samples at the NLO: FxFx

In this section, we present a brief review of the FxFx procedure [191], whose aim is that

of improving, by systematically including PSMC matching at the NLO, the multi-leg tree-

level merging techniques established in the course of the past decade, such as CKKW,

CKKW-L, and MLM (see refs. [145–148, 192–197]). The key word here is merging, which

identifies the following problem. If one obtains hard events from the processes:

I1 + I2 −→ S + i partons , (2.130)

where S is a set of p particles which does not contain any QCD massless partons, how does

one match them to PSMCs when different i values (i.e., different final-state hard-process

multiplicities) are simultaneously considered? The core of the problem is the avoidance

of double counting; note that this is on top of, and more complicated than, the double-

counting problem that one faces when fixing i in eq. (2.130), and which is a matching (not

a merging) issue. While the formulation of the problem of merging is independent of the

perturbative order (i.e., of the accuracy to which the cross sections of the processes in

eq. (2.130) are computed), its solution is not, being strictly connected with the adopted

matching strategy. NLO (and beyond) mergings are thus inherently more complicated than

LO ones, because LO-matching is basically trivial; they have attracted a significant amount

of attention lately [184, 191, 198–207]. The quickest way to realise this is that of considering

the tree-level matrix element associated with the process in eq. (2.130); this will give the

Born contribution to that process, but at the same time it will also be needed at the NLO

as real-emission contribution to a process whose Born features a S + (i− 1) partons final

state. Such a double role of a given matrix element is specific to an NLO merging, and is

absent at the LO.

This example of the tree-level matrix-element double role suggests a way to tackle

the NLO-merging problem. In particular, in view of the fact that, in the context of a

given calculation, the perturbative accuracy of the prediction for an observable is larger

the more inclusive the observable, one wants to use as much as is possible an i-parton

tree-level matrix element as a Born, rather than as a real-emission, contribution. The

role of hard emissions will thus be mainly played by the Born’s associated with processes

with larger multiplicities, while for any given multiplicity the real-emission contributions

will mostly provide the correct (NLO) normalisation. Because the MC@NLO formalism

is designed to perturb in a minimal way both the underlying matrix-element description

and the PSMC one uses for showering events, the above scheme essentially corresponds to
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limiting the hardness of H-event emissions. Technically, this can be achieved by simply

exploiting the D function introduced in eq. (2.113), and by applying analogous conditions

at the matrix element level. In order to do so, it is convenient (and particularly sensible

physics-wise) to re-interpret the parameters µi of eq. (2.113) in the following way:

µ ≤ µ1 soft (MC− dominated),

µ1 < µ ≤ µ2 intermediate,

µ > µ2 hard (ME− dominated).

Note that in the case of a sharp D function, eq. (2.114), the intermediate region collapses

to a zero-measure set. Once one has defined hard and soft mass scales, one needs to define

a way to measure the hardness; because of the fact that NLO corrections will be computed,

it is mandatory that such a measure be IR-safe. The easiest way to achieve this is that

of employing quantities that arise from a jet-reconstruction algorithm. We denote by dj
the scale (with canonical dimension equal to one, i.e. mass) at which a given S+partons

configuration passes from being reconstructed as a j-jet one to being reconstructed as a

(j − 1)-jet one, according to a kT jet-finding algorithm [144] (in other words, there are j

jets of hardness dj − ε, and (j − 1) jets of hardness dj + ε, with ε arbitrarily small). In

general, for n final-state partons one will have

dn ≤ dn−1 ≤ . . . ≤ d2 ≤ d1 . (2.131)

It will also turn out to be convenient to define

dj =
√
ŝ , j ≤ 0 , (2.132)

with
√
ŝ the parton c.m. energy, i.e. the largest energy scale available event-by-event. Since

the function D determines rather directly the way in which the various partonic processes

of eq. (2.130) are combined, the results of variations of the parameters that enter into it can

be associated with the systematics of the merging procedure (and not of the matching one,

as is the case for the unmerged cross sections discussed in section 2.4.4). This is particularly

straightfoward, and totally analogous to what is typically done at the LO, when one chooses

a sharp D function, in which case µQ has to be seen as the merging scale.

We now limit ourselves to reporting the final forms of the short-distance cross sections

necessary to implement the FxFx merging scheme; the interested reader can find more

details in ref. [191]. We denote by N the largest light-parton multiplicity at the Born level

that we consider (therefore, N is the largest value that i can possibly assume in eq. (2.130)).

The cross sections given below are the analogues of those in eqs. (2.118) and (2.119), i.e.,

at fixed real-emission process and FKS pair; in the present section, we understand these

quantities, lest we clutter the notation with unnecessary details. On the other hand, each

H- or S-event contribution or short-distance cross section will carry an index, equal to the

number of final-state particles in the corresponding hard process (at the Born level), this
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information being crucial in all merging procedures. We have:

dσ̄(S)

p+i =
[ ∑

α=S,C,SC

dσ(NLO,α)

p+i + dσ(MC,0)
p+i D(di+1(K(H)

p+i))
]

(2.133)

×
(
1−D(di(K(S)

p+i))
)
Θ
(
di−1(K(S)

p+i)− µ2

)
,

dσ̄(H)

p+i =
[
dσ(NLO,E)

p+i

(
1−D(di(K(H)

p+i))
)
Θ
(
di−1(K(H)

p+i)− µ2

)
(2.134)

−dσ(MC,0)
p+i

(
1−D(di(K(S)

p+i))
)
Θ
(
di−1(K(S)

p+i)− µ2

) ]
D(di+1(K(H)

p+i)) ,

dσ̄(S)

p+N =
[ ∑

α=S,C,SC

dσ(NLO,α)

p+N + dσ(MC,0)
p+N

]
(2.135)

×
(
1−D(dN (K(S)

p+N ))
)
Θ
(
dN−1(K(S)

p+N )− µ2

)
,

dσ̄(H)

p+N = dσ(NLO,E)

p+N

(
1−D(dN (K(H)

p+N ))
)
Θ
(
dN−1(K(H)

p+N )− µ2

)
(2.136)

−dσ(MC,0)
p+N

(
1−D(dN (K(S)

p+N ))
)
Θ
(
dN−1(K(S)

p+N )− µ2

)
,

where in eqs. (2.133) and (2.134) one has 0 ≤ i < N , and in writing the MC countert-

erms we have understood the G dependence as given in eq. (2.117), which is irrelevant for

the sake of the present discussion. The MC@NLO cross section defined by eqs. (2.133)

and (2.134) (eqs. (2.135) and (2.136)), and its analogue that we shall introduce later, is

called the i-parton (N -parton) sample. With the cross sections above, one defines the FxFx

generating functional:

FFxFx =
p+N∑

n=p

F (n)
FxFx , (2.137)

F (n)
FxFx = FMC

(
K(H)

n

) dσ̄(H)
n

dχBjdχn+1
+ FMC

(
K(S)

n

) dσ̄(S)
n

dχBjdχn+1
. (2.138)

Note that eq. (2.138) and eq. (2.121) are formally identical (as was said above, the sums

on the r.h.s. of eq. (2.121) are understood here), the difference being in the form of the

short-distance cross sections. Equation (2.137) implies that the FxFx generating func-

tional is the incoherent sum of MC@NLO generating functionals, each of which incorpo-

rates FxFx-specific type of cuts but that are otherwise fully analogous to their non-merged

counterparts. This renders it straightforward to implement the FxFx merging prescription

into MadGraph5 aMC@NLO.

As was discussed in ref. [191], the formulation of FxFx according to eq. (2.138) can be

supplemented by a Sudakov suppression, in keeping with what is done at the LO in the

CKKW(-L) and MLM methods. The modifications of the short-distance cross sections are

in fact rather minimal, and amount to what follows:

dσ̂(S)

p+i =
[
dσ̄(S)

p+i + dσ(∆)
p+i

]
∆i

(
µ(S)
i,min, µ

(S)
i,max

)
, (2.139)

dσ̂(H)

p+i = dσ̄(H)

p+i ∆i

(
µ(H)
i,min, µ

(H)
i,max

)
, (2.140)

with dσ̄(S)

p+i and dσ̄(H)

p+i defined in eq. (2.133) (for i < N) or eq. (2.135) (for i = N), and in

eq. (2.134) (for i < N) or eq. (2.136) (for i = N) respectively. ∆i is a suitable combination
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of Sudakov form factors, the construction of which follows closely the CKKW prescription.

Further details, including the definition of the hard scales that enter these formulae can be

found in ref. [191]. Here, we limit ourselves to stressing the following fact: while for the

processes studied in ref. [191] the flavour structure of ∆i had been worked out by hand, it

has now been fully automated in MadGraph5 aMC@NLO. The term dσ(∆)
p+i is necessary in

order not to spoil the formal NLO accuracy of the formalism:

dσ(∆)
p+i = −dσ

(NLO,S)

p+i |Born

(
1−D(di(K(S)

p+i))
)
Θ
(
di−1(K(S)

p+i)− µ2

)
∆(1)

i

(
µ(S)
i,min, µ

(S)
i,max

)
,

(2.141)

where dσ(NLO,S)

p+i |Born is the soft part of the NLO cross section, eqs. (2.45) and (2.46),

where only the Born matrix element contribution is kept. By ∆(1)
i we have denoted the

O(αS) term in the perturbative expansion of ∆i. It should be clear that ∆i satisfies

eqs. (2.126) and (2.127); therefore, a by-product of the Sudakov-improved FxFx merging

procedure (which we regard as our “best” FxFx scheme, and is thus the default in Mad-

Graph5 aMC@NLO) is the possibility of testing the alternative (non-merged) MC@NLO

formulation presented in eqs. (2.128) and (2.129).

We conclude this section by discussing two arguments of general relevance to NLO-

merging techniques, and which may have significant bearings on their phenomenological

predictions: unitarity, and merging systematics. In the context of merging, imposing a

unitarity condition means that the fully-inclusive merged cross section (i.e., the sum over

all i’s of the i-parton-sample predictions) is equal to the total rate of the unmerged 0-

parton sample.34 In FxFx unitarity is not imposed, for the reasons we shall now explain.

One of the advantages of unitarity is the fact that the merging scale µQ can be chosen35

in an arbitrarily-large range, whereas in non-unitary approaches this is not possible, and a

sensible choice (which takes into account the hardness of the process, and the fact that µQ

must itself be hard) is always arbitrary to a certain extent. Such a benefit of unitarity has

however a less-pleasant side. Namely, in the general context of resummed computations

matched with fixed orders, constraints on total rates contribute to significant modifica-

tions of matrix-elements predictions, in shape and absolute value, also in regions where

one would expect large-logarithms effects to be suppressed (the Higgs pT spectrum is a

spectacular example of this phenomenon — see e.g. figures 1 and 2 of ref. [208]). This is of

course acceptable, and actually constitutes a defining prediction of a matched formalism,

if all contributions to the latter are perturbatively consistent: an example is that of an

MC@NLO unmerged cross section, where the total rate is of O(αb+1
S ), which is the same

perturbative order to which both S and H events contribute. When unitarised-merging is

considered, the total rate is still imposed to be that of O(αb+1
S ); however, S- and H-event i-

parton samples (and their analogues within any merging formalism) are of O(αb+i+1
S ); this

mismatch of perturbative orders present for any i ≥ 1 might result in a bias (uniquely due

to the total-rate constraint) at the level of shapes, the stronger the larger i. Note that one

could impose the unitarity constraint using an NNLO total-rate prediction (O(αb+2
S )), were

34We neglect here possible complications due to heavy-flavour thresholds, and to contributions to i-parton

samples that cannot be shower-generated starting from a lower multiplicity.
35In principle; in practice, there may be efficiency issues, which are however not of concern here.
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that available. This would marginally alleviate the problem above, but not solve it: firstly,

it merely shifts it to i ≥ 2, and secondly one still uses NLO-matched (and not NNLO-

matched) i-parton samples which thus require, at the very least, to be re-normalised. The

counter argument is that, although a bias might indeed be present, it appears at pertur-

bative orders which are in any case beyond accuracy. This is correct, but does not have

any implications on the presence of large logarithmic terms, that could enhance such con-

tributions. More importantly, it is also an argument that can be used in the context of a

non-unitary approach, where it would apply chiefly to total rates (and, by construction, in

non-unitary approaches there is no bias due to total-rate constraints). In fact, the depen-

dence on µQ of inclusive results can be used effectively in non-unitary mergings as a way to

arrive at a sensible µQ range, to be employed to assess the merging systematics of differen-

tial distributions. Examples of this, and of the fact that FxFx exhibits a rather small µQ

dependence, will be given in section 4.2. In conclusion, the arguments above can be argued

in different ways; it should be clear, however, that regardless of whether a merging approach

imposes or not unitarity, in those phase-space regions where matrix elements and PSMCs

will be vastly different the µQ dependence is bound to be large. In order to be able to study

such effects as locally as is possible, we prefer not to use unitarity arguments in FxFx.

For what concerns the study of merging-scale systematics, we emphasise that the dis-

cussion presented above by no means justifies the practice of not being conservative with

the choice of µQ in non-unitary approaches. There is a particularly common misconception,

relevant when the physics one wants to study features a threshold for jet hardness (that we

shall denote by p(cut)T henceforth): such a misconception entails choosing µQ < p(cut)T . The

(implicit) argument for this choice is that a tagged jet is by definition a hard quantity, and

by setting µQ > p(cut)T one might spoil the underlying NLO accuracy36 for the correspond-

ing jet cross section. Several observations are in order here. Firstly, the use of p(cut)T as a

criterion to determine µQ is a contradiction in terms: by definition, a merging prescription

is what allows one to use samples of hard events without knowing a priori for which observ-

ables they will be employed, in particular which minimal jet hardness will be imposed. The

fact that the merging is not perfect (i.e., it does not have zero systematics) just implies that

both µQ ≪ p(cut)T and µQ ≫ p(cut)T are not particularly sensible, and nothing else. Secondly,

a criterion based solely on p(cut)T misunderstands the meaning of hardness, which is not abso-

lute, but relative. For example, a jet with p(cut)T = 40GeV can rightly be defined to be hard

in inclusive W production; the same jet is less hard in Higgs production, basically soft in tt̄

production, and certainly soft in the production of a 1-TeV Z ′ resonance. Indeed, it should

be obvious that it is always a ratio of mass scales (one of which is of the order of the intrinsic

hardness of the production process, essentially defined by the masses of the final-state par-

ticles, and the other of the order of p(cut)T ), and never the absolute value of one such scale,

that matters: the argument of a logarithm is a dimensionless quantity. Thirdly, and related

to the previous item. When choosing µQ > p(cut)T one might indeed spoil some underlying

NLO description, and for a very good reason: such matrix-element-driven prediction may

36Or the tree-level matrix element accuracy in the case of LO mergings, where this argument is also

applied.

– 54 –



J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

simply be irrelevant in the case of a strong scale hierarchy where p(cut)T is much smaller

than the intrinsic hardness of the process, because there one believes the correct type of

prediction for jet observables to be rather a PSMC-dominated one. Even if the presence

of Sudakov suppression factors in the merged matrix elements may allow one to employ a

merging scale which is smaller than what naive expectations would suggest, still by choosing

µQ < p(cut)T one runs the risk of spoiling the underlying PSMC description of the lowest-

multiplicity sample. In conclusion, given that a merging-scale choice necessarily represents

a non-perfect compromise between a matrix-element- and a PSMC-dominated prediction,

for processes where a scale hierarchy is not overwhelmingly clear (i.e., when p(cut)T is a

non-negligible fraction of the hardness of the production process), one must not decide be-

forehand whether it is either a matrix-element or a PSMC description which is suited best:

they are in principle both valid alternatives, and a sufficiently large range of µQ in the sur-

rounding of p(cut)T must be probed, lest one underestimates the merging-scale systematics.

A final technical remark: given that the work of ref. [191] has used HERWIG6 as

PSMC, and that the FxFx formalism naturally matches a pT -ordered shower, its use with

Pythia8 and Herwig++ does not pose any conceptual problems. In fact, a fully automatic

FxFx interface with Pythia8 has now been achieved, but is not part of the current public

MadGraph5 aMC@NLO release (the related, specific routine inside the Pythia8 code has

become available starting from v8.185). For this reason, the sample FxFx-merged results

which will be presented in section 4.2 will make use of HERWIG6. The FxFx-Pythia8

interface also paves the way for a fully analogous procedure, that will be carried out with

Herwig++. We also remind the reader that the FxFx method has so far been formulated

only for processes that do not feature light jets at the Born level of the lowest-multiplicity

sample, and that the merging of b-quark production processes has not been explicitly

studied. Although we believe that these cases can be treated with only minor modifications

(if any) w.r.t. the present implementation, we postpone their discussion to a future work.

2.5 Spin correlations: MadSpin

In both SM physics and BSM searches the role of unstable particles, that are not directly

observable but (some of) whose decay products may be seen in detectors, is very prominent.

Let us consider the production of p unstable particles uk (k = 1, . . . p; for example, u1 = Z,

u2 = t, u3 = t̄, and so forth), each of which decays into nk particles d1,k, . . . dnk,k, in

association with l stable particles s1, . . . sl:

x+ y −→ u1(→ d1,1 + . . . dn1,1 +X1) + . . . up(→ d1,p + . . . dnp,p +Xp) +

s1 + . . . sl +X0 . (2.142)

It is convenient to regard eq. (2.142) as a parton-level quantity, so that x, y, and all the

particles in the sets Xk are gluons or light quarks; the contents of Xk depend on the

perturbative order considered,37 and need not be specified here. Equation (2.142) does not

properly define a process, but has the following intuitive meaning: it corresponds to the

37And, in general, on the type of corrections. In order to be definite, we consider here the case of QCD.
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contributions to the process

x+ y −→ d1,1 + . . . dn1,1 + . . . d1,p + . . . dnp,p + s1 + . . . sl +X , (2.143)

X =
p⋃

k=0

Xk , (2.144)

whose Feynman diagrams feature an s-channel propagator for each of the p unstable parti-

cles uk, with one end of the propagator attached to a subdiagram that contains at least the

decay products d1,k, . . . dnk,k (such a subdiagram is a tree at the leading order). These di-

agrams may be called p-resonant diagrams and, by extension, any diagram that features n

such propagator-plus-subdiagram structures will be called n-resonant (so that, by including

the case n = 0, all diagrams contributing to eq. (2.143) can be classified in this way). This

implies that it would be natural to associate with eq. (2.142) the matrix elements obtained

by considering only the p-resonant diagrams in their computations. Unfortunately, this is

not straightforward, since in general it violates gauge invariance. So the only possibility

is that of an operative meaning: thus, eq. (2.142) stands for the matrix elements relevant

to the process of eq. (2.143), subject to selection cuts whose purpose is that of forcing

the p-resonant diagrams to be numerically dominant. While this approach is the cleanest

possible from a theoretical viewpoint, it has an obvious problem of efficiency: the non-p-

resonant contributions to eq. (2.143) might swamp the p-resonant ones; furthermore, the

matrix elements of eq. (2.143) are usually very involved. The difficulties mentioned above

can be overcome by observing that a computation that uses only p-resonant diagrams is

formally correct in the limit where all the widths of unstable particles vanish, Γuk
→ 0, ∀k

(narrow-width approximation, which can be systematically improved in the context of a

pole expansion [101, 209, 210]). An immediate consequence of the narrow-width approxi-

mation is that the amplitudes associated with parton emissions (i.e., beyond leading order)

from the decay products dik,k do not interfere with those associated with emissions either

from di′
k′
,k′ , for any k′ ̸= k, or from any particle which is not a decay product. Hence,

higher-order corrections factorise, and can thus be sensibly considered separately for pro-

duction and decay. This results in a significant simplification of the calculation, since in

the narrow-width approximation one can therefore write:

x+ y −→ u1 + . . . up + s1 + . . . sl +X0 , (2.145)

uk −→ d1,k + . . . dnk,k +Xk k = 1, . . . p . (2.146)

As this notation suggests, the particles uk in eqs. (2.145) and (2.146) are regarded as final-

and initial-state objects respectively, rather than as intermediate ones as in eq. (2.143). The

calculation of amplitudes in the narrow-width approximation can be done by employing

well-established spin-density-matrix techniques, which allow one to account for all spin

correlations (we remind the reader that the process of eq. (2.143) is said to have decay spin

correlations if its matrix elements depend non-trivially on the invariants di,k·dj,k for some k;

production spin correlations are present in the case of non-trivial dependences on dik,k·di′k′ ,k′ ,
for any ik and i′k′ with k′ ̸= k, or on dik,k·sq, dik,k·x, dik,k·y and dik,k·X0 for some ik and k).
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When spin correlations effects are small or can be neglected, a further simplification

can be made, where one replaces the squared amplitudes associated with the p-resonant

diagrams relevant to eq. (2.143) with those relevant to the production (eq. (2.145)) and

decays (eq. (2.146)) separately.38 Despite being a priori rather crude, such a simplification

is very widely used in the context of PSMCs, since the narrow-width approximation is

more difficult to automate already at LO, and more so beyond LO. Besides, unweighted-

event generation is significantly more efficient for the process of eq. (2.145) than it is for

that of eq. (2.143). The procedure is therefore that of generating (unweighted) events that

correspond to eq. (2.145), and then let the PSMC decay the unstable particles according

to eq. (2.146) (with Xk = ∅, i.e., at the leading order) during the shower phase. Note that

the PSMC must know how to handle these decays, which sometimes involve non-trivial

matrix elements (e.g., in top decays, or for H0 → 2ℓ2ν). If this is not the case, decay spin

correlations are also incorrectly predicted.

In order to retain the advantages of the separation of production from decays at the

level of squared amplitudes, such as efficiency and ease of automation, without losing

the capability of predicting spin correlations, MadGraph5 aMC@NLO uses the method

introduced in ref. [211],39 and studied there for top andW decays in the SM, which has been

fully automated and extended to generic models in ref. [213]; the corresponding module in

the code has been dubbed MadSpin.40 The method is based on the following identity:

lim
{Γuk

}→0

M
(
x+ y → d1,1 + . . . dnp,p + s1 + . . . sl +X

)

M (x+ y → u1 + . . . up + s1 + . . . sl +X)

p∏

k=1

∆−1
uk
≤ U

(
{uk}pk=1

)
, (2.147)

where U is a universal factor, and the matrix elements at the numerator and denominator

on the l.h.s. are the tree-level ones relevant to the processes of eqs. (2.143) (with p-resonant

diagrams only) and (2.145) (with X0 = X) respectively, and:

∆−1
uk

= (p2uk
−m2

uk
)2 + (muk

Γuk
)2 . (2.148)

Note that the factors ∆−1
uk

in eq. (2.147) cancel exactly the denominators of the unstable-

particle propagators, so that the limit is indeed a finite quantity. The fact that the set X

of radiated partons is the same at the numerator and denominator in eq. (2.147) implies

that the two matrix elements are computed at the same relative order w.r.t. the leading

one; this allows one to correctly take into account the effects of hard radiation at the pro-

duction level. Finally, the factor U depends only on the identities of the unstable particles

(and possibly on the decay kinematics), but is independent of the production process. It

is computed by considering the decays of eq. (2.146) at the LO (i.e., with Xk = ∅), in a

fully numerical manner by MadSpin.

38In other words, the narrow-width approximation allows one to get rid of the non-p-resonant diagrams,

whereas the simplification mentioned here gives a prescription for the actual computation of the p-resonant

diagrams where one does not use spin-density matrices.
39For an alternative method, based on the knowledge of the polarization states of the unstable particles

and on spin-density matrices, and which is adopted in Herwig++, see ref. [212].
40When working at the LO, production spin correlations can be recovered not only by using MadSpin,

but also by adopting the so-called decay-chain syntax — see appendix B.1 for more details.
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Equation (2.147) is used within a standard hit-and-miss procedure, that determines the

kinematics of the decay products dik,k given that of the unstable particles uk. In practice,

unweighted events are first obtained for the process in eq. (2.145); then, for each of these

the phase-space of the decay products is sampled, and through hit-and-miss unweighted

events for the process in eq. (2.143) are obtained. It should be clear that the latter events

thus correctly incorporate the information on both production and decay spin correlations.

Furthermore, there is evidence that, at the NLO, eq. (2.147) gives a general better descrip-

tion of the exact result for eq. (2.143) than that of an NLO narrow-width prediction, in

spite of the LO-only treatment of the decays in the former. This has to do with the fact

that, in the narrow-width approximation, configurations where the virtuality of an unsta-

ble particle (as reconstructed from final-state objects) is larger than the particle mass are

suppressed both by αS (being due to hard NLO corrections) and by a kinematical factor —

for a recent discussion relevant to top physics, see section 3 of ref. [214]. Furthermore, the

NLO origin of these configurations implies that, in the case of the production of more than

one unstable particle, such off-shell effects can be possibly included only for one particle at

a time in the NWA. On the other hand, eq. (2.147) trivially allows one to include off-shell

effects without any kinematics suppression, already at the leading order, and for all unsta-

ble particles simultaneously. In particular, one starts by generating the virtualities of uk
according to a Breit-Wigner distribution (rather than using the pole masses), and employs

those in the generation of the momenta of the decay particles that enter the hit-and-miss

procedure mentioned above. In so doing, one may introduce back into the problem gauge-

violating terms formally of O(Γuk
/muk

), i.e., within the accuracy of the method. So the

only potential issue might result from the numerical coefficients in front of such terms not

being of O(1). However, one can use eq. (2.147) to check that this is not the case; indeed,

the bound of that equation is a fairly good one, even for configurations where the virtuality

of some unstable particle is more than ten widths away from the pole mass.

We have so far tacitly assumed to deal with the most common and numerically-relevant

case in the SM, namely that of QCD corrections to the production of weakly-decaying

unstable particles. When one starts considering EW NLO effects, one may face a self-

consistency problem, due e.g. to the fact that the loop propagators relevant to EW vector

bosons would have to feature non-zero widths (through the complex mass scheme prescrip-

tion), while the same particles would have to be treated as on-shell (owing to the Γuk
→ 0

limits) when appearing in the final state. Hence, in the context of a mixed-coupling expan-

sion, or in general when width effects are induced by the same type of interactions which

are responsible for higher-order corrections, the method discussed in this section has to be

employed by carefully considering the characteristics of the production process.

The MadSpin module included in MadGraph5 aMC@NLO features a number of up-

grades w.r.t. that presented in ref. [213]. The most important of these is that the phase-

space generation is now handled by the Fortran code (rather than by a Python routine).

The determination of the maximum weight has been fully restructured as well; on top of

that, it has been noticed that using more events, but less phase-space points per event,

is more efficient (the defaults have changed from 20 and 104 to 75 and 400, respectively).

These two major improvements have resulted in a dramatic decrease of the running time
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(by a factor of about 10). Furthermore, the former one has paved the way for lifting the

present limitation that restricts the code to dealing only with (a succession of) 1 → 2

decays. From the phenomenology viewpoint, two important novelties are the following.

Firstly, MadSpin now always writes the information on the polarization of final-state par-

ticles, gathered from the matrix elements, onto the LHE files. This implies, in particular,

that PSMCs, if equipped with a suitable module, can handle τ decays including exactly

all decay spin correlations, and also the production ones due to the diagonal terms of the

spin-density matrix. Secondly, one can now use a UFO model in the determination of the

decays which can be different from the one adopted in the computation of the short-distance

undecayed matrix elements.

3 How to perform a computation

The theoretical background discussed in section 2 can be ignored if one is only interested

in obtaining phenomenological predictions. This is the attitude that will be taken in this

section, whose aim is that of giving the briefest documentation for the basic running of the

code, and thus to show its extreme simplicity and level of automation.

The MadGraph5 aMC@NLO package is self-contained (third-party codes are included

in the tarball — see appendix D for their complete list). The local directory where its

tarball is unpacked is called main directory; there is a miniminal (and optional) setup

to be done, as described in appendix A. In essence, the computation of a cross section

by MadGraph5 aMC@NLO consists of three steps: generation, output, and running. All

three steps are performed by executing on-line commands in the MadGraph5 aMC@NLO

shell,41 which can be accessed by executing from a terminal shell in the main directory the

following command:

./bin/mg5 aMC

The prompt now reads:

MG5 aMC>

which signals the fact that one is inside the MadGraph5 aMC@NLO shell. The three steps

mentioned above correspond to the following commands:

MG5 aMC> generate process

MG5 aMC> output

MG5 aMC> launch

respectively; here, process denotes the specific process one is interested into generating (see

appendix B.1 for full details on the syntax).

When generating a process, one must decide whether he/she is interested in including

or not including NLO effects. In fact, although by definition an NLO cross section does

include an LO part (the Born contribution), if NLO effects are not an issue it does not

make much sense to include their contributions only to discard them at run time, especially

in view of their being much more involved than their Born counterparts. Furthermore, the

majority of physics models (see section 2.1) have not yet been extended to include NLO

corrections, and in these cases the whole procedure could not even be conceived.

41As in MadGraph5, scripting commands is of course possible.
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For these reasons, we talk about LO-type and NLO-type generations, and we note

that these two types of generation give access to different running options. We shall discuss

their different merits in the following sects. 3.1 and 3.2 respectively. Before going into that,

we point out that an LO-type generation produces the same short-distance cross section

code (and hence the same type of physics) as that one would have obtained by running

MadGraph5. All possibilities that were available in MadGraph5 are still available in

MadGraph5 aMC@NLO; at the same time, it should be clear that, even in the context of an

LO-type generation, MadGraph5 aMC@NLO has a much wider scope than MadGraph5.

3.1 LO-type generation and running

! Generation

In the generation phase, MadGraph5 aMC@NLO constructs the cross section relevant

to the process given as input by the user, and thus performs the operations sketched in

section 2.1. For example, if one is interested in tt̄W+ production in pp collisions at the

LO, one will need to execute the following command:

MG5 aMC> generate p p > t t~ w+

When generating a process, MadGraph5 aMC@NLO assumes the model to be the SM

(with massive b quarks); a different model can be adopted, by “importing” it before the

generation (see appendix B.1). For example, the generation of a pair of top quarks in

association with a pair of neutralinos (the latter denoted by n1) can be achieved as follows:

MG5 aMC> import model mssm

MG5 aMC> generate p p > t t~ n1 n1

! Output

When the process generation is complete, the relevant information is still in the computer

memory, and needs to be written on disk in order to proceed. This is done by executing

the command:

MG5 aMC> output MYPROC

where MYPROC is a name chosen by the user42 that MadGraph5 aMC@NLO will in turn

assign to the directory under whose tree the cross section of the process just generated

is written. We call such a directory the current-process directory, which is where all

subsequent operations will be performed. For more details on this and for an overview of

the structure of the current-process directory, see appendix A.

! Running

The running stage allows one to accomplish a variety of tasks, the most important of

which are the production of unweighted events, and the plotting of user-defined physical

observables. Regardless of the final product(s) of the run, MadGraph5 aMC@NLO will

42Such a name may be omitted; in this case, MadGraph5 aMC@NLO will choose one. On the

other hand, there are a few names which are reserved, since they are interpreted as options of the output

command. See appendix B.6 for more details.
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start by integrating the cross section generated and written in the two previous steps. In

order to run MadGraph5 aMC@NLO, one executes the command:

MG5 aMC> launch

What is prompted afterwards opens an interactive talk-to (which, again, can be scripted)

that allows the user to choose among various options. This looks as follows:

The following switches determine which programs are run:

1 Run the pythia shower/hadronization: pythia=OFF

2 Run PGS as detector simulator: pgs=OFF

3 Run Delphes as detector simulator: delphes=OFF

4 Decay particles with the MadSpin module: madspin=OFF

5 Add weight to events based on coupling parameters: reweight=OFF

Either type the switch number (1 to 5) to change its default setting,

or set any switch explicitly (e.g. type ‘madspin=ON’ at the prompt)

Type ‘0’, ‘auto’, ‘done’ or just press enter when you are done.

[0, 4, 5, auto, done, madspin=ON, madspin=OFF, madspin, reweight=ON,...]

We would like to emphasise that the structure of the above prompt will evolve in the near

future, and be made more similar to its NLO counterpart (see section 3.2); however, the gen-

eral idea that underpins its use will remain the same, so that what follows has to be regarded

as an exemplification of the general features of the MadGraph5 aMC@NLO talk-to phase.

By entering 1, 2, 3, 4, or 5 at the prompt one toggles between the two values ON and OFF

of the corresponding feature. For example, by entering 1 one is prompted again with the

display above, except for the fact that pythia=OFF has now become pythia=ON. By entering

1 again, one gets back to pythia=OFF. By entering 0, or done, or by simply hitting return,

the talk-to phase ends, and MadGraph5 aMC@NLO starts the actual run. The defaults

shown above imply that MadGraph5 aMC@NLO will simply limit itself to integrating the

cross section, and to producing the required number of unweighted events. On the other

hand, by turning the various switches above to ON, one enables the following features.

pythia=ON: with such a setting MadGraph5 aMC@NLO will steer the showering of

the hard events previously generated, by employing Pythia6. However, it is crucial to bear

in mind that the same hard events can be showered with PSMCs other than Pythia6, but

in this case MadGraph5 aMC@NLO is not capable of steering the shower43 (the steering

of Pythia8 will soon become available). The user may have an independent installation of

Pythia6, but also install the code using the MadGraph5 aMC@NLO shell, by executing

the command install pythia-pgs.

pgs=ON: in this case, MadGraph5 aMC@NLO will also steer the run of the Pretty

Good Simulator (PGS) [215] after that of Pythia6 (i.e., first all events are showered and

hadronised, and next they are passed through the basic detector simulation as imple-

mented by PGS). For this reason, when pgs=ON MadGraph5 aMC@NLO automatically

sets pythia=ON. Note, also, that when the MadGraph5 aMC@NLO shell is used to install

Pythia with the install pythia-pgs command, PGS is installed too.

43This is not the case for NLO simulations — see later.
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delphes=ON: this allows one to steer the run of Delphes 3 [216] for a fast detec-

tor simulation. Delphes can also be installed through the MadGraph5 aMC@NLO shell

with the command install Delphes.44 As for switch number 2, when delphes=ON Mad-

Graph5 aMC@NLO sets automatically pythia=ON.

madspin=ON: by doing so, one includes production spin correlations by means of Mad-

Spin (see section 2.5). Note that the decay-chain syntax (see appendix B.1) is actually

faster and features a better approximation of the exact cross section than MadSpin, which

is thus more conveniently used in the context of NLO simulations.

reweight=ON: instructs MadGraph5 aMC@NLO to store in the LHE file informa-

tion to be used later within the matrix-element reweighting procedure, for example rel-

evant to assessing the impact of different theoretical assumptions (see section 2.3.3 and

appendix B.5).

When switches 1–5 are set as desired by the user and 0, or done, or <return> are

entered, MadGraph5 aMC@NLO proceeds with the run, whose first stage is that of giving

the user the possibility of modifying the various inputs relevant to the options selected

above. Such inputs, and the * card.dat files where they are stored, have a self-explanatory

meaning, and we will not discuss them in detail here.

3.2 NLO-type generation and running

! Generation

The generation phase of an NLO-type generation has the same conceptual meaning of that

relevant to the LO case, described at the beginning of section 3.1. The syntax is also very

similar: adopting again the example of tt̄W+ production in pp collisions, one will need to

execute the following command in order to include QCD NLO effects:

MG5 aMC> generate p p > t t~ w+ [QCD]

As one can see, the only difference w.r.t. the case of the LO-generation is in the presence

of the keyword [QCD] here. Fuller details on the syntax for NLO-type generation are given

in appendix B.1.

! Output

There is no conceptual or technical difference w.r.t. the case of an LO-type generation in

the output phase. Specifically, the command one will need to execute is the same as that

described in section 3.1:

MG5 aMC> output MYPROC

The same comments concerning the choice of MYPROC as made for LO simulations apply

here (see footnote 42).

! Running

Also in the case of an NLO-type generation, the running phase begins by integrating the

cross section generated and written in the two previous steps. There is an important

44Or install Delphes2, if one wanted to use the older Delphes 2 [217] version.
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difference w.r.t. the LO case that must be stressed here. Namely, at the LO the short-

distance cross sections relevant to LO+PS and to fLO computations are identical. This

is not the case at the NLO: the MC@NLO cross sections used in NLO+PS computations

are different from the fixed-order ones used in fNLO computations (the former contain the

MC counterterms, the latter do not; the former can be unweighted, the latter cannot —

see section 2.4.4 for more details). However, when MadGraph5 aMC@NLO generates and

outputs a process, it writes both cross sections, and in so doing allows the user to choose

at runtime which type of computation to perform. In other words, after having generated

a process and used it to obtain (say) fNLO results, there is no need to re-generate it to

obtain NLO+PS results: it is sufficient to run MadGraph5 aMC@NLO again.

In order to run MadGraph5 aMC@NLO, one executes the same command as that relevant

to the LO-type generation:

MG5 aMC> launch

However, what is prompted afterwards opens an interactive talk-to which is different from

the one of the LO-type generation. In particular, one now obtains what follows:

The following switches determine which operations are executed:

1 Perturbative order of the calculation: order=NLO

2 Fixed order (no event generation and no MC@[N]LO matching):

fixed order=OFF

3 Shower the generated events: shower=ON

4 Decay particles with the MadSpin module: madspin=OFF

Either type the switch number (1 to 4) to change its default setting,

or set any switch explicitly (e.g. type ‘order=LO’ at the prompt)

Type ‘0’, ‘auto’, ‘done’ or just press enter when you are done.

[0, 1, 2, 3, 4, auto, done, order=LO, order=NLO,...]

By entering 1, 2, 3, or 4 at the prompt one toggles between the two values of the cor-

responding feature (which are NLO and LO for 1, and ON or OFF for 2–4). For example,

by entering 2 one is prompted again what is displayed above, except for the fact that

fixed order=OFF has now become fixed order=ON. By entering 2 again, one gets back

to fixed order=ON. By entering 0, or done, or by simply hitting return, the talk-to phase

ends, and MadGraph5 aMC@NLO starts the actual runs.

It is the combinations of the values of the switches 1 and 2 that control which kind of

computation the program will perform. More explicitly, we have:

(order=NLO,fixed order=OFF) −→ NLO+PS and FxFx-merged45

(order=NLO,fixed order=ON) −→ fNLO

(order=LO,fixed order=OFF) −→ LO+PS

(order=LO,fixed order=ON) −→ fLO

One need not be suprised by the fact that LO+PS and fLO results can be obtained following

an NLO-type generation, since all the LO information is obviously there, being part of the

45We remind the reader that i-parton samples, the contributions to an FxFx cross section of a given

multiplicity, are nothing but unmerged NLO+PS samples with some extra damping factors, which are

included by MadGraph5 aMC@NLO through a parameter (ickkw) in an input card.
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NLO cross section. Rather, one may wonder why these options are not disabled, since they

lead to the same physics as a run that follows an LO-type generation. A discussion on this

point will be given in section 3.3; here, we limit ourselves to giving the shortest answer,

which is the following: the access to both LO and NLO results within the same generation

procedure (i.e., in the same current-directory process) guarantees an extremely easy and

swift comparison between them.

Switch 3 controls whether one employs MadGraph5 aMC@NLO to steer the showering

of hard-subprocess events previously generated (shower=ON) or not (shower=OFF). We shall

give a more extended discussion about this point in section 3.2.1. Here, we would like to

stress one crucial point: if the hard events are relevant to an NLO+PS run, they do not

have any physical meaning unless they are showered. Hence, one is free to use or not use

MadGraph5 aMC@NLO for showering them, but shower them he/she must. Note that

this is not the case for LO+PS hard events, although of course shower or not shower them

leads to different types of physics (in particular, observables constructed with unshowered

LO+PS hard events are the same as those resulting from an fLO computation).

Finally, switch 4 allows one to decide whether to include production spin correla-

tions by means of MadSpin (see section 2.5). Since the method works starting from un-

weighted events, MadSpin is disabled when a fixed-order run is selected (in other words, the

inputs fixed order=ON and madspin=ON are incompatible, and MadGraph5 aMC@NLO

will automatically prevent the user from making such a choice; this is not necessary when

order=LO, but it is done anyway in order to simplify things).

As in the case of an LO-type generation, after setting switches 1–4 to the desired values

and entering 0, or done, or <return>, MadGraph5 aMC@NLO proceeds with the run by

giving the user the possibility of modifying the various input cards relevant to the options

selected.

3.2.1 (N)LO+PS results

The aim of this section is that of giving some details on the (N)LO+PS runs that fol-

low an NLO-type generation. We recall that (N)LO+PS results are obtained by setting

fixed order=OFF, and the perturbative order is assigned according to the value of the

switch order (see section 3.2).

There are two types of objects46 that may be obtained with an (N)LO+PS run:

1. One or two files of unweighted events at the hard-subprocess level.

2. One file that collects results at the end of the shower, be them in the form of his-

tograms, or n-tuples, or events; we call it MC.output.

The first of the files in 1 is the result of the integration of the short-distance partonic cross

section performed by MadGraph5 aMC@NLO. The second file is present only in the case

when MadSpin is used (madspin=ON), and results from feeding the former file to MadSpin.

These two files will be found under the current-process directory tree:

46There are actually several other auxiliary files produced by MadGraph5 aMC@NLO, whose role

is however not important here. See appendix A for more details.
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MYPROC/Events/run nn/events.lhe.gz

MYPROC/Events/run nn decayed mm/events.lhe.gz

Although of course MadSpin may not be used (or it may simply be not relevant, if the

generated process does not feature particles that decay), the above structure is the most

general, and hence we shall discuss it so as to encompass all cases. We shall call the two

files above the undecayed and decayed (hard-subprocess) event files, respectively; both files

are fully compliant with the recent Les Houches Accord v3.0 [218].

The undecayed event file will contain events whose particle content is the same as that

given as input during the generation step (up to one final-state parton at the NLO), i.e.,

using the example of section 3.2:

x+ y −→ t+ t̄+W+(+z) , (3.1)

where x, y, and z are quarks or gluons.47 The integration of the cross section that results in

the actual events is performed once the values of the relevant parameters (such as particles

masses, collider energy, PDFs) are given in input by the user. The two primary input cards

are:

MYPROC/Cards/run card.dat

MYPROC/Cards/param card.dat

One can obtain an undecayed event file with some parameter settings, then change these

settings, integrate the cross section again, and obtain a second event file; the procedure

can be iterated as many times as one likes. Each run is identified by an integer number,

chosen by MadGraph5 aMC@NLO, which unambiguously names the directory where the

event files will be stored. So, in the example given above, we shall have nn=01 for the first

run, nn=02 for the second run, and so forth.

Each undecayed event file can be fed to MadSpin in order to obtain a decayed event

file. In order to do so, the user is expected to give in input to MadSpin the actual decay(s)

he/she is interested into, which can be done by means of the input card:

MYPROC/Cards/madspin card.dat

Using again the generation example given before, and supposing that one wants to study

the decays:

t → b e+νe , t̄ → b̄ e−ν̄e , W+ → µ+νµ , (3.2)

then the decayed event file will contain events of the following kind:

x+ y −→ b+ e+ + νe + b̄+ e− + ν̄e + µ+ + νµ (+z) . (3.3)

It is possible to run MadSpin multiple times, by feeding it with the same undecayed event

file and by changing the type of decays considered (e.g., semileptonic top decays after the

di-leptonic ones of eq. (3.2)). For each MadSpin run, MadGraph5 aMC@NLO will store

the decayed event file in a different directory — this is the reason for the integer number

mm in the example above, which is automatically assigned to each new run: so mm=1 will

identify the first MadSpin run, mm=2 the second, and so forth.

47The parton z is present in the case of H events, and absent in S events [26].
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In summary, directories that contain undecayed event files are identified by an integer

nn, which roughly speaking corresponds to a given choice of settings in run card.dat

and param card.dat. On the other hand, directories that contain decayed event files are

identified by a pair of integers (nn,mm), which correspond to a given choice of settings in

run card.dat, param card.dat, and madspin card.dat.

Both undecayed and decayed hard-subprocess event files are non physical (at the NLO),

and must be showered in order to obtain physical results. Such a showering can be done

without using MadGraph5 aMC@NLO, since it is nothing but the nowadays typical PSMC

run starting from an external (to the PSMC) LH-compliant event file. On the other hand,

MadGraph5 aMC@NLO can steer PSMC runs: this is convenient for a varienty of rea-

sons, among which the most important are probably those of ensuring a full consistency

among the parameters used when integrating the cross section and those adopted by the

PSMC, and the correct setting of a few control switches in the PSMC itself.48 As was

explained in section 3.2, MadGraph5 aMC@NLO will steer the shower when shower=ON:

in this case, several of the features of the PSMC run can be controlled through a Mad-

Graph5 aMC@NLO input card:

MYPROC/Cards/shower card.dat

The parameters not explicitly included in this card must be controlled directly in the

relevant PSMC, in the same way as one would follow in a PSMC standalone run.

The steering of the PSMC by MadGraph5 aMC@NLO also guarantees that the PSMC

adopted is consistent with that assumed during the integration of the short-distance cross

section. Indeed, it is important to keep in mind that NLO+PS events obtained with the

MC@NLO formalism are PSMC-dependent, and for this reason one of the input parame-

ters in run card.dat is the name of the PSMC which will be eventually used to shower

the hard-subprocess events. This kind of consistency is the user’s responsibility in the case

of a PSMC not steered by MadGraph5 aMC@NLO. Finally, we point out that the most

recent versions of the source codes of the Fortran77 PSMCs (HERWIG6 and Pythia6)

are included in the MadGraph5 aMC@NLO tarball.49 On the other hand, the modern

C++ PSMC (Pythia8 and Herwig++) must be installed locally prior to running Mad-

Graph5 aMC@NLO. The paths to their executables/libraries have to be included in the

setup file mg5 configuration.txt (see appendix A).

When steering of the PSMC by MadGraph5 aMC@NLO one will obtain, at the end

of the PSMC run, the file MC.output mentioned in item 2 at the beginning of this section.

By default (i.e., if the user does not write his/her own analysis) this file will contain the

full event record of each showered event (in StdHEP format for Fortran MCs, and in HepMC

format for C++ PSMCs), and it will be named as follows:

MYPROC/Events/run */events MCTYPE ll.hep.gz

48See http://amcatnlo.cern.ch −→ Help and FAQs −→ Special settings for the parton shower.
49These codes are essentially frozen, so we expect no or very minor changes in the future. Should the

need arise to use versions different w.r.t. those included here, copy them to MYPROC/MCatNLO/srcHerwig

and MYPROC/MCatNLO/srcPythia, and write their names in MYPROC/MCatNLO/MCatNLO MadFKS.inputs. In

the case of Pythia6, the routines UPINIT, UPEVNT, PDFSET, STRUCTP, and STRUCTM need also be commented

out of the source code.
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Here, the run * directory is one of those introduced before; MC.output is moved to the same

directory where one finds the hard-subprocess event file fed to the PSMC during the course

of the run. MCTYPE is a string equal to the name of the PSMC used, and ll is an integer,

chosen by MadGraph5 aMC@NLO, that allows one to distinguish different files obtained

by showering the same hard-event file multiple times (for example by changing the shower

parameters). Any other output created by the PSMC (such as its standard output, which

would be printed on the screen during an interactive run) will be found in the directory:

MYPROC/MCatNLO/RUN MCTYPE pp

with pp an integer that enumerates the various runs.50

While StdHEP full event records may be analysed off-line, they have the disadvantage

of using a very significant amount of disk space. It is very often more convenient to analyse

showered events on-the-fly, using the event kinematics and weight to construct observables

and fill the corresponding histograms. This can be done in a very flexible manner in the

PSMC runs steered by MadGraph5 aMC@NLO. The user’s analysis can be stored in one

of the directories51

MYPROC/MCatNLO/XYZAnalyzer

where the string XYZ depends on the PSMC adopted. The name of such an analysis, and

those of all its dependencies (be they in the form of either source codes or libraries) can be

given in input to MadGraph5 aMC@NLO at runtime, as parameters in shower card.dat.

It is clear that it is the user’s analysis that determines the format of MC.output. Since Mad-

Graph5 aMC@NLO cannot know it beforehand, it will treat MC.output as any other stan-

dard file produced by the PSMC, which will thus be found in the directory RUN MCTYPE pp.

An exception is that of the topdrawer format (which is human readable); in this case,

MC.output will be named as follows:

MYPROC/Events/run */plot MCTYPE kk *.top

with again kk an integer that allows one to distinguish the outputs relevant to different

showering of the same hard-event file.

We conclude this section by mentioning the fact that when the launch command is

executed with madspin=ON and shower=ON (i.e., both undecayed and decayed events are

produced, the PSMC runs immediately follows the integration of the cross section, and it is

steered by MadGraph5 aMC@NLO) only the decayed event file will be showered. In order

to shower the undecayed event file, or to perform other shower runs, one needs to use the

MadGraph5 aMC@NLO shell command shower. Please see appendix B.1 for more details.

3.2.2 f(N)LO results

As was discussed in section 3.2, fixed-order results can be obtained with Mad-

Graph5 aMC@NLO by setting fixed order=ON, with the perturbative order assigned ac-

cording to the value of the switch order.

We remind the reader that an NLO computation not matched to a parton shower

cannot produce unweighted events, since the matrix elements are not bounded from

50Note that in general pp ̸= ll: for example, a PSMC run may not create an StdHEP event record, in

which case pp would be increased, while ll would not.
51Which contain several ready-to-run templates.
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above in the phase space; unweighting events would require the introduction of unphysical

cutoffs that would bias predictions, and must therefore be avoided. The only thing one can

do is that of considering weighted events, namely parton-level kinematic configurations

supplemented by a weight (which is basically equal to the matrix element times a

phase-space factor). Such events, which are readily obtained when sampling the phase

space in the course of the integration of the cross section, can be either stored in a file or

used on-the-fly to predict physical observables. While we choose the latter option as our

default, we remark that the former can be easily implemented by the interested user, as

it will become clear in what follows.

The input parameters relevant to f(N)LO runs can be found in the same cards that

control NLO+PS runs, namely run card.dat and param card.dat. Since observables will

be plotted on the fly, the user is expected to write his/her own analysis (which is a trivial

task, in view of the rather small final-state multiplicities of parton-level computations).

This analysis must be written in Fortran (or at least it must include a Fortran front-end

interface to the user’s core analysis, written in a language other than Fortran) and stored

in the directory:

MYPROC/FixedOrderAnalysis

which contains several templates, meant to be used as examples. As the templates show,

MadGraph5 aMC@NLO at present supports two output formats for user’s analyses —

Root and topdrawer (see appendix. A for more details about this). The analysis name and

the format of its output must be given in input to MadGraph5 aMC@NLO, which is done

by including them in the input card:

MYPROC/Cards/FO analyse card.dat

where the user will also be able to specify any other source file or library needed by the

analysis. Upon running, MadGraph5 aMC@NLO will produce the final-result file:

MYPROC/Events/run nn/MADatNLO.root

if the Root format has been chosen, and:

MYPROC/Events/run nn/MADatNLO.top

for the topdrawer format; these will contain plots for the observables defined by the user. As

in the case of NLO+PS runs, the integer nn will be chosen by MadGraph5 aMC@NLO in

a non-ambiguous way (it should be obvious that both (N)LO+PS and f(N)LO simulations

can be performed any number of times starting from a given generation, and nn will

allow one to distinguish their results). By default, if the user does not write an analysis,

MadGraph5 aMC@NLO will produce a file which will contain the predictions for the total

rate (possibly within the cuts, as specified in run card.dat and cuts.f).

In essence, the user’s analysis will have to construct the desired observables, given

in input the pair composed of a kinematic configuration and its corresponding weight,52

which are provided by MadGraph5 aMC@NLO. These pairs can be read from eq. (2.47):

for each choice of the random variables {χ(ij)
Bj ,χ

(ij)
n+1} that scan the phase space and Bjorken

52Such a weight becomes an array of weights when the user asksMadGraph5 aMC@NLO to compute

scale and PDF uncertainties. See section B.3 for more details.
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x’s, MadGraph5 aMC@NLO will call the user’s analysis three times, with input pairs:
⎛

⎝K(E)
n+1 ,

dσ(NLO,E)

ij

dχ(ij)
Bj dχ

(ij)
n+1

⎞

⎠ , (3.4)

⎛

⎝K(S)
n+1 ,

∑

α=S,C,SC

dσ(NLO,α)

ij |non−Born

dχ(ij)
Bj dχ

(ij)
n+1

⎞

⎠ , (3.5)

⎛

⎝K(S)
n+1 ,

dσ(NLO,S)

ij |Born

dχ(ij)
Bj dχ

(ij)
n+1

⎞

⎠ , (3.6)

where

dσ(NLO,α)

ij |non−Born = dσ(NLO,α)

ij α = C, SC , (3.7)

dσ(NLO,S)

ij |Born + dσ(NLO,S)

ij |non−Born = dσ(NLO,S)

ij , (3.8)

and dσ(NLO,S)

ij |Born is the contribution of the Born matrix elements to the soft-counterevent

weight. The user’s analysis must treat eqs. (3.4)–(3.6) precisely in the same way: this is an

essential condition which guarantees that infrared safety is not spoiled. In particular, to

any given histogram all of these weights must contribute (obviously, to the bins and subject

to the cuts determined by the respective kinematics configurations, K(E)
n+1 and K(S)

n+1), if the

NLO accuracy is to be maintained. Note, also, that the weights (3.4)–(3.6) are correlated,

and thus cannot be individually used in a statistical analysis as they would if they had

been the result e.g. of an unweighted-event procedure.

Thanks to the fact that the Born weight, eq. (3.6), is kept separate from the other

contributions to the NLO cross section, MadGraph5 aMC@NLO allows the user to plot,

during the course of the same run, a given observable both at the NLO accuracy (by using

eqs. (3.4)–(3.6)) and at the LO accuracy (by using eq. (3.6) only). In order to allow the

user’s analysis to tell eq. (3.6) apart from eqs. (3.4) and (3.5), MadGraph5 aMC@NLO will

tag these weights with an integer, equal to 3, 1, and 2 respectively. For explicit examples,

see one of the template analyses in MYPROC/FixedOrderAnalysis.

We conclude this section by pointing out that the writing of weighted events can be

seen as a special type of analysis. The flexibility inherent in the structure sketched above

should easily allow a user to write and exploit such an analysis. In this case, we also

note that, rather than associating a single weight with each event, one can use all of the

scale- and PDF-independent ones defined in ref. [125] (which are available as variables in

a common block) in order to be able to compute scale and PDF uncertainties through

reweighting. These uncertainties can obviously be included when plotting observables on

the fly — see appendix B.3.

3.3 Possibilities for LO simulations

As was mentioned in section 3, MadGraph5 aMC@NLO offers two ways to obtain LO

results. One is through an LO-type generation, where when executing the command

generate one does not include the keyword [QCD]; this is completely equivalent to
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what one would do if using MadGraph5. The other is accessed through an NLO-type

generation, by using order=LO.

We stress once again that all of the capabilities of MadGraph5 are inherited by

MadGraph5 aMC@NLO. Therefore, if one is interested only in LO physics, there is no

reason to simulate it within an NLO-type generation (which in that case would simply

be a waste of time). This is also in view of the fact that many of the options available in

the context of an LO-type generation are disabled when an LO process is computed after

an NLO-type generation. The idea of LO runs in the context of NLO-type generation is

that of rendering the comparison between LO and NLO a completely trivial affair. Note,

for example, that the input cards relevant to LO- and NLO-type generations are different:

many of the cuts that are present in the former would simply not make sense in the latter

(owing to the necessity of being compliant with infrared safety). Also, one should bear in

mind that the functional form of αS used by MadGraph5 aMC@NLO (i.e., at one or two

loops) is determined by the set of PDFs employed in the runs. Therefore, when working

with an NLO-type generation, and assuming that fLO (or LO+PS) results are obtained

during the same run as their fNLO (or NLO+PS) counterparts, the former will be based

on NLO PDFs and two-loop αS (which is of course fully consistent with perturbation

theory, and actually the best option if one is interested in assessing the perturbative

behaviour of the partonic short-distance matrix elements).

In summary, both options for LO runs lead to exactly the same physics. However, by

running the code at the LO with its default inputs one generally does not obtain exactly

the same numbers, since the relevant input cards are tailored either to LO-type or to NLO-

type generations, which have different necessities and emphases. Hence, we recommend to

consider fLO and/or LO+PS results obtained through NLO-type generation mainly in the

context of studies that feature fNLO and/or NLO+PS simulations as well.

4 Illustrative results

4.1 Total cross sections

In this section we present benchmark results for total rates (possibly within the cuts which

will be specified later), at both the LO and the NLO. These are fLO and fNLO results

respectively, with the former computed in the context of an NLO-type generation (see

section 3.3). On the one hand, the aim of this section is that of showing the extreme

flexibility and reach of MadGraph5 aMC@NLO: in keeping with our general philosophy,

no part of the code has been customised to the computation of any of the processes below.

The code has been run as is extracted from the tarball (apart from the occasional necessity

of defining some final-state cuts in cuts.f, in some cases relevant to (b-)jet production,

which are explicitly mentioned in the captions of tables 1–11). We stress that several of

these cross sections have never been computed before to NLO accuracy.

We summarise here the main physics parameters used in our runs; the complete list

of inputs, in the form of the input cards of MadGraph5 aMC@NLO, can be found by

visiting http://amcatnlo.cern.ch/cards paper.htm, which should render it particularly easy

to reproduce the results that follow.
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• mH = 125GeV, mt = 173.2GeV.

• MSTWnlo2008 [219] PDFs with errors at 68%CL, nf = 4, 5. Note that these PDFs

are used to obtain the fLO results as well, and that they set the value of αS(mZ).

• Central scale choice: µ0 = HT/2, with HT the scalar sum of the transverse masses√
p2T +m2 of all final state particles.

• Scale variations: independent, 1/2µ0 < µR, µF < 2µ0.

• Diagonal CKM matrix.

Final-state objects are defined as follows:

• Jets: anti-kT algorithm [220] with R = 0.5, pT (j) > 30GeV, |η(j)| < 4.

• Photons: Frixione isolation [221] with R = 0.7, pT (γ) > 20GeV, |η(γ)| < 2.

While MadGraph5 aMC@NLO can handle intermediate resonances by using the complex

mass scheme, in this section we consider W ’s, Z’s, and top quarks as stable, and thus

set their widths equal to zero. Furthermore, although matrix elements for loop-induced

processes (e.g. such as gg → ZZ), can be obtained with MadLoop, they have not been con-

sidered in this section. Apart from reporting the absolute values of the total cross sections,

the following tables also show (as percentages) scale and PDF uncertainties. These are

computed exactly but without re-running, by exploiting the reweighting method presented

in ref. [125]. Following ref. [68], Yukawa’s are renormalised with an on-shell scheme.

We tag the processes for which we are not aware of any fNLO result being available

in the literature with an asterisk. We stress that, in those cases where an fNLO prediction

had been previously obtained, the corresponding matching to PSMCs might not neces-

sarily have been achieved; this is the typical situation for several of the high-multiplicity

reactions. On the other hand, for all processes presented in the tables below the corre-

sponding NLO+PS event samples can be obtained with MadGraph5 aMC@NLO. Some

non-exhaustive examples will be given in section 4.2.

The following results are organised into broad classes of processes that share some

defining characteristic. In hadroproduction (with a c.m. energy of 13TeV), we have con-

sidered vector bosons plus up to three light jets (table 1), vector boson pairs plus up to

two light jets (table 2), three vector bosons plus up to one light jet (table 3), four vector

bosons (table 4), light jets, b-jets, and top quarks, possibly in association with each other

(table 5), vector bosons in association with top or bottom quarks and light jets (table 6),

single top quarks in association with b quarks (four-flavour scheme53) and vector bosons

(table 7), Higgs and double-Higgs in association with (possibly multiple) light jets, vector

bosons and heavy quarks (tables 8 and 9). In e+e− collisions (with a c.m. energy of 1TeV),

we have considered light jets, possibly in association with heavy quarks (table 10), and top

quark pairs in association with (possibly multiple) vector or Higgs bosons (table 11).

53Throughout this paper, we adopt standard definitions for the four- and five-flavour schemes. See

e.g. section 1 of ref. [222] for a recent short review.
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Process Syntax Cross section (pb)

Vector boson +jets LO 13TeV NLO 13TeV

a.1 pp→W± p p > wpm 1.375± 0.002 · 105 +15.4%
−16.6%

+2.0%
−1.6%

1.773± 0.007 · 105 +5.2%
−9.4%

+1.9%
−1.6%

a.2 pp→W±j p p > wpm j 2.045± 0.001 · 104 +19.7%
−17.2%

+1.4%
−1.1%

2.843± 0.010 · 104 +5.9%
−8.0%

+1.3%
−1.1%

a.3 pp→W±jj p p > wpm j j 6.805± 0.015 · 103 +24.5%
−18.6%

+0.8%
−0.7%

7.786± 0.030 · 103 +2.4%
−6.0%

+0.9%
−0.8%

a.4 pp→W±jjj p p > wpm j j j 1.821± 0.002 · 103 +41.0%
−27.1%

+0.5%
−0.5%

2.005± 0.008 · 103 +0.9%
−6.7%

+0.6%
−0.5%

a.5 pp→Z p p > z 4.248± 0.005 · 104 +14.6%
−15.8%

+2.0%
−1.6%

5.410± 0.022 · 104 +4.6%
−8.6%

+1.9%
−1.5%

a.6 pp→Zj p p > z j 7.209± 0.005 · 103 +19.3%
−17.0%

+1.2%
−1.0%

9.742± 0.035 · 103 +5.8%
−7.8%

+1.2%
−1.0%

a.7 pp→Zjj p p > z j j 2.348± 0.006 · 103 +24.3%
−18.5%

+0.6%
−0.6%

2.665± 0.010 · 103 +2.5%
−6.0%

+0.7%
−0.7%

a.8 pp→Zjjj p p > z j j j 6.314± 0.008 · 102 +40.8%
−27.0%

+0.5%
−0.5%

6.996± 0.028 · 102 +1.1%
−6.8%

+0.5%
−0.5%

a.9 pp→ γj p p > a j 1.964± 0.001 · 104 +31.2%
−26.0%

+1.7%
−1.8%

5.218± 0.025 · 104 +24.5%
−21.4%

+1.4%
−1.6%

a.10 pp→ γjj p p > a j j 7.815± 0.008 · 103 +32.8%
−24.2%

+0.9%
−1.2%

1.004± 0.004 · 104 +5.9%
−10.9%

+0.8%
−1.2%

Table 1. Sample of LO and NLO rates for vector-boson production, possibly within cuts and in association with jets, at the 13-TeV LHC; we
also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. Where relevant, the notation understands the sum
of the W+ and W− cross sections, and wpm is a label that includes both W+ and W−, defined from the shell with define wpm = w+ w-. All
cross sections are calculated in the five-flavour scheme. Results at the NLO accuracy for W/Z plus jets are also available in MCFM for up to
two jets [223–225], including heavy-flavour identification [226–230], and in POWHEG [231–233]. NLO cross sections for W plus three jets have
appeared in refs. [234, 235]. The BlackHat+SHERPA collaboration has provided samples and results for up to Z plus four jets and W plus five
jets at the NLO [236–240]. NLO+PS merged samples for W plus up to three jets are also available in SHERPA [241]. γ plus up to three jets
calculations have been presented in refs. [242, 243]. We do not show cross sections for EW-induced V plus two jets processes with V = γ, Z,W±,
which are available in VBFNLO [244] and have been studied in ref. [245].
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Process Syntax Cross section (pb)
Vector-boson pair +jets LO 13TeV NLO 13TeV

b.1 pp→W+W− (4f) p p > w+ w- 7.355± 0.005 · 101 +5.0%
−6.1%

+2.0%
−1.5%

1.028± 0.003 · 102 +4.0%
−4.5%

+1.9%
−1.4%

b.2 pp→ZZ p p > z z 1.097± 0.002 · 101 +4.5%
−5.6%

+1.9%
−1.5%

1.415± 0.005 · 101 +3.1%
−3.7%

+1.8%
−1.4%

b.3 pp→ZW± p p > z wpm 2.777± 0.003 · 101 +3.6%
−4.7%

+2.0%
−1.5%

4.487± 0.013 · 101 +4.4%
−4.4%

+1.7%
−1.3%

b.4 pp→ γγ p p > a a 2.510± 0.002 · 101 +22.1%
−22.4%

+2.4%
−2.1%

6.593± 0.021 · 101 +17.6%
−18.8%

+2.0%
−1.9%

b.5 pp→ γZ p p > a z 2.523± 0.004 · 101 +9.9%
−11.2%

+2.0%
−1.6%

3.695± 0.013 · 101 +5.4%
−7.1%

+1.8%
−1.4%

b.6 pp→ γW± p p > a wpm 2.954± 0.005 · 101 +9.5%
−11.0%

+2.0%
−1.7%

7.124± 0.026 · 101 +9.7%
−9.9%

+1.5%
−1.3%

b.7 pp→W+W−j (4f) p p > w+ w- j 2.865± 0.003 · 101 +11.6%
−10.0%

+1.0%
−0.8%

3.730± 0.013 · 101 +4.9%
−4.9%

+1.1%
−0.8%

b.8 pp→ZZj p p > z z j 3.662± 0.003 · 100 +10.9%
−9.3%

+1.0%
−0.8%

4.830± 0.016 · 100 +5.0%
−4.8%

+1.1%
−0.9%

b.9 pp→ZW±j p p > z wpm j 1.605± 0.005 · 101 +11.6%
−10.0%

+0.9%
−0.7%

2.086± 0.007 · 101 +4.9%
−4.8%

+0.9%
−0.7%

b.10 pp→ γγj p p > a a j 1.022± 0.001 · 101 +20.3%
−17.7%

+1.2%
−1.5%

2.292± 0.010 · 101 +17.2%
−15.1%

+1.0%
−1.4%

b.11∗ pp→ γZj p p > a z j 8.310± 0.017 · 100 +14.5%
−12.8%

+1.0%
−1.0%

1.220± 0.005 · 101 +7.3%
−7.4%

+0.9%
−0.9%

b.12∗ pp→ γW±j p p > a wpm j 2.546± 0.010 · 101 +13.7%
−12.1%

+0.9%
−1.0%

3.713± 0.015 · 101 +7.2%
−7.1%

+0.9%
−1.0%

b.13 pp→W+W+jj p p > w+ w+ j j 1.484± 0.006 · 10−1 +25.4%
−18.9%

+2.1%
−1.5%

2.251± 0.011 · 10−1 +10.5%
−10.6%

+2.2%
−1.6%

b.14 pp→W−W−jj p p > w- w- j j 6.752± 0.007 · 10−2 +25.4%
−18.9%

+2.4%
−1.7%

1.003± 0.003 · 10−1 +10.1%
−10.4%

+2.5%
−1.8%

b.15 pp→W+W−jj (4f) p p > w+ w- j j 1.144± 0.002 · 101 +27.2%
−19.9%

+0.7%
−0.5%

1.396± 0.005 · 101 +5.0%
−6.8%

+0.7%
−0.6%

b.16 pp→ZZjj p p > z z j j 1.344± 0.002 · 100 +26.6%
−19.6%

+0.7%
−0.6%

1.706± 0.011 · 100 +5.8%
−7.2%

+0.8%
−0.6%

b.17 pp→ZW±jj p p > z wpm j j 8.038± 0.009 · 100 +26.7%
−19.7%

+0.7%
−0.5%

9.139± 0.031 · 100 +3.1%
−5.1%

+0.7%
−0.5%

b.18 pp→ γγjj p p > a a j j 5.377± 0.029 · 100 +26.2%
−19.8%

+0.6%
−1.0%

7.501± 0.032 · 100 +8.8%
−10.1%

+0.6%
−1.0%

b.19∗ pp→ γZjj p p > a z j j 3.260± 0.009 · 100 +24.3%
−18.4%

+0.6%
−0.6%

4.242± 0.016 · 100 +6.5%
−7.3%

+0.6%
−0.6%

b.20∗ pp→ γW±jj p p > a wpm j j 1.233± 0.002 · 101 +24.7%
−18.6%

+0.6%
−0.6%

1.448± 0.005 · 101 +3.6%
−5.4%

+0.6%
−0.7%

Table 2. Sample of LO and NLO rates for vector-boson pair production, possibly within cuts and in association with jets, at the 13-TeV LHC;
we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for the meaning of wpm. All cross
sections are calculated in the five-flavour scheme, except for processes b.1, b.7, and b.15, which are obtained in the four-flavour scheme to avoid
resonant-top contributions. NLO results for V V production have been known for some time [246–254, 256], are publicly available in MCFM and
in VBFNLO [244], and are matched to parton showers in MC@NLO [26] and POWHEG [257]. NLO results for V V with up to an extra jet have
been made available in POWHEG [258, 259]. NLO corrections to γγ plus up to three jets are also known [260–264]. Other available results are:
W+W−jj [255, 359], W±W±jj [265], W±W±jj (EW+QCD) [266], Zγj [267], Wγjj [268], WZjj [269], Wγj [270, 271], WZj [272]. We do not
show results for NLO corrections to EW-induced production of V V plus two jets, such as W±W∓jj [273], WZjj [274], and ZZjj [275], which can
also be obtained with POWHEG and VBFNLO.
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Process Syntax Cross section (pb)
Three vector bosons +jet LO 13TeV NLO 13TeV

c.1 pp→W+W−W± (4f) p p > w+ w- wpm 1.307± 0.003 · 10−1 +0.0%
−0.3%

+2.0%
−1.5%

2.109± 0.006 · 10−1 +5.1%
−4.1%

+1.6%
−1.2%

c.2 pp→ZW+W− (4f) p p > z w+ w- 9.658± 0.065 · 10−2 +0.8%
−1.1%

+2.1%
−1.6%

1.679± 0.005 · 10−1 +6.3%
−5.1%

+1.6%
−1.2%

c.3 pp→ZZW± p p > z z wpm 2.996± 0.016 · 10−2 +1.0%
−1.4%

+2.0%
−1.6%

5.550± 0.020 · 10−2 +6.8%
−5.5%

+1.5%
−1.1%

c.4 pp→ZZZ p p > z z z 1.085± 0.002 · 10−2 +0.0%
−0.5%

+1.9%
−1.5%

1.417± 0.005 · 10−2 +2.7%
−2.1%

+1.9%
−1.5%

c.5 pp→ γW+W− (4f) p p > a w+ w- 1.427± 0.011 · 10−1 +1.9%
−2.6%

+2.0%
−1.5%

2.581± 0.008 · 10−1 +5.4%
−4.3%

+1.4%
−1.1%

c.6 pp→ γγW± p p > a a wpm 2.681± 0.007 · 10−2 +4.4%
−5.6%

+1.9%
−1.6%

8.251± 0.032 · 10−2 +7.6%
−7.0%

+1.0%
−1.0%

c.7 pp→ γZW± p p > a z wpm 4.994± 0.011 · 10−2 +0.8%
−1.4%

+1.9%
−1.6%

1.117± 0.004 · 10−1 +7.2%
−5.9%

+1.2%
−0.9%

c.8 pp→ γZZ p p > a z z 2.320± 0.005 · 10−2 +2.0%
−2.9%

+1.9%
−1.5%

3.118± 0.012 · 10−2 +2.8%
−2.7%

+1.8%
−1.4%

c.9 pp→ γγZ p p > a a z 3.078± 0.007 · 10−2 +5.6%
−6.8%

+1.9%
−1.6%

4.634± 0.020 · 10−2 +4.5%
−5.0%

+1.7%
−1.3%

c.10 pp→ γγγ p p > a a a 1.269± 0.003 · 10−2 +9.8%
−11.0%

+2.0%
−1.8%

3.441± 0.012 · 10−2 +11.8%
−11.6%

+1.4%
−1.5%

c.11 pp→W+W−W±j (4f) p p > w+ w- wpm j 9.167± 0.010 · 10−2 +15.0%
−12.2%

+1.0%
−0.7%

1.197± 0.004 · 10−1 +5.2%
−5.6%

+1.0%
−0.8%

c.12∗ pp→ZW+W−j (4f) p p > z w+ w- j 8.340± 0.010 · 10−2 +15.6%
−12.6%

+1.0%
−0.7%

1.066± 0.003 · 10−1 +4.5%
−5.3%

+1.0%
−0.7%

c.13∗ pp→ZZW±j p p > z z wpm j 2.810± 0.004 · 10−2 +16.1%
−13.0%

+1.0%
−0.7%

3.660± 0.013 · 10−2 +4.8%
−5.6%

+1.0%
−0.7%

c.14∗ pp→ZZZj p p > z z z j 4.823± 0.011 · 10−3 +14.3%
−11.8%

+1.4%
−1.0%

6.341± 0.025 · 10−3 +4.9%
−5.4%

+1.4%
−1.0%

c.15∗ pp→ γW+W−j (4f) p p > a w+ w- j 1.182± 0.004 · 10−1 +13.4%
−11.2%

+0.8%
−0.7%

1.233± 0.004 · 103 +18.9%
−19.9%

+1.0%
−1.5%

c.16 pp→ γγW±j p p > a a wpm j 4.107± 0.015 · 10−2 +11.8%
−10.2%

+0.6%
−0.8%

5.807± 0.023 · 10−2 +5.8%
−5.5%

+0.7%
−0.7%

c.17∗ pp→ γZW±j p p > a z wpm j 5.833± 0.023 · 10−2 +14.4%
−12.0%

+0.7%
−0.6%

7.764± 0.025 · 10−2 +5.1%
−5.5%

+0.8%
−0.6%

c.18∗ pp→ γZZj p p > a z z j 9.995± 0.013 · 10−3 +12.5%
−10.6%

+1.2%
−0.9%

1.371± 0.005 · 10−2 +5.6%
−5.5%

+1.2%
−0.9%

c.19∗ pp→ γγZj p p > a a z j 1.372± 0.003 · 10−2 +10.9%
−9.4%

+1.0%
−0.9%

2.051± 0.011 · 10−2 +7.0%
−6.3%

+1.0%
−0.9%

c.20∗ pp→ γγγj p p > a a a j 1.031± 0.006 · 10−2 +14.3%
−12.6%

+0.9%
−1.2%

2.020± 0.008 · 10−2 +12.8%
−11.0%

+0.8%
−1.2%

Table 3. Sample of LO and NLO rates for triple-vector-boson production, possibly within cuts and in association with one jet, at the 13-TeV LHC;
we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for the meaning of wpm. All cross
sections are calculated in the five-flavour scheme, except for processes with at least two W bosons, where the four-flavour scheme is adopted to
avoid resonant-top contributions. Triple-vector-boson cross sections at the NLO have been computed in: Zγγ [267, 276], γγW± [277], γZW± [278],
WWγ and ZZγ [279], ZWW [358], ZZW and WWW [280, 358], γγγ [281, 282], ZZZ [283, 358]. The complete set of triple-vector-boson cross
sections at the NLO is also available in VBFNLO [244]. Except for γγW±j and W+W−W±j that have appeared in ref. [284] and ref. [285]
respectively, V V V j cross sections at the NLO have been computed here for the first time.
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Process Syntax Cross section (pb)

Four vector bosons LO 13TeV NLO 13TeV

c.21∗ pp→W+W−W+W− (4f) p p > w+ w- w+ w- 5.721± 0.014 · 10−4 +3.7%
−3.5%

+2.3%
−1.7%

9.959± 0.035 · 10−4 +7.4%
−6.0%

+1.7%
−1.2%

c.22∗ pp→W+W−W±Z (4f) p p > w+ w- wpm z 6.391± 0.076 · 10−4 +4.4%
−4.1%

+2.4%
−1.8%

1.188± 0.004 · 10−3 +8.4%
−6.8%

+1.7%
−1.2%

c.23∗ pp→W+W−W±γ (4f) p p > w+ w- wpm a 8.115± 0.064 · 10−4 +2.5%
−2.5%

+2.2%
−1.7%

1.546± 0.005 · 10−3 +7.9%
−6.3%

+1.5%
−1.1%

c.24∗ pp→W+W−ZZ (4f) p p > w+ w- z z 4.320± 0.013 · 10−4 +4.4%
−4.1%

+2.4%
−1.7%

7.107± 0.020 · 10−4 +7.0%
−5.7%

+1.8%
−1.3%

c.25∗ pp→W+W−Zγ (4f) p p > w+ w- z a 8.403± 0.016 · 10−4 +3.0%
−2.9%

+2.3%
−1.7%

1.483± 0.004 · 10−3 +7.2%
−5.8%

+1.6%
−1.2%

c.26∗ pp→W+W−γγ (4f) p p > w+ w- a a 5.198± 0.012 · 10−4 +0.6%
−0.9%

+2.1%
−1.6%

9.381± 0.032 · 10−4 +6.7%
−5.3%

+1.4%
−1.1%

c.27∗ pp→W±ZZZ p p > wpm z z z 5.862± 0.010 · 10−5 +5.1%
−4.7%

+2.4%
−1.8%

1.240± 0.004 · 10−4 +9.9%
−8.0%

+1.7%
−1.2%

c.28∗ pp→W±ZZγ p p > wpm z z a 1.148± 0.003 · 10−4 +3.6%
−3.5%

+2.2%
−1.7%

2.945± 0.008 · 10−4 +10.8%
−8.7%

+1.3%
−1.0%

c.29∗ pp→W±Zγγ p p > wpm z a a 1.054± 0.004 · 10−4 +1.7%
−1.9%

+2.1%
−1.7%

3.033± 0.010 · 10−4 +10.6%
−8.6%

+1.1%
−0.8%

c.30∗ pp→W±γγγ p p > wpm a a a 3.600± 0.013 · 10−5 +0.4%
−1.0%

+2.0%
−1.6%

1.246± 0.005 · 10−4 +9.8%
−8.1%

+0.9%
−0.8%

c.31∗ pp→ZZZZ p p > z z z z 1.989± 0.002 · 10−5 +3.8%
−3.6%

+2.2%
−1.7%

2.629± 0.008 · 10−5 +3.5%
−3.0%

+2.2%
−1.7%

c.32∗ pp→ZZZγ p p > z z z a 3.945± 0.007 · 10−5 +1.9%
−2.1%

+2.1%
−1.6%

5.224± 0.016 · 10−5 +3.3%
−2.7%

+2.1%
−1.6%

c.33∗ pp→ZZγγ p p > z z a a 5.513± 0.017 · 10−5 +0.0%
−0.3%

+2.1%
−1.6%

7.518± 0.032 · 10−5 +3.4%
−2.6%

+2.0%
−1.5%

c.34∗ pp→Zγγγ p p > z a a a 4.790± 0.012 · 10−5 +2.3%
−3.1%

+2.0%
−1.6%

7.103± 0.026 · 10−5 +3.4%
−3.2%

+1.6%
−1.5%

c.35∗ pp→ γγγγ p p > a a a a 1.594± 0.004 · 10−5 +4.7%
−5.7%

+1.9%
−1.7%

3.389± 0.012 · 10−5 +7.0%
−6.7%

+1.3%
−1.3%

Table 4. Sample of LO and NLO rates for quadruple-vector-boson production, possibly within cuts, at the 13-TeV LHC; we also report the
integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for the meaning of wpm. All cross sections are calculated
in the five-flavour scheme, except the processes with at least two W bosons, where the four-flavour scheme is adopted to avoid resonant-top
contributions. For all processes in this table NLO QCD corrections have never been computed before.
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Process Syntax Cross section (pb)
Heavy quarks and jets LO 13TeV NLO 13TeV

d.1 pp→ jj p p > j j 1.162± 0.001 · 106 +24.9%
−18.8%

+0.8%
−0.9%

1.580± 0.007 · 106 +8.4%
−9.0%

+0.7%
−0.9%

d.2 pp→ jjj p p > j j j 8.940± 0.021 · 104 +43.8%
−28.4%

+1.2%
−1.4%

7.791± 0.037 · 104 +2.1%
−23.2%

+1.1%
−1.3%

d.3 pp→ bb̄ (4f) p p > b b∼ 3.743± 0.004 · 103 +25.2%
−18.9%

+1.5%
−1.8%

6.438± 0.028 · 103 +15.9%
−13.3%

+1.5%
−1.7%

d.4∗ pp→ bb̄j (4f) p p > b b∼ j 1.050± 0.002 · 103 +44.1%
−28.5%

+1.6%
−1.8%

1.327± 0.007 · 103 +6.8%
−11.6%

+1.5%
−1.8%

d.5∗ pp→ bb̄jj (4f) p p > b b∼ j j 1.852± 0.006 · 102 +61.8%
−35.6%

+2.1%
−2.4%

2.471± 0.012 · 102 +8.2%
−16.4%

+2.0%
−2.3%

d.6 pp→ bb̄bb̄ (4f) p p > b b∼ b b∼ 5.050± 0.007 · 10−1 +61.7%
−35.6%

+2.9%
−3.4%

8.736± 0.034 · 10−1 +20.9%
−22.0%

+2.9%
−3.4%

d.7 pp→ tt̄ p p > t t∼ 4.584± 0.003 · 102 +29.0%
−21.1%

+1.8%
−2.0%

6.741± 0.023 · 102 +9.8%
−10.9%

+1.8%
−2.1%

d.8 pp→ tt̄j p p > t t∼ j 3.135± 0.002 · 102 +45.1%
−29.0%

+2.2%
−2.5%

4.106± 0.015 · 102 +8.1%
−12.2%

+2.1%
−2.5%

d.9 pp→ tt̄jj p p > t t∼ j j 1.361± 0.001 · 102 +61.4%
−35.6%

+2.6%
−3.0%

1.795± 0.006 · 102 +9.3%
−16.1%

+2.4%
−2.9%

d.10 pp→ tt̄tt̄ p p > t t∼ t t∼ 4.505± 0.005 · 10−3 +63.8%
−36.5%

+5.4%
−5.7%

9.201± 0.028 · 10−3 +30.8%
−25.6%

+5.5%
−5.9%

d.11 pp→ tt̄bb̄ (4f) p p > t t∼ b b∼ 6.119± 0.004 · 100 +62.1%
−35.7%

+2.9%
−3.5%

1.452± 0.005 · 101 +37.6%
−27.5%

+2.9%
−3.5%

Table 5. Sample of LO and NLO total rates for the production of heavy quarks and/or jets, possibly within cuts, at the 13-TeV LHC; we also
report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. Processes d.1 and d.2, as well as processes involving
at least a top pair, are computed in the five-flavour scheme. Processes that explicitly involve b-quarks in the final state are calculated in the
four-flavour scheme. For processes d.3–d.6 we require 2 (or 4) b-jets in the final state with |η| < 2.5. For processes d.1–d.6, we require the (b)-jets to
have pT > 80GeV, with at least one of them with pT > 100GeV. Calculations of cross sections at the NLO for this class of processes are available
in the literature as well as in public codes: from the seminal results for the hadroproduction of a heavy quark pair [286–290], to their NLO+PS
implementation in MC@NLO [172] and POWHEG [291], to tt̄j [292] (also including top decays [258, 293] and parton shower effects [294, 365]),
to the computation of tt̄jj [295]. Merged NLO+PS results for tt̄ plus jets are also available [191, 296, 297]. NLO results for three jets [298], four
jets [74], and up to five jets [299, 300] have been published. Two- and three-jet event generation is available in POWHEG [301, 302]. Calculations
for bb̄bb̄ [303, 304], tt̄bb̄ [305–307, 362], and tt̄tt̄ [308] production have appeared in the literature.
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Process Syntax Cross section (pb)
Heavy quarks+vector bosons LO 13TeV NLO 13TeV

e.1 pp→W± bb̄ (4f) p p > wpm b b∼ 3.074± 0.002 · 102 +42.3%
−29.2%

+2.0%
−1.6%

8.162± 0.034 · 102 +29.8%
−23.6%

+1.5%
−1.2%

e.2 pp→Z bb̄ (4f) p p > z b b∼ 6.993± 0.003 · 102 +33.5%
−24.4%

+1.0%
−1.4%

1.235± 0.004 · 103 +19.9%
−17.4%

+1.0%
−1.4%

e.3 pp→ γ bb̄ (4f) p p > a b b∼ 1.731± 0.001 · 103 +51.9%
−34.8%

+1.6%
−2.1%

4.171± 0.015 · 103 +33.7%
−27.1%

+1.4%
−1.9%

e.4∗ pp→W± bb̄ j (4f) p p > wpm b b∼ j 1.861± 0.003 · 102 +42.5%
−27.7%

+0.7%
−0.7%

3.957± 0.013 · 102 +27.0%
−21.0%

+0.7%
−0.6%

e.5∗ pp→Z bb̄ j (4f) p p > z b b∼ j 1.604± 0.001 · 102 +42.4%
−27.6%

+0.9%
−1.1%

2.805± 0.009 · 102 +21.0%
−17.6%

+0.8%
−1.0%

e.6∗ pp→ γ bb̄ j (4f) p p > a b b∼ j 7.812± 0.017 · 102 +51.2%
−32.0%

+1.0%
−1.5%

1.233± 0.004 · 103 +18.9%
−19.9%

+1.0%
−1.5%

e.7 pp→ tt̄W± p p > t t∼ wpm 3.777± 0.003 · 10−1 +23.9%
−18.0%

+2.1%
−1.6%

5.662± 0.021 · 10−1 +11.2%
−10.6%

+1.7%
−1.3%

e.8 pp→ tt̄ Z p p > t t∼ z 5.273± 0.004 · 10−1 +30.5%
−21.8%

+1.8%
−2.1%

7.598± 0.026 · 10−1 +9.7%
−11.1%

+1.9%
−2.2%

e.9 pp→ tt̄ γ p p > t t∼ a 1.204± 0.001 · 100 +29.6%
−21.3%

+1.6%
−1.8%

1.744± 0.005 · 100 +9.8%
−11.0%

+1.7%
−2.0%

e.10∗ pp→ tt̄W±j p p > t t∼ wpm j 2.352± 0.002 · 10−1 +40.9%
−27.1%

+1.3%
−1.0%

3.404± 0.011 · 10−1 +11.2%
−14.0%

+1.2%
−0.9%

e.11∗ pp→ tt̄ Zj p p > t t∼ z j 3.953± 0.004 · 10−1 +46.2%
−29.5%

+2.7%
−3.0%

5.074± 0.016 · 10−1 +7.0%
−12.3%

+2.5%
−2.9%

e.12∗ pp→ tt̄ γj p p > t t∼ a j 8.726± 0.010 · 10−1 +45.4%
−29.1%

+2.3%
−2.6%

1.135± 0.004 · 100 +7.5%
−12.2%

+2.2%
−2.5%

e.13∗ pp→ tt̄W−W+ (4f) p p > t t∼ w+ w- 6.675± 0.006 · 10−3 +30.9%
−21.9%

+2.1%
−2.0%

9.904± 0.026 · 10−3 +10.9%
−11.8%

+2.1%
−2.1%

e.14∗ pp→ tt̄W±Z p p > t t∼ wpm z 2.404± 0.002 · 10−3 +26.6%
−19.6%

+2.5%
−1.8%

3.525± 0.010 · 10−3 +10.6%
−10.8%

+2.3%
−1.6%

e.15∗ pp→ tt̄W±γ p p > t t∼ wpm a 2.718± 0.003 · 10−3 +25.4%
−18.9%

+2.3%
−1.8%

3.927± 0.013 · 10−3 +10.3%
−10.4%

+2.0%
−1.5%

e.16∗ pp→ tt̄ ZZ p p > t t∼ z z 1.349± 0.014 · 10−3 +29.3%
−21.1%

+1.7%
−1.5%

1.840± 0.007 · 10−3 +7.9%
−9.9%

+1.7%
−1.5%

e.17∗ pp→ tt̄ Zγ p p > t t∼ z a 2.548± 0.003 · 10−3 +30.1%
−21.5%

+1.7%
−1.6%

3.656± 0.012 · 10−3 +9.7%
−11.0%

+1.8%
−1.9%

e.18∗ pp→ tt̄ γγ p p > t t∼ a a 3.272± 0.006 · 10−3 +28.4%
−20.6%

+1.3%
−1.1%

4.402± 0.015 · 10−3 +7.8%
−9.7%

+1.4%
−1.4%

Table 6. Sample of LO and NLO total rates for the production of heavy quarks in association with vector bosons, possibly within cuts and
in association with jets, at the 13-TeV LHC; we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties.
Processes that explicitly involve b-quarks in the final state, and process e.13, are calculated in the four-flavour scheme, while all of the others are
in the five-flavour scheme. Results are available in the literature for Wbb̄ [68, 309–312], Zbb̄ [68, 311, 313], tt̄γ [314], tt̄Z [68, 315, 316, 363, 364],
tt̄W [68, 316, 317] production. For the majority of the processes in this table, NLO corrections are calculated in this work for the first time.
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Process Syntax Cross section (pb)

Single-top LO 13TeV NLO 13TeV

f.1 pp→ tj (t-channel) p p > tt j $$ w+ w- 1.520± 0.001 · 102 +9.4%
−11.9%

+0.4%
−0.6%

1.563± 0.005 · 102 +1.4%
−1.8%

+0.4%
−0.6%

f.2 pp→ tγj (t-channel) p p > tt a j $$ w+ w- 9.956± 0.014 · 10−1 +6.4%
−8.8%

+0.9%
−1.0%

1.017± 0.003 · 100 +1.3%
−1.2%

+0.8%
−0.9%

f.3 pp→ tZj (t-channel) p p > tt z j $$ w+ w- 6.967± 0.007 · 10−1 +3.5%
−5.5%

+0.9%
−1.0%

6.993± 0.021 · 10−1 +1.6%
−1.1%

+0.9%
−1.0%

f.4 pp→ tbj (t-channel, 4f) p p > tt bb j $$ w+ w- 1.003± 0.000 · 102 +13.8%
−11.5%

+0.4%
−0.5%

1.319± 0.003 · 102 +5.8%
−5.2%

+0.4%
−0.5%

f.5∗ pp→ tbjγ (t-channel, 4f) p p > tt bb j a $$ w+ w- 6.293± 0.006 · 10−1 +16.8%
−13.5%

+0.8%
−0.9%

8.612± 0.025 · 10−1 +6.2%
−6.6%

+0.8%
−0.9%

f.6∗ pp→ tbjZ (t-channel, 4f) p p > tt bb j z $$ w+ w- 3.934± 0.002 · 10−1 +18.7%
−14.7%

+1.0%
−0.9%

5.657± 0.014 · 10−1 +7.7%
−7.9%

+0.9%
−0.9%

f.7 pp→ tb (s-channel, 4f) p p > w+ > t b∼, p p > w- > t∼ b 7.489± 0.007 · 100 +3.5%
−4.4%

+1.9%
−1.4%

1.001± 0.004 · 101 +3.7%
−3.9%

+1.9%
−1.5%

f.8∗ pp→ tbγ (s-channel, 4f) p p > w+ > t b∼ a, p p > w- > t∼ b a 1.490± 0.001 · 10−2 +1.2%
−1.8%

+1.9%
−1.5%

1.952± 0.007 · 10−2 +2.6%
−2.3%

+1.7%
−1.4%

f.9∗ pp→ tbZ (s-channel, 4f) p p > w+ > t b∼ z, p p > w- > t∼ b z 1.072± 0.001 · 10−2 +1.3%
−1.5%

+2.0%
−1.6%

1.539± 0.005 · 10−2 +3.9%
−3.2%

+1.9%
−1.5%

Table 7. Sample of LO and NLO total rates for the production of a single top, possibly in association and within cuts, at the 13-TeV LHC; we also
report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. The notation understands the sum of the t and t̄ cross
sections for all processes, and tt is a label that includes both t and t̄, defined from the shell with define tt = t t~ (and analogously for the label
bb). Processes that explicitly involve b-quarks in the final state are calculated in the four-flavour scheme, while all of the others are in the five-flavour
scheme. Being an EW-induced process, single-top production requires special care for the MadGraph5 aMC@NLO generation syntax: $$ means
excluding particles in the s-channel, while the > w+ > (> w- > ) forces a W+ (W−) to be present in the s-channel (see appendix B.1). Total
NLO cross sections for t- and s-channel single-top production have been known for some time [318, 319]. All single-top channels are also available
in MCFM [320–323], MC@NLO [173, 324], and POWHEG [325, 326]. An NLO calculation for tZj production has appeared in ref. [327].
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Process Syntax Cross section (pb)
Single Higgs production LO 13TeV NLO 13TeV

g.1 pp→H (HEFT) p p > h 1.593± 0.003 · 101 +34.8%
−26.0%

+1.2%
−1.7%

3.261± 0.010 · 101 +20.2%
−17.9%

+1.1%
−1.6%

g.2 pp→Hj (HEFT) p p > h j 8.367± 0.003 · 100 +39.4%
−26.4%

+1.2%
−1.4%

1.422± 0.006 · 101 +18.5%
−16.6%

+1.1%
−1.4%

g.3 pp→Hjj (HEFT) p p > h j j 3.020± 0.002 · 100 +59.1%
−34.7%

+1.4%
−1.7%

5.124± 0.020 · 100 +20.7%
−21.0%

+1.3%
−1.5%

g.4 pp→Hjj (VBF) p p > h j j $$ w+ w- z 1.987± 0.002 · 100 +1.7%
−2.0%

+1.9%
−1.4%

1.900± 0.006 · 100 +0.8%
−0.9%

+2.0%
−1.5%

g.5 pp→Hjjj (VBF) p p > h j j j $$ w+ w- z 2.824± 0.005 · 10−1 +15.7%
−12.7%

+1.5%
−1.0%

3.085± 0.010 · 10−1 +2.0%
−3.0%

+1.5%
−1.1%

g.6 pp→HW± p p > h wpm 1.195± 0.002 · 100 +3.5%
−4.5%

+1.9%
−1.5%

1.419± 0.005 · 100 +2.1%
−2.6%

+1.9%
−1.4%

g.7 pp→HW± j p p > h wpm j 4.018± 0.003 · 10−1 +10.7%
−9.3%

+1.2%
−0.9%

4.842± 0.017 · 10−1 +3.6%
−3.7%

+1.2%
−1.0%

g.8∗ pp→HW± jj p p > h wpm j j 1.198± 0.016 · 10−1 +26.1%
−19.4%

+0.8%
−0.6%

1.574± 0.014 · 10−1 +5.0%
−6.5%

+0.9%
−0.6%

g.9 pp→HZ p p > h z 6.468± 0.008 · 10−1 +3.5%
−4.5%

+1.9%
−1.4%

7.674± 0.027 · 10−1 +2.0%
−2.5%

+1.9%
−1.4%

g.10 pp→HZ j p p > h z j 2.225± 0.001 · 10−1 +10.6%
−9.2%

+1.1%
−0.8%

2.667± 0.010 · 10−1 +3.5%
−3.6%

+1.1%
−0.9%

g.11∗ pp→HZ jj p p > h z j j 7.262± 0.012 · 10−2 +26.2%
−19.4%

+0.7%
−0.6%

8.753± 0.037 · 10−2 +4.8%
−6.3%

+0.7%
−0.6%

g.12∗ pp→HW+W− (4f) p p > h w+ w- 8.325± 0.139 · 10−3 +0.0%
−0.3%

+2.0%
−1.6%

1.065± 0.003 · 10−2 +2.5%
−1.9%

+2.0%
−1.5%

g.13∗ pp→HW±γ p p > h wpm a 2.518± 0.006 · 10−3 +0.7%
−1.4%

+1.9%
−1.5%

3.309± 0.011 · 10−3 +2.7%
−2.0%

+1.7%
−1.4%

g.14∗ pp→HZW± p p > h z wpm 3.763± 0.007 · 10−3 +1.1%
−1.5%

+2.0%
−1.6%

5.292± 0.015 · 10−3 +3.9%
−3.1%

+1.8%
−1.4%

g.15∗ pp→HZZ p p > h z z 2.093± 0.003 · 10−3 +0.1%
−0.6%

+1.9%
−1.5%

2.538± 0.007 · 10−3 +1.9%
−1.4%

+2.0%
−1.5%

g.16 pp→Htt̄ p p > h t t∼ 3.579± 0.003 · 10−1 +30.0%
−21.5%

+1.7%
−2.0%

4.608± 0.016 · 10−1 +5.7%
−9.0%

+2.0%
−2.3%

g.17 pp→Htj p p > h tt j 4.994± 0.005 · 10−2 +2.4%
−4.2%

+1.2%
−1.3%

6.328± 0.022 · 10−2 +2.9%
−1.8%

+1.5%
−1.6%

g.18 pp→Hbb̄ (4f) p p > h b b∼ 4.983± 0.002 · 10−1 +28.1%
−21.0%

+1.5%
−1.8%

6.085± 0.026 · 10−1 +7.3%
−9.6%

+1.6%
−2.0%

g.19 pp→Htt̄j p p > h t t∼ j 2.674± 0.041 · 10−1 +45.6%
−29.2%

+2.6%
−2.9%

3.244± 0.025 · 10−1 +3.5%
−8.7%

+2.5%
−2.9%

g.20∗ pp→Hbb̄j (4f) p p > h b b∼ j 7.367± 0.002 · 10−2 +45.6%
−29.1%

+1.8%
−2.1%

9.034± 0.032 · 10−2 +7.9%
−11.0%

+1.8%
−2.2%

Table 8. Sample of LO and NLO total rates for the production of a single SM Higgs, possibly in association and within cuts, at the 13-TeV
LHC; we also report the integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for the meaning of wpm, and
table 7 for the meaning of tt, bb, and the generation syntax. Processes that explicitly involve b-quarks in the final state are calculated in the
four-flavour scheme, while all of the others are in the five-flavour scheme, except for g.12. A complete set of references relevant to NLO rates for
Higgs production can be found in refs. [328–330, 360, 361]. The W -boson width is set equal to 2.0476GeV for process g.17. Cross sections at the
NLO for HV jj and HV V production appear in this work for the first time.
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Process Syntax Cross section (pb)

Higgs pair production LO 13TeV NLO 13TeV

h.1 pp→HH (Loop improved) p p > h h 1.772± 0.006 · 10−2 +29.5%
−21.4%

+2.1%
−2.6%

2.763± 0.008 · 10−2 +11.4%
−11.8%

+2.1%
−2.6%

h.2 pp→HHjj (VBF) p p > h h j j $$ w+ w- z 6.503± 0.019 · 10−4 +7.2%
−6.4%

+2.3%
−1.6%

6.820± 0.026 · 10−4 +0.8%
−1.0%

+2.4%
−1.7%

h.3 pp→HHW± p p > h h wpm 4.303± 0.005 · 10−4 +0.9%
−1.3%

+2.0%
−1.5%

5.002± 0.014 · 10−4 +1.5%
−1.2%

+2.0%
−1.6%

h.4∗ pp→HHW±j p p > h h wpm j 1.922± 0.002 · 10−4 +14.2%
−11.7%

+1.5%
−1.1%

2.218± 0.009 · 10−4 +2.7%
−3.3%

+1.6%
−1.1%

h.5∗ pp→HHW±γ p p > h h wpm a 1.952± 0.004 · 10−6 +3.0%
−3.0%

+2.2%
−1.6%

2.347± 0.007 · 10−6 +2.4%
−2.0%

+2.1%
−1.6%

h.6 pp→HHZ p p > h h z 2.701± 0.007 · 10−4 +0.9%
−1.3%

+2.0%
−1.5%

3.130± 0.008 · 10−4 +1.6%
−1.2%

+2.0%
−1.5%

h.7∗ pp→HHZj p p > h h z j 1.211± 0.001 · 10−4 +14.1%
−11.7%

+1.4%
−1.1%

1.394± 0.006 · 10−4 +2.7%
−3.2%

+1.5%
−1.1%

h.8∗ pp→HHZγ p p > h h z a 1.397± 0.003 · 10−6 +2.4%
−2.5%

+2.2%
−1.7%

1.604± 0.005 · 10−6 +1.7%
−1.4%

+2.3%
−1.7%

h.9∗ pp→HHZZ p p > h h z z 2.309± 0.005 · 10−6 +3.9%
−3.8%

+2.2%
−1.7%

2.754± 0.009 · 10−6 +2.3%
−2.0%

+2.3%
−1.7%

h.10∗ pp→HHZW± p p > h h z wpm 3.708± 0.013 · 10−6 +4.8%
−4.5%

+2.3%
−1.7%

4.904± 0.029 · 10−6 +3.7%
−3.2%

+2.2%
−1.6%

h.11∗ pp→HHW+W− (4f) p p > h h w+ w- 7.524± 0.070 · 10−6 +3.5%
−3.4%

+2.3%
−1.7%

9.268± 0.030 · 10−6 +2.3%
−2.1%

+2.3%
−1.7%

h.12 pp→HHtt̄ p p > h h t t∼ 6.756± 0.007 · 10−4 +30.2%
−21.6%

+1.8%
−1.8%

7.301± 0.024 · 10−4 +1.4%
−5.7%

+2.2%
−2.3%

h.13 pp→HHtj p p > h h tt j 1.844± 0.008 · 10−5 +0.0%
−0.6%

+1.8%
−1.8%

2.444± 0.009 · 10−5 +4.5%
−3.1%

+2.8%
−3.0%

h.14∗ pp→HHbb̄ p p > h h b b∼ 7.849± 0.022 · 10−8 +34.3%
−23.9%

+3.1%
−3.7%

1.084± 0.012 · 10−7 +7.4%
−10.8%

+3.1%
−3.7%

Table 9. Sample of LO and NLO total rates for Higgs-pair production, possibly in association and within cuts, at the 13-TeV LHC; we also report
the integration errors, and the fractional scale (left) and PDF (right) uncertainties. See table 1 for the meaning of wpm, and table 7 for the meaning
of tt. All cross sections are calculated in the five-flavour scheme, except for process h.11 which is obtained in the four-flavour scheme to avoid
resonant-top contributions. Processes h.1, h.2, h.3, h.6, h.12, and h.13 have appeared in ref. [127] as NLO+PS results; some of these were already
known at the NLO [331]. The W -boson width is set equal to 2.0476GeV for process h.13. Previous to the release of MadGraph5 aMC@NLO, the
only available public code for Higgs pair production was HPAIR [332, 333], relevant to process h.1 (see ref. [127] for more details on the different
approach adopted by MadGraph5 aMC@NLO). Process h.2 has been recently added to VBFNLO.
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Process Syntax Cross section (pb)
Heavy quarks and jets LO 1TeV NLO 1TeV

i.1 e+e−→ jj e+ e- > j j 6.223± 0.005 · 10−1 +0.0%
−0.0%

6.389± 0.013 · 10−1 +0.2%
−0.2%

i.2 e+e−→ jjj e+ e- > j j j 3.401± 0.002 · 10−1 +9.6%
−8.0%

3.166± 0.019 · 10−1 +0.2%
−2.1%

i.3 e+e−→ jjjj e+ e- > j j j j 1.047± 0.001 · 10−1 +20.0%
−15.3%

1.090± 0.006 · 10−1 +0.0%
−2.8%

i.4 e+e−→ jjjjj e+ e- > j j j j j 2.211± 0.006 · 10−2 +31.4%
−22.0%

2.771± 0.021 · 10−2 +4.4%
−8.6%

i.5 e+e−→ tt̄ e+ e- > t t∼ 1.662± 0.002 · 10−1 +0.0%
−0.0%

1.745± 0.006 · 10−1 +0.4%
−0.4%

i.6 e+e−→ tt̄j e+ e- > t t∼ j 4.813± 0.005 · 10−2 +9.3%
−7.8%

5.276± 0.022 · 10−2 +1.3%
−2.1%

i.7∗ e+e−→ tt̄jj e+ e- > t t∼ j j 8.614± 0.009 · 10−3 +19.4%
−15.0%

1.094± 0.005 · 10−2 +5.0%
−6.3%

i.8∗ e+e−→ tt̄jjj e+ e- > t t∼ j j j 1.044± 0.002 · 10−3 +30.5%
−21.6%

1.546± 0.010 · 10−3 +10.6%
−11.6%

i.9∗ e+e−→ tt̄tt̄ e+ e- > t t∼ t t∼ 6.456± 0.016 · 10−7 +19.1%
−14.8%

1.221± 0.005 · 10−6 +13.2%
−11.2%

i.10∗ e+e−→ tt̄tt̄j e+ e- > t t∼ t t∼ j 2.719± 0.005 · 10−8 +29.9%
−21.3%

5.338± 0.027 · 10−8 +18.3%
−15.4%

i.11 e+e−→ bb̄ (4f) e+ e- > b b∼ 9.198± 0.004 · 10−2 +0.0%
−0.0%

9.282± 0.031 · 10−2 +0.0%
−0.0%

i.12 e+e−→ bb̄j (4f) e+ e- > b b∼ j 5.029± 0.003 · 10−2 +9.5%
−8.0%

4.826± 0.026 · 10−2 +0.5%
−2.5%

i.13∗ e+e−→ bb̄jj (4f) e+ e- > b b∼ j j 1.621± 0.001 · 10−2 +20.0%
−15.3%

1.817± 0.009 · 10−2 +0.0%
−3.1%

i.14∗ e+e−→ bb̄jjj (4f) e+ e- > b b∼ j j j 3.641± 0.009 · 10−3 +31.4%
−22.1%

4.936± 0.038 · 10−3 +4.8%
−8.9%

i.15∗ e+e−→ bb̄bb̄ (4f) e+ e- > b b∼ b b∼ 1.644± 0.003 · 10−4 +19.9%
−15.3%

3.601± 0.017 · 10−4 +15.2%
−12.5%

i.16∗ e+e−→ bb̄bb̄j (4f) e+ e- > b b∼ b b∼ j 7.660± 0.022 · 10−5 +31.3%
−22.0%

1.537± 0.011 · 10−4 +17.9%
−15.3%

i.17∗ e+e−→ tt̄bb̄ (4f) e+ e- > t t∼ b b∼ 1.819± 0.003 · 10−4 +19.5%
−15.0%

2.923± 0.011 · 10−4 +9.2%
−8.9%

i.18∗ e+e−→ tt̄bb̄j (4f) e+ e- > t t∼ b b∼ j 4.045± 0.011 · 10−5 +30.5%
−21.6%

7.049± 0.052 · 10−5 +13.7%
−13.1%

Table 10. Sample of LO and NLO rates for the production of light jets in association with heavy quarks, possibly within cuts, at a 1-TeV e+e−

collider; we also report the integration errors, and the fractional scale uncertainties. Cross sections for processes i.1–i.10 are calculated in the five-
flavour scheme. For processes i.11–i.18 we use the four-flavour scheme, and require the presence of at least two (four in i.15–i.16) b-jets in the final
state. b-jets are clustered with the same parameters as light jets. Results at NLO accuracy for up to seven light jets can be found in refs. [9, 70, 334–
338], and for a heavy-quark-pair plus up to one jet in refs. [339–345]. All other processes are computed here for the first time at the NLO.

–
81

–



JHEP07(2014)079

Process Syntax Cross section (pb)
Top quarks +bosons LO 1TeV NLO 1TeV

j.1 e+e−→ tt̄H e+ e- > t t∼ h 2.018± 0.003 · 10−3 +0.0%
−0.0%

1.911± 0.006 · 10−3 +0.4%
−0.5%

j.2∗ e+e−→ tt̄Hj e+ e- > t t∼ h j 2.533± 0.003 · 10−4 +9.2%
−7.8%

2.658± 0.009 · 10−4 +0.5%
−1.5%

j.3∗ e+e−→ tt̄Hjj e+ e- > t t∼ h j j 2.663± 0.004 · 10−5 +19.3%
−14.9%

3.278± 0.017 · 10−5 +4.0%
−5.7%

j.4∗ e+e−→ tt̄γ e+ e- > t t∼ a 1.270± 0.002 · 10−2 +0.0%
−0.0%

1.335± 0.004 · 10−2 +0.5%
−0.4%

j.5∗ e+e−→ tt̄γj e+ e- > t t∼ a j 2.355± 0.002 · 10−3 +9.3%
−7.9%

2.617± 0.010 · 10−3 +1.6%
−2.4%

j.6∗ e+e−→ tt̄γjj e+ e- > t t∼ a j j 3.103± 0.005 · 10−4 +19.5%
−15.0%

4.002± 0.021 · 10−4 +5.4%
−6.6%

j.7∗ e+e−→ tt̄Z e+ e- > t t∼ z 4.642± 0.006 · 10−3 +0.0%
−0.0%

4.949± 0.014 · 10−3 +0.6%
−0.5%

j.8∗ e+e−→ tt̄Zj e+ e- > t t∼ z j 6.059± 0.006 · 10−4 +9.3%
−7.8%

6.940± 0.028 · 10−4 +2.0%
−2.6%

j.9∗ e+e−→ tt̄Zjj e+ e- > t t∼ z j j 6.351± 0.028 · 10−5 +19.4%
−15.0%

8.439± 0.051 · 10−5 +5.8%
−6.8%

j.10∗ e+e−→ tt̄W±jj e+ e- > t t∼ wpm j j 2.400± 0.004 · 10−7 +19.3%
−14.9%

3.723± 0.012 · 10−7 +9.6%
−9.1%

j.11∗ e+e−→ tt̄HZ e+ e- > t t∼ h z 3.600± 0.006 · 10−5 +0.0%
−0.0%

3.579± 0.013 · 10−5 +0.1%
−0.0%

j.12∗ e+e−→ tt̄γZ e+ e- > t t∼ a z 2.212± 0.003 · 10−4 +0.0%
−0.0%

2.364± 0.006 · 10−4 +0.6%
−0.5%

j.13∗ e+e−→ tt̄γH e+ e- > t t∼ a h 9.756± 0.016 · 10−5 +0.0%
−0.0%

9.423± 0.032 · 10−5 +0.3%
−0.4%

j.14∗ e+e−→ tt̄γγ e+ e- > t t∼ a a 3.650± 0.008 · 10−4 +0.0%
−0.0%

3.833± 0.013 · 10−4 +0.4%
−0.4%

j.15∗ e+e−→ tt̄ZZ e+ e- > t t∼ z z 3.788± 0.004 · 10−5 +0.0%
−0.0%

4.007± 0.013 · 10−5 +0.5%
−0.5%

j.16∗ e+e−→ tt̄HH e+ e- > t t∼ h h 1.358± 0.001 · 10−5 +0.0%
−0.0%

1.206± 0.003 · 10−5 +0.9%
−1.1%

j.17∗ e+e−→ tt̄W+W− e+ e- > t t∼ w+ w- 1.372± 0.003 · 10−4 +0.0%
−0.0%

1.540± 0.006 · 10−4 +1.0%
−0.9%

Table 11. Sample of LO and NLO rates for the production of top quarks in association with bosons, possibly within cuts and in association with
jets, at a 1-TeV e+e− collider, and the fractional scale uncertainties. Cross sections are calculated in the five-flavour scheme; see table 1 for the
meaning of wpm. Results at NLO accuracy for tt̄H production can be found in ref. [346]. All of the other processes are computed here for the first
time at the NLO.
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4.2 Differential distributions

In this section we present sample results for differential observables relevant to several

processes, which we have simulated at the 8, 13, or 14TeV LHC. While some of these have

never been computed before at the NLO+PS accuracy (or even at fNLO; see section 4.1),

and appear here for the first time, we do not aim to present a series of phenomenological

analyses, which would be out of the scope of this work, but rather at showing yet again

the flexibility of MadGraph5 aMC@NLO, and the type of results that one can obtain

with it. For this reason, the various PSMCs which we shall use have been run with

their default parameters, and no underlying events have been generated. Having said

that, some of the predictions given here are motivated by recent measurements by ATLAS

and CMS. Furthermore, the present section constitutes a complement in particular to

section 2.4.5, since we shall discuss, using explicit examples, several features of the FxFx

merging procedure which have been outlined before in a general fashion. We shall be mainly

concerned with (N)LO+PS results, but we shall also consider f(N)LO ones where necessary.

As was the case for the total rates presented in section 4.1, the computation of scale and

PDF uncertainties has been carried out by using the reweighting procedure introduced

in ref. [125] (see also appendix B.3). NLO+PS results that have never appeared in the

literature are: six-lepton, tt̄W+W−, and SM Higgs in VBF+1j production; furthermore,

double-Higgs production in association with either a tt̄ pair or a Z boson has been solely

computed with MadGraph5 aMC@NLO, in ref. [127]. Finally, FxFx-merged results for

ZZ and He+νe production are also presented here for the first time.

! Six-lepton production. We start by studying the (N)LO+PS production of six lep-

tons:

pp −→ e+e−µ+νµτ
−ν̄τ , (4.1)

which we have computed by using the complex mass scheme; the τ− lepton is set stable,

and its mass is kept at the physical value, while the electron and the muon are treated as

massless. On top of the computation carried out with the exact six-lepton matrix elements

of eq. (4.1), we have also considered the production of the ZW+W− triplet, with the

subsequent decays of the vector bosons performed with either MadSpin or by the PSMC

(in this case, HERWIG6):

pp −→ Z(→ e+e−)W+(→ µ+νµ)W
−(→ τ−ν̄τ ) . (4.2)

While MadSpin multiplies the undecayed matrix elements by the branching ratios of the

relevant decays, so that the rates resulting from eq. (4.2) are in absolute value directly

comparable to those of eq. (4.1), the PSMC does not; in that case, we have therefore

manually included such an overall factor. To all samples, we have applied the following cut:

M(ℓ+ℓ(′)−) > 30 GeV , (4.3)

on all opposite-charged lepton pairs; given the lepton flavours considered here, not

surprisingly the vastly dominant effect of such a cut is that due to the e+e− pair. We
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Figure 4. Transverse momentum (left panel) and invariant mass (right panel) of the six-lepton
system, for the processes of eqs. (4.1) and (4.2). See the text for details.

shall call eq. (4.3) the generation cut.54 On top of eq. (4.3), we have also imposed (also

at the analysis level):
∣∣M(e+e−)−mZ

∣∣ < 20 GeV , (4.4)
∣∣M(µ+νµ)−mW

∣∣ < 20 GeV , (4.5)
∣∣M(τ−ν̄τ )−mW

∣∣ < 20 GeV , (4.6)

which we shall call V -reco cuts. Since eq. (4.2) features only 3-resonant contributions (see

section 2.5 about the notation used here for resonant and non-resonant diagrams), the

results of the MadSpin- and PSMC-decayed samples are basically the same if one considers

only the generation cut, or the generation and V -reco cuts together; for this reason, we

shall discuss only the latter scenario. On the other hand, one of the reasons for comparing

eqs. (4.1) and (4.2) is precisely that of assessing the importance of non-3-resonant

contributions to six-lepton matrix elements; hence, in this case we shall present both the

generation-cut-only and the generation-plus-V -reco cuts results.

In figure 4 we show observables relevant to the six-lepton system, i.e. obtained by

summing the four-momenta of the leptons: the transverse momentum (left panel) and the

invariant mass (right panel). Both the NLO+PS (solid histograms) and LO+PS (dashed

histograms, rescaled as indicated in order to fit into the layout) are displayed. The green his-

tograms are the results of eq. (4.1) with only the generation cut (denoted by “(N)LO ME”);

the results for the generation-plus-V -reco cuts are shown as yellow (eq. (4.1), denoted by

“(N)LO ME V -reco”), red (eq. (4.2) with MadSpin, denoted by “(N)LO MS V -reco”), and

blue (eq. (4.2) with PSMC decays, denoted by “(N)LO PSMC V -reco”) histograms respec-

tively. In the middle insets, the ratios of all the NLO results over the NLO ME V -reco ones

54Despite the fact that it has been imposed at the analysis level, and the true generation cut is marginally

lower so as to avoid biases.
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Figure 5. Cosine of correlation angles for the µ+τ− pair, in six-lepton production, eqs. (4.1)
and (4.2). See the text for details.

are presented. Finally, in the lower insets each LO prediction is divided by its NLO coun-

terpart (so these are essentially the inverse of the K factors). The plots show clearly the

large impact of non-3-resonant contributions, which induce dramatic shape modifications

for M(6ℓ) < 500GeV and 10 < pT (6ℓ) < 250GeV (the very small pT region being domi-

nated by PSMC radiation effects). On the other hand, by imposing V -reco cuts the three

predictions agree rather well with each other, which is the signal that spin correlations are

unimportant for these observables (and, more importantly in view of the aim of this paper,

that all is fine from a technical viewpoint, in the context of a very involved production pro-

cess). We have performed similar comparisons for a large number of observables; here, we

limit ourselves to reporting the results for the cosine of the angle defined by the directions

of flight of the µ+ and τ− leptons, which we denote by ψµ+τ− (left panel of figure 5) when

it is computed in the laboratory frame, and by χµ+τ− (right panel of figure 5) when it is

computed by first boosting the four-momentum of the µ+ and τ− leptons to the rest frame

of the µ+νµ and τ−ν̄τ systems respectively (i.e., to the virtual-W+ and W− rest frames in

the case of resonant contributions); the latter observable is known to be particularly suit-

able for the study of spin-correlation effects. The same conclusions as for the observables

of figure 4 apply here, bar for the χµ+τ− NLO PSMC V -reco one that is fairly different

from both the NLO ME V -reco and NLO MS V -reco predictions, which in turn agree with

each other quite well. As it was expected, this is a manifestation of the importance of spin

correlations for such an observable, and a direct validation of the MadSpin procedure.

The overall messages that one can obtain from the present study are the following.

Firstly, we did verify that the conclusions reached above are not qualitatively modified

if one replaces the (N)LO ME results with those obtained by imposing the generation

cut and eq. (4.4) only — in other words, it is the simultaneous action of the three cuts

of eqs. (4.4)–(4.6) that brings the predictions for eq. (4.1) in agreement with those for

eq. (4.2) and MadSpin; this is obviously because it is important that all three vector
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bosons be near their respective mass shell. Secondly, the effects of NLO corrections are

non negligible, in both rate and shape; however, the patterns of comparison among the

various calculations are to a large extent independent of the perturbative accuracy of the

latter. Thirdly, production spin correlations are present, that can be properly described

only by the full six-lepton computation, and by MadSpin as well if one limits oneself to the

3-resonant region. It is clear that the cuts of eqs. (4.5) and (4.6), and the definition of the

observables considered here, bar ψµ+τ− , cannot be achieved experimentally, owing to the

presence of the neutrino four-momenta. However, they have helped us reach conclusions

which have a general validity, and in particular in the case of a fully realistic analysis:

namely, that non-resonant effects in six-lepton production may be quite large and that,

for all those cuts that render the 3-resonant contributions dominant, the undecayed-plus-

MadSpin simulation provides one with a very good approximation of the exact calculation.

! tt̄W−W+ production. We now turn to considering the process:

pp −→ t(→ e+νeb) t̄(→ e−ν̄eb̄)W
−(→ µ−ν̄µ)W

+(→ µ+νµ) , (4.7)

which we have simulated at the (N)LO+PS accuracy, by only considering the undecayed

matrix elements with tt̄W+W− final states, and by using Pythia8 as PSMC and either

MadSpin or the internal Pythia8 routine (which correctly accounts for decay spin correla-

tions) for the decays of the top quarks and W bosons. In figure 6 we present the transverse

momentum of the tt̄W+W− system, which is the typical observable whose small-pT be-

haviour is dominated by MC effects (whose systematics will not be studied here), and

which is thus unreliable if computed at fNLO accuracy. Both the NLO+PS (solid his-

tograms) and LO+PS (dashed histograms) results are displayed, with the respective scale-

uncertainty bands (in dark and light shades respectively). The very significant reduction

of such theoretical systematics when higher-order corrections are included is evident in the

whole range considered (see also entry e.13 in table 6 for its total-rate counterpart). While

for asymptotically-large transverse momenta one expects the NLO+PS scale dependence to

be of LO type (because in that region the computation is dominated by tree-level contribu-

tions), for such a massive system these pT ’s are confortably in the TeV-range. In figure 7 we

show the transverse momenta of the four-hardest charged leptons in the events; the leptons

are required to have pT (ℓ) > 20GeV and |η(ℓ)| < 2.5. At variance with those of figure 6,

these plots include the branching ratios of the decays reported in eq. (4.7). The LO+PS

results in the main frames are rescaled so as to fit into the layout. Each plot displays

four histograms, that correspond to NLO+PS (solid, with MadSpin decays; dashed, with

Pythia8 decays) and to LO+PS (dot-dashed, with MadSpin decays; dotted, with Pythia8

decays) results. The ratios of these predictions over the NLO+PS, MadSpin-decayed ones

are shown in the insets. The radiative corrections are large, but relatively flat in the pT

ranges considered here; as in the case of the pT of the system, their inclusion reduces the

scale uncertainty in a dramatic manner. Production spin correlations are sizable, so much so

thatMadSpin- and Pythia8-decayed results have shapes which are barely within, or slightly

outside of, the theoretical systematics bands. This is true at the NLO; at the LO, the two

predictions are compatible within uncertainties, but this is solely due to the fact that the
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Figure 6. Transverse momentum of the system of the four primary final-state particles in tt̄W+W−

production.

LO scale dependence is rather large: in fact, the pattern of the inclusion of production spin

correlations is basically independent of the perturbative order at which one is working. This

is nothing but another manifestation of the benefits inherent to the increased predictive

power of simulations that include both NLO and production spin correlation effects.

! Double-Higgs production. We now consider double-Higgs production in the SM at

the 14TeV LHC. This process has been investigated recently with MadGraph5 aMC@NLO

in ref. [127], where all the six dominant channels at the LHC have been computed up to

NLO+PS accuracy, some of them for the first time. For all channels, the results of ref. [127]

have improved what was available in the literature in at least one respect. In ref. [127]

we have only presented (N)LO+PS distributions. Here, we amend this by showing also

f(N)LO spectra; we use the transverse momentum of the Higgs pair, and the tt̄HH and

ZHH channels, as a definite example; as PSMCs, we adopt Pythia8 and HERWIG6. The

results are shown in figure 8, as solid (for NLO-accurate) and dashed (for LO-accurate)

histograms. The main frames display the NLO predictions in absolute value, while the

LO ones are rescaled in order to fit into the layout; the K factors can be read from the

insets, where we present the ratios of all results over those at the NLO+PS obtained with

Pythia8. The common feature of the two plots is that NLO results are mutually closer

than the corresponding LO ones; the two NLO+PS predictions are extremely similar for

both processes, while the fNLO spectrum in ZHH production is only marginally softer (an

overall effect smaller than 20%). It is interesting to see that this stabilisation due to the in-
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Figure 7. Transverse momentum of the hardest four charged leptons in tt̄W+W− production —
see eq. (4.7). The LO+PS results that appear in the insets have not been rescaled.

clusion of higher-order corrections follows different patterns for the two channels considered

here. ZHH is predominantly a qq̄-initiated process: therefore, the difference between the

two standalone PSMCs (i.e., LO+PS) is expected to be smaller than in the case of tt̄HH

production, which mainly proceeds through gg fusion. This is precisely what we see in fig-

ure 8 (compare the purple and red histograms in the insets). On the other hand, at fLO the

Higgs pair recoils against a Z boson and a tt̄-system in ZHH and tt̄HH production respec-

tively; the kinematics of the tt̄ pair being non-trivial (at variance with that of a single Z)

implies that the fLO prediction for pT (HH) is farther away from the corresponding LO+PS

ones in the ZHH channel than in the tt̄HH channel (see the green dashed histograms in

the insets, and compare the position of the peaks of the fLO and fNLO results).

! Single-Higgs production. We now turn to discussing the production of a single

SM Higgs at the 13TeV LHC. The aims of figure 9, where we show the Higgs trans-

verse momentum, are twofold. Firstly, we compare LO+PS with NLO+PS predictions;

secondly, we present results for all PSMCs which are matched to NLO calculations in
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Figure 8. Transverse momentum of the two-Higgs system in tt̄HH (left panel) and ZHH (right
panel) production. (N)LO+PS and f(N)LO results are shown. We have used Pythia8 and
HERWIG6.

MadGraph5 aMC@NLO.55 The comparison between the two panels of the figure shows

the two expected behaviours: at large pT ’s, all NLO+PS predictions coincide (and are just

on top of the corresponding fNLO result, not displayed here), while the LO+PS are vastly

different; on the other hand, at small pT ’s, the relative behaviour of the various PSMCs

is the same, regardless of the perturbative order of the underlying matrix-element com-

putations. We point out that all PSMCs are treated on equal footing, i.e. they are given

the same numerical values as shower-scales parameters (such scales are equal to mH at the

LO, and controlled by the D function at the NLO); so while different scales for different

PSMCs could bring them in better agreement at the LO, this is actually a negative im-

plication of the loss of predictivity at this perturbative order, and it is unnecessary when

NLO corrections are included in the simulations; a further example of this pattern will

be given below, in the study of Higgs production through VBF. We conclude this part by

showing, in figure 10, the Higgs pT that results from the five dominant production channels

at the 13TeV LHC (whose total rates are reported in lines g.1, g.4, g.6, g.9, and g.16 of

table 8, where one can also find the MadGraph5 aMC@NLO shell commands relevant to

their generation); the thickness of the bands represent the combined scale and PDF uncer-

tainties; all the predictions are obtained at the NLO+PS, with the use of Pythia8. This

plot is another demonstration of the flexibility of the MadGraph5 aMC@NLO framework.

! Higgs production in VBF. As a further example of the stabilisation of the pre-

dictions that result from including higher-order matrix elements (which in turn serves as

a validation exercise for the whole NLO+PS machinery in MadGraph5 aMC@NLO), we

consider Higgs production in VBF, which we compute in two ways: by considering the pro-

cess whose Born is of O(α3) (which we denote by VBF+0j [347], and whose final state at

55We remind the reader that Pythia6(pT ) is available for ISR-only processes.
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Figure 10. Higgs pT spectrum for the five dominant production channels at the LHC, at the
NLO+PS accuracy with Pythia8.

the Born level thus features a Higgs-plus-two-parton system), and the process whose Born

is of O(α3αS) (which we denote by VBF+1j, and whose final state at the Born level thus

features a Higgs-plus-three-parton system). These are the processes reported in lines g.4

and g.5 of table 8, where the interested reader can also find the MadGraph5 aMC@NLO

shell commands that one must use in order to generate them. The only analysis cuts we

impose here are on the transverse momenta of the (anti-kT , R = 0.5) jets, by requiring

that pT (j) > 20GeV. The only observables for which a direct comparison between VBF+0j

and VBF+1j is sensible, and allow one to assess the impact of perturbative corrections,

are those related to the third jet, where one expects to have an effective LO and NLO

description respectively. In figure 11 we present predictions for the transverse momen-
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Figure 11. Third-jet observables in Higgs VBF+0j and VBF+1j production, both at the
NLO+PS, with Pythia8, HERWIG6, and Pythia6(Q2).

tum spectrum of the third-hardest jet, and for the rate as a function of the transverse

momentum of the veto jet:

σveto (pT (jveto)) =

∫ ∞

pT (jveto)
dpT

dσ

dpT

. (4.8)

The veto jet is the hardest jet which is not one of the two tagging jet (which are defined

to be the two hardest ones overall, and which we denote by j1 and j2 respectively), and

whose rapidity obeys the condition:

min (yj1 , yj2) ≤ y(jveto) ≤ max (yj1 , yj2) . (4.9)

The quantity defined in eq. (4.8) is related to Pveto, defined e.g. in eq. (41) of ref. [330], by

a simple normalisation factor, σveto = σNLO Pveto. For both VBF+0j (dashed histograms)

and VBF+1j (solid histograms) the results for three PSMCs (Pythia8 (red), Pythia6(Q2)

(green), and HERWIG6 (black)) are displayed, with the VBF+0j ones rescaled by a factor

1/5 in order for them to fit into the layout. The ratios of the Pythia predictions over

the HERWIG6 ones are presented in the insets. In the inset relevant to VBF+1j, we also

report the ratio of the HERWIG6 VBF+0j result over the VBF+1j one (black dashed

histogram), which is related to the inverse of the K factor — for both observables, the

latter is of the order of 1.05–1.15. In the insets we also display the scale uncertainties

as gray bands: it is evident that the inclusion of the contributions of relative O(αS) in

VBF+1j significantly reduces the theoretical systematics. Apart from this, the most

striking consequence of such an inclusion is the fact that the three PSMCs in VBF+1j

are fairly close to each other; this is not the case in VBF+0j, where Pythia8 has a

much softer shape than either Pythia6 or HERWIG6. We point out that this is a feature

of quantities related to the third jet: other observables which have an NLO nature in
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VBF+0j are much better behaved, with the three PSMCs in good agreement already at

O(α3(1 + αS)). Therefore, although one could possibly find settings for the PSMCs that

would bring the predictions for the pT (j3) and σveto VBF+0j spectra in better agreement

than in figure 11, this would simply be the signal of an unsatisfactory predictive capability,

which is restored by considering these observables in VBF+1j production.

! Top-pair production. While differential distributions relevant to tt̄ production mea-

sured at the LHC by the ATLAS (at 7TeV in lepton+jets events [348]) and the CMS (at

7 and 8TeV, in lepton+jets and dilepton events [349–351]) collaborations are generally

in very good agreement with theoretical predictions, the CMS data for the reconstructed

transverse momentum of the top quark (pT (t)) are visibly softer than NLO+PS predictions,

and in disagreement with those of ATLAS for pT (t) < 200GeV (ATLAS data are harder).

Given this inconsistency between measurements it is premature to speculate on the origin

of a possible discrepancy between data and theory; it is however of some interest to discuss

the theoretical systematics that affect the NLO+PS spectrum. Among these, those due to

scale, PDFs, and choice of top-quark mass have been studied by the experimental collab-

orations, and shown to be smaller than the disagreement between data and theory [349].

Here, we therefore concentrate on other sources of systematics. One of these is due to miss-

ing higher orders, since the NLO+PS predictions used by the experiments include only up

to O(α3
S) terms, namely tt̄+0j samples at the NLO. While the impact of missing higher or-

ders in perturbation theory is estimated by scale variations, an important and independent

check of this assessment may be obtained by considering NLO-merged prections. In the

left panel of figure 12 we thus compare the unmerged tt̄+0j prediction with the FxFx one,

where the tt̄+0j and tt̄+1j samples are combined with µQ = 100GeV. Both merged and

unmerged results have been obtained with HERWIG6, by setting the collider energy equal

to 8TeV; the latter curve has been rescaled56 in order for its visible integral to coincide

with that of the former (since in this case we are specifically interested in a shape compar-

ison: in absolute values, the two cross sections differ however by only 2.5%). As one can

gather from the plot, the two predictions are close to each other; the FxFx prediction is

sightly softer than the unmerged one, but this does not appear to be sufficient to bring it in

agreement with the CMS measurement. The variation of the merging scale in a large range

(30–155GeV) does not induce any significant change. It therefore appears that the sys-

tematics due to higher-order corrections are fully under control, since scale variations and

NLO-merging give consistent results for this observable, and we thus confirm the previous

findings that it cannot explain the discrepancy between theory and CMS data. Another

source of theoretical systematics in NLO+PS predictions is that due to the choice of the

PSMC. This is presented in the right panel of figure 12, where we compare the (tt̄ + 0j

unmerged) predictions obtained with Pythia8 (cyan), HERWIG6 (red), and Pythia6(Q2)

(grey); the lower inset presents the bin-by-bin ratios of the latter two predictions over that

of Pythia8. It is clear from the plot that the three PSMCs are amply consistent with

each other; this is expected, since the pure-NLO result for pT (t) must not be dramatically

56If visually that may not seem to be the case, it is because the bin widths are not equal: note that the

cross section is differential.
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Figure 12. Transverse momentum of the top quark in tt̄ production. Left panel: comparison
between FxFx-merged (blue) and unmerged (red) predictions; the binning is the same as that of
ref. [350]. Right panel: NLO+PS predictions obtained with different PSMCs, compared to the
fNLO result.

modified by shower effects; such an expectation is confirmed by the fNLO prediction, also

reported in the right panel of figure 12 as the dashed histogram overlaid with full circles,

which is in fair agreement with all the other curves. We therefore conclude that it does not

seem possible to get NLO+PS predictions to agree with CMS data by changing the PSMC

used in the simulations. We also point out that this statement by no means implies that

acceptance corrections, which we do not compute here, are PSMC-independent; a careful

investigation of these may be necessary should the discrepancy discussed here persist, given

that pT (t) is not a quantity that can be measured directly.

Inclusive quantities that stem from either or both tops in tt̄ events are an ideal testing

ground for NLO+PS predictions, which should give a good description of the data for ab-

solute normalisation as well as for shapes. On the other hand, tt̄ events are characterised

by large c.m. energies which imply a large amount of QCD radiation (only a tiny fraction of

which originate from the top quarks, owing to their being very massive). The study of such

radiation and of its topological properties is an interesting subject, particularly in view of

the large statistical accuracy that can be obtained at the LHC. At variance with the case

of inclusive observables, there is no reason to expect that all radiation-related observables

will be well described by NLO+PS tt̄+0j predictions. In particular, those for which large

jet multiplicities are important should be sensibly compared only to merged results, or at

least to unmerged samples whose underlying matrix elements feature a sufficiently large

number of hard partons — the most obvious example is that of Njet. On the other hand, for

radiation-related observables which are also inclusive enough, NLO+PS simulations should

do relatively well. One such case is that of the so-called gap fractions, which have been

measured in the dilepton channel by both ATLAS (at 7TeV [352]) and CMS (at 7 [353]

and 8TeV [354]), and compared to various theoretical predictions — MC@NLO with HER-

WIG6, POWHEG with both HERWIG6 and Pythia, MadGraph with Pythia, Alpgen
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with HERWIG6, and SHERPA. There are different levels of agreement among generators

and with the data, whose discussion is outside the scope of this work; here, we concentrate

onMC@NLO, since the relevant formalism is the same as that used in NLO+PS simulations

in MadGraph5 aMC@NLO. Before going into the details, let us define the main quantity

that we shall study, namely the gap fraction for the pT of the hardest jet. In order to be defi-

nite, we shall use the same setup as in ref. [354] (which is CMS’s at the 8TeV LHC): jets are

reconstructed with the anti-kT algorithm with R = 0.5, and the following cuts are imposed:

pT (ℓ) ≥ 20 GeV , |η(ℓ)| ≤ 2.4 , pT (jb) ≥ 30 GeV , |η(jb)| ≤ 2.4 , (4.10)

on both charged leptons, and on the two hardest b-jets. Other type of cuts (e.g. lepton

isolation) are seen to be unimportant, and are not imposed here. We then define:

GFpT (j1)(Q) =
1

σ

∫
dΦΘ (Q− p̂T (j1))

dσ

dΦ
, (4.11)

where σ is the cross section within the cuts of eq. (4.10), and for the notation of the

argument of the gap fraction we adopt one similar to that of ref. [352], which is not liable

to generate confusion. We have also introduced:

p̂T (j1) =

{
pT (j1) pT (j1) ≥ 30 GeV and ηmin ≤ |η(j1)| ≤ ηmax ,

0 otherwise ,
(4.12)

with j1 the hardest jet which is neither of the two b-jets on which the cuts of eq. (4.10)

are applied. Note that if there is no jet harder than 30GeV in the pseudorapidity interval

(ηmin, ηmax), eq. (4.12) implies that the Θ function in eq. (4.11) is identically equal to one.

Therefore, GFpT (j1)(Q) is a constant for Q < 30GeV, equal to the fraction of events which

do not have any jet harder than 30GeV in the relevant pseudorapidity interval: for this

reason, gap fractions are not displayed in this range. The quantity p̂T (j1) in eq. (4.11)

can be replaced by a function, defined analogously to what is done in eq. (4.12) in terms

of any observable O with mass dimension equal to one; in this way, one constructs a

different type of gap fraction, GFO(Q). The transverse momentum of the second-hardest

jet [354], and HT [352, 354] have been considered in the literature; they are rather strongly

correlated with pT (j1), and will not be investigated any further here.

We now aim to compare the NLO+PS predictions of the MC@NLO program (v4.09)

with those obtained with MadGraph5 aMC@NLO (both NLO+PS and FxFx-merged),

which is interesting in two respects. Firstly, the unmerged NLO+PS results of the two

codes would be identical, were it not for the fact that in the latter we have included the

effect of the function D (see eq. (2.113)); therefore, any difference between the two is the

signal of matching systematics.57 Secondly, the comparison between unmerged tt̄ + 0j

and FxFx simulations helps assess the impact of the inclusion of matrix elements of

higher order in the latter. We have adopted HERWIG6 as PSMC, and the FxFx-merged

57There may be other very tiny differences between MC@NLO and MadGraph5 aMC@NLO
NLO+PS predictions, owing to possibly non-identical choices of parameters, which are negligible for all

purposes.
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Figure 13. Gap fraction for the pT of the hardest jet, in four different pseudorapidity intervals,
as predicted by FxFx-merged, unmerged (labelled aMC@NLO), and MC@NLO simulations. The
setup follows closely that of ref. [354]. See the text for details.

simulations have been performed for two extreme choices of the merging scale, µQ = 30

and 155GeV. The results for the hardest-jet gap fraction are presented in figure 13, for the

same four pseudorapidity intervals (ηmin, ηmax)=(0, 2.4), (0, 0.8), (0.8, 1.5), and (1.5, 2.1) as

in ref. [354]; the insets display the ratios of the MC@NLO v4.09 and FxFx-merged results

over the unmerged MadGraph5 aMC@NLO ones. We first observe that all predictions are

quite close to each other, the largest deviation being about 3%. Interestingly, some of the

largest relative differences are between the two unmerged predictions, which implies that

the matching systematics is not negligible. In general, MadGraph5 aMC@NLO predicts

more jet activity (i.e., a lower curve) at NLO+PS than MC@NLO v4.09 in the central

and widest pseudorapidity regions, this difference decreasing with increasing ηmin. This

appears to be fairly consistent with what is seen in the 8-TeV CMS data (compare the

upper left corner of figure 13 with figure 7 in ref. [354], and the other panels of figure 13

with the upper row of figure 8 in ref. [354]), whose analysis we have followed here. A

similar trend as NLO+PS of MadGraph5 aMC@NLO is seen in the FxFx-merged result

with µQ = 155GeV, while that obtained with µQ = 30GeV follows a slightly different

pattern. Although these findings are encouraging, it is certaintly too early to draw any

firm conclusions; preliminarly, we can observe that the inclusion of more matrix-elements

results into matched predictions seems to be beneficial (be either through an NLO-merging
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µQ=20GeV µQ=30GeV µQ=50GeV µQ=70GeV

no cuts
FxFx

Alpgen

14.47(−0.6%)

8.84(−0.9%)

14.56

8.92

14.77(+1.5%)

9.08(+1.8%)

14.78(+1.5%)

9.07(+1.7%)

two jets
FxFx

Alpgen

1.65(+0.8%)

1.27(+13.2%)

1.63

1.12

1.60(−2.4%)

1.01(−9.5%)

1.55(−5.4%)

0.92(−18.4%)

Table 12. Total rates (in pb) for single-Higgs production in gluon-gluon fusion in HEFT, resulting
from FxFx-merged (with up to two extra partons at the NLO) and Alpgen (with up to three extra
partons at the LO) samples. Fractional differences w.r.t. the corresponding results obtained with
µQ = 30GeV are also reported.

procedure, or because the D function limits the impact of the HERWIG6 shower to smaller

scales than it happens in MC@NLO). Furthermore, even by choosing an extremely large

range for the merging scale, the FxFx systematics is smaller than that of the MLM-type

merging in MadGraph5 aMC@NLO (see the results labelled MadGraph in ref. [354]).

We shall in fact see below another clear example of the pattern of the reduction of the

merging systematics when going from the LO to the NLO.

! Multi-parton merged predictions. We now turn to illustrate some results of the

FxFx merging which are directly relevant to the unitarity and the merging-scale-choice

arguments which have been discussed in general at the end of section 2.4.5. We shall do

so by using an example which one expects to be critical from these viewpoints, namely

Higgs production in gluon-gluon fusion (in HEFT) at the 8TeV LHC, since such a process

is characterised by very large higher-order corrections and by a very significant amount of

radiation in PSMCs. As was done in ref. [191], we shall also compare to the predictions

obtained with Alpgen, which we shall take as a benchmark for the typical behaviour of LO

merging procedures; we have used HERWIG6 as PSMC. We start by presenting in table 12

the results for the fully inclusive rates, both in the absence of cuts (upper two rows), and

by imposing the presence of at least two jets (lower two rows): the latter are defined by

means of the anti-kT algorithm with R = 0.4, and have to obey the following conditions:

pT (j) ≥ 25 GeV , |η(j)| ≤ 5 . (4.13)

The rates have been obtained by considering four different values for the merging scale,

which cover the very large range µQ ∈ (20, 70)GeV. In order to be definite, we shall

take µQ = 30GeV as our central value; in table 12, we report in parenthesis the fractional

difference of all results obtained with µQ ̸= 30GeV w.r.t. those obtained with µQ = 30GeV

that appear in the same row. The rates in absence of jet cuts are seen to be extremely stable

against merging-scale variations. LO results have an only marginally-larger µQ dependence,

which is in any case much smaller than the scale uncertainty (not shown here); the same

applies to NLO predictions. The NLO fully-inclusive rate for the unmerged H +0j sample

is 13.40 pb: it is therefore from 8% to 10% lower than the FxFx-merged results. Thus,

despite the fact that FxFx does not impose any unitarity condition, the merged predictions
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Figure 14. Higgs transverse momentum in single-Higgs production (gluon-gluon fusion in HEFT),
as predicted by FxFx (left panel) and Alpgen (right panel), for various choices of the merging
scale µQ.

are “naturally” quite close to the unmerged one. They are not equal, nor they should be

— at the end of the day, we are including here contributions up to O(α5
S). The increase in

the cross section when passing from unmerged to merged results is rather consistent with

expectations based on perturbative scaling, and the known large NNLO/NLO K factor

that characterises the Higgs-production mechanism we study here. We stress that this

feature is not an accident of this process, since we have observed it in all cases studied

so far (see later for further examples). When considering rates obtained within the cuts

of eq. (4.13), we see that the NLO results are still quite stable, while the merging-scale

dependence of the LO ones becomes sizable. In order to further investigate this matter,

we present in figure 14 the Higgs transverse momentum spectra, obtained with FxFx and

Alpgen for the same four merging scales as before; the insets display the ratios of the

various curves over the µQ = 30GeV corresponding ones. Obviously, the µQ-dependence

pattern reflects that of table 12. However, it is interesting to see that when no jet cuts

are applied there is a significant compensation in terms of rates in the Alpgen curves (this

can be clearly seen in the ratio plot, with the presence of a crossing point at a pT (H) of

about 70GeV) — in other words, the very small µQ dependence of the LO total rates is

partly an artifact, since locally in the phase space the various predictions differ by a larger

amount. To some extent, the same is true for the FxFx-merged results, but the effects

are much more modest there. Note that, when jet cuts are applied, this phenomenon does

not occur any longer, and local and global merging-scale dependences are quite similar:

in particular, one sees how all the NLO curves are close to each other also within these

cuts. The significance of this (in)dependence is tightly related to the range chosen for the

merging scale variation. The function log(µQ/mH), which one may take as an indicator of
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µ(↓)
Q µ(c)

Q µ(↑)
Q unmerged

pp→ e+νe 7059(−0.9%) 7121 7160(+0.5%) 7067(−0.8%)

pp→ ZZ 7.383(−0.01%) 7.384 7.387(+0.04%) 7.355(−0.4%)

pp→ He+νe 0.05180 (+0.9%) 0.05131 0.05117(−0.2%) 0.05066(−1.3%)

Table 13. Total rates (in pb) for three processes, computed with FxFx by using three different
merging scales (whose values are process-dependent, see eqs. (4.15)–(4.17)), and with the unmerged
lowest-multiplicity samples. Relative differences w.r.t the FxFx results obtained with the central
merging scales are also reported.

the typical quantity relevant when the merging scale is varied, changes by a factor of 3.16

in the range (20, 70)GeV considered here; we believe that this is a sufficiently-large range

to give a sensible indication of merging-scale systematics. As the results presented here

clearly show, the supposed spoiling of some underlying NLO accuracy that occurs when

“large” values of µQ are adopted is simply not an issue if NLO and MC predictions are

properly merged, and are reasonably consistent with each other. The latter is in fact a key

point: we have observed that, by imposing VBF-type cuts, e.g.:

Mj1j2 ≥ 400 GeV , |∆yj1j2 | ≥ 2.8 , (4.14)

the mild dependences shown in table 12 become huge (of the order of 80% and 70% at the

LO and NLO respectively). It is clear that the invariant-mass cut of eq. (4.14) introduces

a third scale in the game which renders its treatment a complicated matter. Given that

such a large merging-scale dependence is basically driven by the largest µQ’s, the problem

is likely due to intrinsic differences between the PSMC and matrix-element descriptions of

the VBF region. However, we are able to immediately notice this only because we have

considered a relatively large range of µQ, which does not give any issues for sufficiently

inclusive quantities, but it does when VBF cuts are applied. We conclude by pointing out

that the uncovering of this issue by means of merging-scale systematics does not imply

its most naive solution, which would be that of restricting, to small values, the range of

µQ in this kinematic region, thus relying on a matrix-element-dominated description: in

fact, such a description is not necessarily better than a PSMC one in the context of the

multi-scale dynamics induced by eq. (4.13) and (4.14).

In order to further the previous arguments, and as a way to validate the FxFx merging

procedure with a special attention to cases where the construction of the Sudakovs that

enter eqs. (2.139)–(2.141) is involved owing to the flavour structure of the hard process, we

consider here three different final states, namely e+νe, ZZ, and He+νe, which we simulate

at the 8TeV LHC. In FxFx we include the 0-, 1-, and 2-parton samples for the former

process, and the 0- and 1-parton samples for the latter two. In all cases, the unmerged

0-parton results are also presented. All merged and unmerged samples are showered with

HERWIG6. We start with the fully-inclusive rates, reported in table 13; the values of the

three merging scales are as follows:

(µ(↓)
Q , µ(c)

Q , µ(↑)
Q ) = (15, 25, 45) GeV pp→ e+νe , (4.15)
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Figure 15. One-jet rate in e+νe production. The main frame presents the three FxFx-merged
predictions as well as the unmerged one. The lower inset displays the ratios of these curves over the
central FxFx-merged one. The insets to the right show the separate contributions of the unphysical
0- (long-dashed), 1- (dashed), and 2-parton (dotted) samples, for the three merging scales.
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Figure 16. As in figure 15, for the two-jet rate in e+νe production.
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Figure 17. As in figure 15, for the one-jet rate in ZZ production. Only the 0- and 1-parton
samples have been considered here.

= (45, 65, 105) GeV pp→ ZZ , (4.16)

= (50, 75, 100) GeV pp→ He+νe , (4.17)

which cover quite wide ranges. The message emerging from the table is analogous to

that relevant to Higgs production, which we have discussed previously: the merging-scale

dependence is very small. Furthermore, the unmerged results are extremely close to the

merged one, in fact much closer than in the case of gg → H; this is a natural consequence of

the relatively small (compared to Higgs) K factors for the present processes. Again, this

fact emerges naturally, without the need to impose any unitarity condition in the merging.

We conclude by showing some selected differential distributions, and in particular the j-jet

rates of the kT algorithm (denoted by dj , see eq. (2.131)); these quantities are known to

be critical in the context of merging procedures, since they are very sensitive to artefacts

of the latter, which show up as discontinuities in the spectra. Our results are presented in

figures 15–18, where the main frames display the predictions in absolute values. The lower

insets display the ratios of the FxFx-merged and unmerged predictions over the FxFx one

obtained with the central merging-scale values. The insets at the right of the figures show

the way in which the i-parton samples combine in order to give the physical curves. All

results for all processes behave as expected.

4.3 One-loop SM and BSM results: a look ahead

All the results presented in sects. 4.1 and 4.2 exploit the one-loop computations performed

by the public version of MadLoop5, which amply demonstrates the reach and flexibility

of this code. The aim of this section is on the other hand that of showing that the

current, still-private MadLoop5 program has a much larger scope, being able to handle
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Figure 18. As in figure 15, for the one-jet rate in He+νe production. Only the 0- and 1-parton
samples have been considered here.

computations of very high complexity also in the context of a mixed-coupling expansion

(see section 2.4), and in theories other than the SM. As was already discussed, while the

corresponding capabilities on the real-emission side have not yet been fully validated in

MadGraph5 aMC@NLO, they do not pose any problem of principle, and only minor ones

from the technical point of view; therefore, the results presented below constitute the proof

that the major obstacles have been cleared which prevent MadGraph5 aMC@NLO from

performing NLO computations in arbitrary renormalisable theories.

We shall give here benchmark results for given phase-space configurations. They will

be presented in the form of the coefficients cj , j = −2,−1, 0, introduced in eq. (2.88) for

V , the colour- and helicity-summed virtual amplitude contracted with the corresponding

Born one (see eq. (2.55)). We shall also denote by a0 the Born amplitude squared:

a0 =
∑

colour
spin

∣∣∣A(n,0)
∣∣∣
2
, (4.18)

where, similarly to V , the averages over initial-state colour and spin degrees of freedom

are understood. Throughout this section, we have set µ ≡ Q = µF = µR =
√
s, and all

particles widths equal to zero for simplicity; the leptons that circulate in the loops are

taken to be massless. In order to maximize the numerical accuracy, the computations

reported here have been performed by using quadruple-precision arithmetics; the stability

tests described in section 2.4.2 have shown that these results are numerically stable

beyond the seventeen digits quoted below. The coefficients cj are computed in the ’t

Hooft-Veltman scheme and, in the case of the pole residues c−2 and c−1, compared to

their analytically-known forms (see e.g. eq. (B.2) of ref. [61], whose generalisation to cases
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other than QCD is straighforward). Units for quantities of canonical dimension equal to

one are understood to be GeV. The CKM matrix is diagonal. The integral-reduction OPP

procedure has been adopted in all cases; processes C) and D) have also been computed

with TIR (using IREGI), and perfect agreement with the OPP results has been found. We

point out that processes A) and B) feature 8- and 7-point rank-5 loop integrals respectively,

and are therefore beyond the present capabilities of any TIR library. Further technical

details relevant to the calculations presented in this section are given in appendix C.2. We

emphasise that the one-loop results shown here have never been presented in the literature,

and can serve as benchmarks for comparisons with future independent computations.

A) High-multiplicity multi-scale QCD process: gg → dd̄bb̄tt̄. This process

involves up to 8-point loop diagrams with three external scales: the top- and bottom-quark

masses, and the partonic c.m. energy. A total of 54614 loop diagrams contribute, and all

pure-QCD UV renormalisation counterterms are necessary, which makes it an excellent

test case for MadLoop5. The following parameters have been used:

Parameter value Parameter value

αS 0.118 nlf 4

mt 173.0 mb 4.7

The kinematic configuration considered is (we use an (E, px, py, pz) notation):

pg = ( 500 , 0 , 0 , 500 )

pg = ( 500 , 0 , 0 , -500 )

pd = ( 159.884957663500 , -100.187853644511 , 83.9823400815702 , 92.0465111972672 )

pd̄ = ( 203.546206153656 , -154.329441032052 , -0.512510195103158 , 132.714803257139 )

pb = ( 81.9036633616240 , 4.56741073895954 , -80.4386221767117 , 13.9601895942747 )

pb̄ = ( 41.5312244194448 , 6.99982274816896 , 9.96034329509376 , 39.4277395334349 )

pt = ( 239.961310957973 , 84.0110736983121 , 18.3862699981019 , -142.325385396572 )

pt̄ = ( 273.172637443802 , 158.938987491122 , -31.3778210029510 , -135.823858185543 )

For the O(α6
S) Born matrix element and O(α7

S) V coefficients we have obtained:

gg → dd̄bb̄tt̄

a0 1.7614866952133752e-14

c0 7.1888721656398052e-14

c−1 -3.8948541926529643e-15

c−2 -2.8670389920110557e-15

The relevant MadGraph5 aMC@NLO-shell generation command is:

MG5 aMC> generate g g > d d~ b b~ t t~ [virt=QCD]

More details on this syntax can be found in appendix B.1. After the generation phase,

the usual output and launch commands are executed. We point out, however, than in

the present context (i.e., when one computes one-loop matrix elements pointwise), launch

allows the user to specify the kinematic configuration for which the said matrix elements

are to be computed.
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B) Mixed-coupling expansion: ud̄ → dd̄W+ZH. The Born matrix elements

for this process receive contributions at O(α2
Sα

3), O(αSα4), and O(α5), resulting from

O(g2Se
3) and O(e5) amplitudes. In the notation of section 2.4, this corresponds to k0 = 5,

cs(k0) = 0, c(k0) = 3, and ∆(k0) = 2. We have considered the full set of NLO corrections,

thus obtaining four terms of O(αn
Sα

m), with 0 ≤ n ≤ 3 and m = 6 − n (see eqs. (2.22)

and (2.23)). This process features essentially all complications one faces in the case of

a mixed QCD-EW expansion, and in particular it tests fully the UV- and R2-related

machinery, described in section 2.4.2, beyond the pure-QCD cases considered so far. From

a technical viewpoint, the major challenges are represented by the fact that genuine EW

corrections (as opposed to QCD corrections to processes that may feature EW external

particles) significantly complicate the flavour structure of the diagrams (whose number

therefore grows and which always pose a multi-scale problem), and by the necessity of

keeping separate track of the Σk0+1,q coefficients of eq. (2.23). We have performed our

computation in the Feynman gauge, with an (α(mZ),mZ ,mW ) input scheme for the EW

parameters, and adopted the α(mZ) renormalisation scheme [355] (we point out that the

Gµ scheme [355, 356] is also available in MadLoop5). The full set of inputs is thus:

Parameter value Parameter value

αS 0.118 nlf 5

mt 173.0 yt 173.0

mW 80.419 mZ 91.188

mH 125.0 α−1 132.507

The kinematical configuration is:

pu = ( 500 , 0 , 0 , 500 )

pd̄ = ( 500 , 0 , 0 , -500 )

pd = ( 77.3867935143263 , -13.6335837243927 , 33.7255664483738 , -68.3039338032245 )

pd̄ = ( 251.029839835656 , -74.4940380485791 , -235.871950829717 , 42.7906718212678 )

pW+ = ( 139.739680522225 , -81.0565319364851 , -74.5408139008771 , 30.5527158347332 )

pZ = ( 382.164100735946 , 208.038848497860 , 298.200182616267 , -74.3682536477996 )

pH = ( 149.679585391847 , -38.8546947884028 , -21.5129843340470 , 69.3287997950232 )

The corresponding Born results are:

ud̄→ dd̄W+ZH a0

O(α2
Sα

3) 2.8791434190645365e-16

O(αSα4) -4.2378807039987007e-17

O(α5) 5.8013051661550053e-18

where the O(αSα4) interference term happens to be negative, while at one loop we obtain:
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ud̄→ dd̄W+ZH O(α3
Sα

3) O(α2
Sα

4)

c0 -4.9670212643498834e-17 3.5197577360529166e-18

c−1 -1.0437771535958436e-16 1.5619709675879874e-17

c−2 -2.8837935481452971e-17 3.9757576347989499e-18

O(αSα5) O(α6)

c0 2.3220780285374270e-18 -1.4592469761033279e-18

c−1 -1.8146075843176133e-18 -5.0799804067050324e-21

c−2 -5.4147748433007504e-19 -5.4195415714279579e-21

The relevant MadGraph5 aMC@NLO-shell generation command is:

MG5 aMC> generate u d~ > d d~ w+ z h QCD=99 QED=99 [virt=QCD QED]

where the QCD=99 QED=99 bit instructs MadLoop5 to consider the corrections to all Born-

level contributions, and not only to the leading (QCD) O(α2
Sα

3) one, while the [virt=QCD

QED] syntax implies that both QCD and QED/EW corrections need to be included. More

details on this extended syntax can be found in appendix B.1.

C) Mixed-coupling expansion: uū → dd̄tt̄. Although the one-loop corrections to

this process feature a smaller number of diagrams than those relevant to ud̄→ dd̄W+ZH

studied above, owing to the fact that the corresponding Born amplitudes have three

quark lines the mixed-coupling expansion ladder depicted in figure 1 is wider: we have

in fact ∆(k0) = 4, with k0 = 4, cs(k0) = 0, c(k0) = 0. The input-parameter and scheme

choices are the same as those adopted in the case of ud̄→ dd̄W+ZH production, while

the kinematic configuration is:

pu = ( 500 , 0 , 0 , 500 )

pū = ( 500 , 0 , 0 , -500 )

pd = ( 77.6887158960956 , -19.3895923374881 , 35.1636848900680 , -66.5063572263756 )

pd̄ = ( 288.053156184158 , -91.1103505191485 , -264.895455921162 , 67.1112676698377 )

pt = ( 218.623451637725 , -92.8925122931906 , -85.7235692614867 , 43.4702707482150 )

pt̄ = ( 415.634676282022 , 203.392455149827 , 315.455340292580 , -44.0751811916771 )

We thus obtain at the Born level:

uū→ dd̄tt̄ a0

O(α4
s) 8.0443110796911884e-10

O(α3
sα) -4.1964024114099949e-11

O(α2
sα

2) 3.2368049995513863e-11

O(αsα3) -7.9030872133243511e-13

O(α4) 1.8667390802029741e-13

while the one-loop coefficients turn out to be:
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uū→ dd̄tt̄ O(α5
s) O(α4

sα)

c0 2.7744575300036875e-10 -6.1309409133299879e-11

c−1 -2.4891722473717473e-10 5.1973614496390480e-12

c−2 -8.0573035150936874e-11 3.1296167547367972e-12

O(α3
sα

2) O(α2
sα

3)

c0 1.2122291790182845e-11 -4.0611498141889722e-12

c−1 -8.6161115635612362e-12 4.3209683736654367e-15

c−2 -3.1860291930204890e-12 3.5961341456741816e-14

O(αsα4) O(α5)

c0 -3.8642357648130340e-14 -1.1866388556893426e-14

c−1 -3.6050223887148020e-14 -4.7983631557836333e-16

c−2 -1.7642824564621470e-14 -2.4912793041300221e-16

The relevant MadGraph5 aMC@NLO-shell generation command is:

MG5 aMC> generate u u~ > d d~ t t~ QCD=99 QED=99 [virt=QCD QED]

D) A BSM case study: QCD corrections to gg → t̃1t̃
⋆

1g. While MadLoop has

been used to compute one-loop corrections to a very large number of processes in the SM,

its applications to other theories have been pretty limited so far. Here, we present the first

MadLoop5 results in a fully-fledged BSM model; namely, we compute QCD corrections

to t̃1t̃⋆1g production in the MSSM. From the technical point of view, the MSSM UFO

model at the NLO is immensely complicated, and its writing by hand (which has been the

procedure adopted for the SM) is inconceivable: we have therefore obtained it by using a

development version of FeynRules. All massive modes are subtracted at zero momentum,

following the same strategy as e.g. in ref. [357]. It should be pointed out that some of

the elementary expressions and structures of such a model (related e.g. to the presence of

Majorana fermions) are not featured in any other UFO model employed so far. For this

reason, we have double checked our MadLoop5 results against a completely independent

calculation performed with Mathematica. This guarantees that the elementary building

blocks are correct, thus rendering analogous tests more and more irrelevant in the future.

We have chosen the input parameters as follows:
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Parameter value Parameter value

αS 0.118 nlf 4

mb 4.75 mt 175

mW 79.82901 mZ 91.1876

mg̃ 607.7137 tanβ 9.748624

mũ1 561.119 mũ2 549.2593

mc̃1 561.119 mc̃2 549.2593

mt̃1 399.6685 mt̃2 585.7858

md̃1
568.4411 md̃2

545.2285

ms̃1 568.4411 ms̃2 545.2285

mb̃1
513.0652 mb̃2

543.7267

with a diagonal squark-mixing matrix. By using the following kinematic configuration:

pg = ( 500 , 0 , 0 , 500 )

pg = ( 500 , 0 , 0 , -500 )

pt̃1 = ( 465.457552338590 , 88.1561012782457 , 197.510478842819 , -100.667451003198 )

pt̃⋆
1
= ( 442.275748385439 , -9.53590501776566 , -180.889189039748 , 55.3271680251616 )

pg = ( 92.2666992759711 , -78.6201962604800 , -16.6212898030706 , 45.3402829780365 )

we obtain:

gg → t̃1t̃⋆1g

a0 2.839872059757065e-4

c0 -2.081163174420354e-5

c−1 -1.550338075591894e-4

c−2 -4.800024159745521e-5

The relevant MadGraph5 aMC@NLO-shell commands are:

MG5 aMC> import model loop MSSM

MG5 aMC> generate g g > t1 t1~ g [virt=QCD]

We point out that, similarly to the version ofMadLoop5 used to derive the results presented

in this section, the loop MSSM model used here is not yet public.

5 Conclusions and outlook

The motivation for pursuing this project stems from the fact that all aspects of the

computations of tree-level and NLO cross sections, including their matching to parton

shower simulations, are well understood, in a manner which is fully independent of the

process under consideration. Therefore, the best way to make use of this understanding

is that of the full automation of such computations. Automation has indeed already

proven to be a very successful strategy for obtaining tree-level results, as documented

by the theoretical and experimental activities based on, and spurred by, MadGraph. In
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this paper we have presented the successor of MadGraph5, a code that we have named

MadGraph5 aMC@NLO, which extends the capabilities of the former by giving the

user the possibility of computing NLO QCD corrections, if desired in association with

parton-shower matching. MadGraph5 aMC@NLO is indeed the successor, and not just

a plugin, of MadGraph5, its main virtue being that of treating tree-level and NLO QCD

computations on the very same footing — as far as the user is concerned, the difference

between them is a switch in input. In particular, irrespective of the perturbative order

of the computation, MadGraph5 aMC@NLO features the following characteristics: very

lean dependencies, simplicity of use, and flexibility. The information that the user has to

provide is only related to physics, such as values of masses, couplings, and scales, and the

definitions of observables, as well as the hard process one wants to generate.

In the current public version of MadGraph5 aMC@NLO the inclusion of higher-order

effects is restricted to QCD corrections to SM processes. Such a limitation is mostly due

to the fact that, in the context of one-loop computations (performed by MadLoop or by

any other one-loop provider), one needs to take care of the UV renormalisation procedure

and (typically, but not always necessarily) of that related to the so-called R2 counterterms,

which are in any case just a simpler version of the former. Both procedures are expressed as

a set of rules that can be worked out directly from the Lagrangian, an operation that has to

be done only once for a given theory, and that so far has been performed by means of analyt-

ical computations. However, all obstacles preventing the automatic computation of the UV

and R2 rules have now essentially been cleared, as hinted by the results we have presented in

section 4.3. Given that all remaining obstacles are minor and of technical nature, this will

allowMadGraph5 aMC@NLO to evaluate, in the near future, any type of NLO corrections,

starting from the same user-defined Lagrangians that are used in tree-level calculations.

This work shows clearly that automated techniques at the NLO are well past the devel-

opmental phase, and are indeed fully established, as was already the case for their tree-level

counterparts; we believe that this is amply demonstrated by the results of section 4. For the

non-trivial cases now of relevance to collider phenomenology, automated computations are

more robust, faster by orders of magnitude, and less error-prone than analytical, process-

by-process traditional approaches. Furthermore, an increase in complexity generally only

requires more CPU power but no conceptually new solutions, one example of such a situa-

tion being that of the computation of EW or QCD corrections to supersymmetric processes.

As a counterexample, one may mention the calculation of cross sections that feature final

states with a very large number of QCD partons, for which dedicated optimisations (such

as recursive relations and colour reorganisation, which are being investigated by us) will

be needed in order to go beyond what is currently feasible by MadGraph5 aMC@NLO.

The ready availability in MadGraph5 aMC@NLO of perturbatively-accurate and real-

istic predictions for an extremely large range of processes of significant complexity should

be seen as both solving a few problems, and opening up new and exciting possibilities.

Among the former, we would like to mention explicitly the fact that automated tools help

free experts in perturbative calculations from spending their resources in the increasingly

involved computations necessary to the experiments, thus allowing them to concentrate on

obtaining other, cutting-edge results (such as, to limit oneself to perturbative QCD, cal-
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culations of NNLO accuracy with universal subtraction methods, improvements to parton

showers, and so forth). As far as future possibilities are concerned, one important charac-

teristic of MadGraph5 aMC@NLO to bear in mind is its modularity: we shall be happy

to support and help those interested in improving parts of the code and the underpinning

physics strategies (such as recursive relations, alternative matching and merging schemes,

integral-reduction techniques and libraries). From a phenomenological viewpoint, many

different applications of MadGraph5 aMC@NLO can be foreseen. The capability of the

code to assess systematically and in an easy manner the theoretical uncertainties due to

scales, PDFs, and matching and merging methods should be routinely exploited by both

theorists and experimentalists. The fact of having a basically unlimited set of processes

predicted at the NLO accuracy has two immediate consequences: it gives one the chance

of extracting the PDFs by using a much wider set of observables than employed at present,

at the same time possibly including EW and parton-shower effects; and that of finally

achieving PSMC tunings that properly include NLO results. Exploratory studies at future

colliders, such as circular or linear e+e− ones, or very-high-energy hadron machines, can

also be performed without the need of a dedicated effort. Finally, it is hard to predict

the kind of applications that will be relevant to BSM physics. In any case, extending the

current flexibility of MadGraph5 aMC@NLO for SM processes to new-physics models, be

they renormalisable or effective, and thus being able to readily investigate the implications

of any theory, will certainly be crucial in current and future analyses.
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A Technical prerequisites, setup, and structure

MadGraph5 aMC@NLO is being developed and is routinely run on a variety of Linux

platforms and on Mac OS-X systems. The basic requirements for running the code are

the following:

• A bash shell;

• perl 5.8 or higher;

• Python 2.6 or higher, but lower than 3.0;

• gfortran/gcc 4.6 or higher; any other modern Fortran/C++ compiler should work,

provided it supports computations in quadruple precision.

After downloading the tarball, and upacking it in what will be called the main directory

(which will contain several sub-directories, such as aloha, apidoc, bin, and so forth), the

code is ready to run. No installation of external packages is mandatory, thanks to the fact

that the tarball includes copies of the third-party codes listed in appendix D.

Setup. From a terminal shell in the main directory, type:

./bin/mg5 aMC

At this point, one has entered the MadGraph5 aMC@NLO shell, which is made evident

by the fact that the prompt now reads as follows:
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MG5 aMC>

A minimal setup phase may take place here, before generating and running the first

process. This phase, that must be done at most once (i.e., it does not have to be

repeated before the generation of any process after the first), consists essentially in

defining configuration variables. For example, in the case where a local installation of

FastJet were available,58 the path to it must be known by MadGraph5 aMC@NLO: this

is achieved by executing the following command:

MG5 aMC> set fastjet /<PATH TO FASTJET>/bin/fastjet-config

Likewise, for the local installation of LHAPDF [366] to be found, one should execute the

command:

MG5 aMC> set lhapdf /<PATH TO LHAPDF>/bin/lhapdf-config

Each of these commands associates the given value with a variable in the file:

input/mg5 configuration.txt

The user can find a list of all possible configuration variables by visiting that file (or

by auto-completion with the <TAB> key after typing set in the MadGraph5 aMC@NLO

shell). We point out that each of these variables can be directly edited in the file, as an

alternative to executing the set command as shown above. More advanced setup options

are described in appendix B.1.

Structure. The various subdirectories of the main directory will be of no interest to the

regular user. The only possible exceptions are

Template/NLO

Template/LO

a copy (with minor differences) of which is created in the subdirectory

MYPROC

of the main directory upon executing the command:

MG5 aMC> output MYPROC

after having executed one of the two following commands:

MG5 aMC> generate a b > c 1...c n [QCD]

MG5 aMC> generate a b > c 1...c n

for the NLO and LO case respectively (see section 3). The minor differences in the copy

alluded to before are due to the fact that, after the generate command has been issued,

the program knows e.g. the number of final-state particles (equal to n in the examples given

here), which is thus explicitly written in some include files in the directory tree of MYPROC.

In any case, these include files and their analogues must not be modified by the user.

The directory MYPROC will be called the current-process directory, and all the operations

relevant to the process whose generation gave rise to it are performed somewhere in its

directory tree. Such operations can roughly be arranged in two classes: input-type, to

be performed by the user before the launch command, and output-type, performed by

MadGraph5 aMC@NLO after the launch command.

The user may consider input-type operations in the following subdirectory:

MYPROC/Cards

58We point out that FastJet (core) is part of the MadGraph5 aMC@NLO tarball.
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which contains the input cards (these are in plain text format, and liberally commented)

that steer the MadGraph5 aMC@NLO run (e.g., run card.dat) or control the physical

parameters of the theory (e.g., param card.dat). Contrary to other input-type operations,

which will be mentioned below, the values of the entries in the input cards can not only

be modified by the user by visiting the appropriate cards before the launch command,

but can also be accessed after the launch command through an interactive talk-to within

the MadGraph5 aMC@NLO shell. Both accessing modes can be used in the same run;

note that the values of the inputs used in the actual run will be those stored in the input

cards at the end of the talk-to phase.

Further input-type operations are specific to NLO-type generations, require a minimal

knowledge of Fortran, and must be completed before the launch command is issued. They

will involve editing files in the following subdirectories:

MYPROC/FixedOrderAnalysis

MYPROC/MCatNLO

MYPROC/SubProcesses

The FixedOrderAnalysis subdirectory will need to contain the user’s fixed-order analysis

file(s) relevant to fLO or fNLO runs. The MCatNLO subdirectory is used only in the case

when the user chooses to steer the shower phase within the MadGraph5 aMC@NLO frame-

work; when the LHE files produced by MadGraph5 aMC@NLO are showered externally,

such a subdirectory is ignored. If also the showering is steered by MadGraph5 aMC@NLO,

the user will be able to access the drivers of the various event generators, and to write

his/her own analysis inside the MCatNLO directory tree (whose structure is analogous to

that of the MC@NLO package, for those familiar with it). Finally, the subdirectory

SubProcesses contains the codes necessary for the computation of the cross section proper,

and specific to the process that has been constructed in the generation step. Typically, the

user will not need to modify any of these files; exceptions are those of setscales.f, where

one defines the functional forms used for dynamic-scale computations (see section B.2),

and of cuts.f, where one sets any desired parton-level cuts (on top of those accessible

through run card.dat); both of these files are amply commented.

As far as output-type operations are concerned, these are by definition dealt with by

MadGraph5 aMC@NLO; we shall mainly describe in what follows those relevant to an

NLO-type generation. The relevant directories are

MYPROC/Events/run *

There will be as many run * subdirectories as number of runs;59 the string * will feature

a run-identification number. These subdirectories will contain the final outputs of the

corresponding MadGraph5 aMC@NLO runs, provided that such outputs are in one of the

formats recognised by the code. In particular, one will have:

1. For all types of runs: various plain-text files that summarise the inputs used and the

results of the integration of the short-distance cross sections.

59Runs may e.g. differ by choices of input parameters, or type of physics simulated, such as f(N)LO vs

(N)LO+PS, or the inclusion of spin correlations as predicted by MadSpin vs stable-particle production.
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2. In (N)LO+PS runs: the Les Houches event file(s) that contain hard-subprocess un-

weighted events which are to be showered.

3. In (N)LO+PS runs when MadGraph5 aMC@NLO is used to steer the shower phase:

the final results after shower, provided that these are either: a) an StdHEP/HepMC

file that contains the event records; or b) a topdrawer file that contains histograms

defined by the user in his/her analysis.

4. In f(N)LO runs: the histograms defined by the user in his/her analysis, provided that

their format be either Root or topdrawer.

There is no problem if the format of the output of the user’s analysis relevant to the shower

phase (when MadGraph5 aMC@NLO is used to steer the shower) is not compliant with

either 3.a or 3.b. Simply, such an output will not be moved into MYPROC/Events/run *,

but will be kept in the directory where the PSMC run has actually been performed. This

directory will be named:

MYPROC/MCatNLO/RUN MCTYPE nn

with MCTYPE=PYTHIA8 and so forth (depending on the PSMC used), and nn an integer

number increased by one unity for each new PSMC run.

On the other hand, the use of formats other than Root or topdrawer in f(N)LO runs

is deprecated, since it implies some manual operations and the writing of code by the user.

The reason is the following: cross sections are integrated by MadGraph5 aMC@NLO

through multi-channel techniques — this ensures optimal convergence and high degree of

parallelisation, but each channel is non-physical (only their sum is). Analysis routines

(regardless of the output format) are used by individual channels; hence, their outputs are

to be summed.60 Summing the results of the individual channels is performed automatically

byMadGraph5 aMC@NLO for Root and topdrawer outputs, via dedicated auxiliary codes;

any new format would thus require the user to write a new such code, and a script that

finds all single-channel outputs and feed them to his/her summing code.

We conclude this section by stressing again that the source codes which are compiled

after executing the command launch, and the input cards used throughout the run,

are those in the current-process directory tree, and not in the Template directory tree.

Therefore, any modifications to files in the Template directory tree will have no effect

on the current run. However, they will affect all subsequent process generations, since

as clarified at the beginning of this section it is the files in Template that form the core

of the contents of each current-process directory. Hence, this procedure is reserved to the

very experienced users, and we strongly deprecate it.

B Advanced usage

This section reports on some of the features of MadGraph5 aMC@NLO whose understand-

ing allows the user to exploit the full physics potential of the code. It is not meant to be

60This assumes the output is a set of histograms. In case of n-tuples, these will need to be combined,

possibly after having rescaled their weights.
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a usage manual, but only to briefly expand on some of the subjects which have been only

touched upon in the main text.

B.1 Models, basic commands, and extended options

We start with the following general comment: within the MadGraph5 aMC@NLO shell,

the <TAB> key plays the same role as in a normal terminal shell: when hitting it, a list

of possible completions (e.g., commands relevant to the current context, or completion of

the command syntax) is printed on the screen. Note that the shell commands help and

tutorial can be used as well, and will provide the user with some minimal guidance.

Models. As was explained in section 2.1, MadGraph5 aMC@NLO needs a model in

order to generate a process. When one enters the MadGraph5 aMC@NLO shell, the

default is that of assuming the SM: however one can choose to work in another theory by

loading a new model, by simply executing the command:

MG5 aMC> import model ModelName

where ModelName is the name of the desired model. The list of available models (to

which as usual the user can add his/her own) can be obtained by hitting the <TAB> key

after import model. Each of these models is associated with a directory (under the main

directory):

models/ModelClass

In the directory ModelClass, one collects the definition of all those models which are tightly

connected with each other, for example by having the same Lagrangian and differing by

the choice of some fundamental parameter. To give an explicit example: the default model

for the SM in MadGraph5 aMC@NLO assumes the charm quark to be massless, but there

is a model where the charm quark is massive. For both of these, we have:

models/ModelClass ≡ models/sm

The massless-charm or massive-charm SM is explicitly loaded by typing:

MG5 aMC> import model sm

MG5 aMC> import model sm-c mass

respectively. Technically, these two commands are in one-to-one correspondence with the

two files:

models/sm/restrict default.dat

models/sm/restrict c mass.dat

The user interested in some non-extensive modification of the SM can thus simply cre-

ate his/her own file models/sm/restrict XXX.dat, which may be eventually loaded

by executing import model sm-XXX. For more details on these matters, please visit:

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Models/USERMOD.

We finally stress again that not all models support the computation of NLO corrections.

In the first public version of MadGraph5 aMC@NLO such corrections are restricted to

QCD to SM processes. The relevant models are all found in the directory:

models/loop sm

Note that, by default, when performing an NLO-type generation (i.e., by using the [QCD]

keyword) the code switches automatically from the LO-type model to the corresponding

– 113 –

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Models/USERMOD


J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

NLO-type one (i.e., in the SM it switches from sm to loop sm). If the latter is not available,

a warning is issued and the code proceeds no further.

Setup. A short description of the setup procedure has been already given at the beginning

of appendix A. Here, we wish to point out that, on top of the environment variables

found in input/mg5 configuration.txt, the user can also control other options, which

for example affect the physics schemes used by MadGraph5 aMC@NLO during the various

computations. All such options can be listed with the following command:

MG5 aMC> display options

which will display all options and their current values. In order to change the latter, one

executes the set command, whose general syntax is:

MG5 aMC> set Option Value

For example, MadGraph5 aMC@NLO by default does not use the complex mass scheme

in its computations. In order to change this, it is sufficient to execute:

MG5 aMC> set complex mass scheme True

Other examples relevant to environment variables have already been given in appendix A.

The operation of computing the widths of the unstable particles present in the imported

model can be seen as part of the setup procedure, being a complement to the model itself,

independent of the generation procedure, and mandatorily performed before the running

phase (see section 2.3.2). Such an operation is carried out by issuing the shell command:

MG5 aMC> compute widths [{Options}]
which in turn executes the MadWidth module; the possible options of the above command

can be as usual explored by hitting the <TAB> key. We remind the reader that MadWidth

works at tree level and in the narrow-width approximation (in other words, the manual

setting of widths in the context of an NLO simulation may be necessary).

Finally, another setup-type operation is the diagonalisation of the mass matrix. This is

only available in a restricted class of UFO models which include the AsperGe [89] module,

whose inputs are accessible to the user during the interactive talk-to phase.

Generation. The most general form of the generate command is the following:

MG5 aMC> generate Process {AmpOrders} [{{Mode} Couplings}]
the only mandatory option being Process, i.e. the actual process one needs to generate. We

shall now comment on the four options above in turn.

The option Process is simply the list of initial- and final-state particles, separated by

the conventional > sign:

Process ≡ a b > c 1...c n

One can further refine the syntax above in order to include in the computation only some

of the contributions that one would normally obtain. Such refinements are reported in

table 14, and have the following meaning:

s.1 A production process is generated that features x in the final state, with x subse-

quently decaying into the list of particles that follow the “x >” string; more in general,

there may be p primary particles that play the same role as x. Only p-resonant dia-

grams (see section 2.5) are included in the computation. In the example of table 14,
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syntax example meaning

x, x> p p > z j, z > b b~ s.1

$ x p p > e+ e- $ z s.2

/ x p p > e+ e- / z s.3

> x > p p > z > e+ e- s.4

$$ x p p > e+ e- $$ z s.5

Table 14. Process-generation syntax refinements, also exemplified in the case of various processes
that involve a Z boson. See the text for the explanation of the keywords s.1–s.5. Only syntaxes
s.3–s.5 are supported for NLO-type generations.

one has the associated production of a Z and a jet, with the Z further decayed into

a bb̄ pair. Spin correlations and x off-shell effects are taken into account exactly, but

the virtuality m⋆
x
of x is forced to be in the following range:

|m⋆
x
−mx| ≤ bwcutoffΓx , (B.1)

where mx is the pole mass of x, Γx its width, and bwcutoff is a parameter controlled

by the user (through run card.dat). Syntax s.1 thus loosely imposes an on-shell

condition; it is called decay-chain syntax, and can be iterated: any decay product

can be decayed itself by using this syntax (e.g. x > y z, y > w s).

s.2 If x appears as an intermediate particle in the generated process, its virtuality is

forced to be in the range:

|m⋆
x
−mx| > bwcutoffΓx , (B.2)

which is the region complementary to that of eq. (B.1), and thus loosely imposes

an off-shell condition. All diagrams are kept. In the example of table 14, one has

Drell-Yan production with the invariant mass of the e+e− pair larger than or smaller

than the Z mass by at least bwcutoffΓZ . A consequence of the complementarity

mentioned above is that, while cross sections generated with either s.1 or s.2 are

bwcutoff-dependent, their sum is not (up to interference terms, which are neglected

by the process of discarding non-resonant diagrams in s.1 ), and corresponds to the

process generated with the simplest syntax. For example:

dσ

dO
(p p > z) ≃ dσ

dO
(p p > z, z > e+ e−) + dσ

dO
(p p > e+ e− $ z) , (B.3)

for any observable O.

s.3 All diagrams that feature (anywhere) the particle x are discarded.

s.4 The process is generated by demanding that at least one particle of type x be in an

s-channel.

s.5 All diagrams that feature the particle x in an s-channel are discarded.
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We stress that all syntaxes but s.2 produce in general results which are non physical, be-

cause gauge invariance might be violated (although there are exceptions: see e.g. ref. [214]),

and have therefore to be used with extreme caution. The situation becomes more involved

at the NLO, so even more care is required. Syntaxes s.3, s.4, and s.5 are supported; more

refined selections of individual loop diagrams in MadLoop5 can be imposed by editing the

function user filter in the source code loop diagram generation.py.

The option AmpOrders allows the user to specify the upper bounds on the powers

of the coupling constants that enter the scattering amplitudes (i.e., not the amplitudes

squared); therefore, the coefficients Σk0+p,q are selected only in an indirect manner —

see section 2.4. Furthermore, in the case of an NLO-type generation, such amplitudes

are the Born ones: the couplings of the one-loop and real-emission amplitudes are then

automatically determined according to the type of corrections to be included. The syntax

for this option is the following:

AmpOrders ≡ coupling1 = p1 coupling2 = p2 . . . couplingn = pn
where couplingi is the name of the ith coupling in the model currently used, and p1 is

an integer which represents the upper bound mentioned above. It should be obvious that

couplingi is an arbitrary name, chosen by the author of the model in use. In order to see

the list of all coupling names, one has just to type (after having imported the model):

MG5 aMC> display coupling order

For example, by executing this command in the context of the SM, one obtains what

follows:

QCD : weight = 1

QED : weight = 2

which implies that the internal names of the SM couplings gS and gW is QCD and QED

respectively, with the latter being hierarchically suppressed w.r.t. the former. As an explicit

example of the use of the AmpOrders option in the SM, let us consider the case of:

p+ p −→ W+ + Jb + Jlight , (B.4)

where Jb and Jlight are a b- and a light-jet respectively, and the five-flavour scheme is

adopted. Numerically, the dominant contributions to such a process are due to diagrams

whose corresponding amplitudes factorise the couplings g2SgW . However, amplitudes of

order g3W are more interesting, since they feature diagrams with one top-propagator

exchange, and are thus identified with single-top production (although of course at the

same order one has non-resonant diagrams as well). By executing the command (after

including the b-quark in the proton)

MG5 aMC> generate p p > w+ b j

one would obtain only the amplitudes of O(g2SgW ), the choice being made by the code auto-

matically according to the hierarchy shown above. In order to study single-top production,

one can execute what follows instead [214]:

MG5 aMC> generate p p > w+ b j QED=3 QCD=0

which will force the code to consider only O(g3W ) amplitudes. Note that, by entering

QED=3 QCD=2, one will generate both O(g2SgW ) and O(g3W ) amplitudes. In future version of
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MadGraph5 aMC@NLO, the syntax of the option AmpOrders will be extended, so as to

give the user the possibility of selecting directly cross-section-level quantities (Σk0+p,q’s),

at both the leading and the next-to-leading order.

The option Mode61 allows the user to select which contributions to an NLO cross

section (on top of that due to the Born, which is always present) will be included in the

computation. The possible settings are the following:

Mode ≡ all= =⇒ both one-loop and FKS-subtracted real-emission

Mode ≡ real= =⇒ only FKS-subtracted real-emission

Mode ≡ virt= =⇒ only one-loop

The setting all= is equivalent to omitting the option Mode altogether, and should be

the only one considered by the non-expert user, being the only one that leads to physical

results. The setting real= instructs MadGraph5 aMC@NLO to not generate the part of

the code relevant to virtual matrix elements with MadLoop. In this way, the cross section

can still be dealt with as explained in section 3, but the results will be non-physical, unless

an external one-loop provider is linked to MadGraph5 aMC@NLO (such an external OLP

will thus effectively play the same role asMadLoop). Finally, the setting virt= corresponds

to the MadLoop standalone mode. In such a mode, the commands output and launch will

behave differently w.r.t. what is described in section 3, the idea being that of using the code

so generated in order to obtain the pole residues and finite part of the virtual corrections

for user-defined kinematic configurations — see section 4.3 for explicit examples.

The option Couplings allows the user to specify which kind of NLO corrections Mad-

Graph5 aMC@NLO will compute. The general syntax for this option is the following:

Couplings ≡ coupling1 coupling2 . . . couplingn

However, in the current version only QCD corrections can be computed, and therefore the

only valid option read as follows:

Couplings ≡ QCD

as already mentioned several times in this paper. For examples of the more general syntax

that can be used in a still-private MadGraph5 aMC@NLO version, see section 4.3.

Output. The most general form of the output command is the following:

MG5 aMC> output [OutputForm] [MYPROC]

As was already mentioned in section 3 (see in particular footnote 42) the target-directory

name MYPROC may be omitted, in which case MadGraph5 aMC@NLO will choose auto-

matically a name (and print it out on the screen for the user to know). As the full syntax

above implies, however, there are a few names that are reserved because, if used, the code

will interpret them as one of the (optional) OutputForm keywords. These essentially serve

to create executables (or standalone libraries) which are not those typically used for the

integration of the cross sections and the unweighting of the events. They are described in

appendix B.6.

Running. The most general form of the launch command is the following:

MG5 aMC> launch {ProcDir} {RunMode} {Options}
61The use of which requires the use of the option Couplings as well. The opposite is not true.
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We cannot possibly describe in this paper all possibilities implied by the syntax above,

which we plan to do in a forthcoming user manual; we urge the interested reader to explore

them by either using the on-line tutorial, or executing the help launch command, or

exploiting the <TAB> key.

Here, we limit ourselves to point out that ProcDir, if present, must coincide with one

of the current-process directories previously generated. The implication is that, after the

generation and output phase, a user may not immediately run the process, but rather

generate a second one, or also quit the MadGraph5 aMC@NLO shell. Being saved on

disk, the full information of a generated and outputed process can be retrieved at any later

time. In order to do this, one needs simply to execute:

MG5 aMC> launch MYPROC -i

where MYPROC is the name of the current-process directory used throughout this paper.

It should be clear that, upon executing the command above, one is again dealing with a

specific current process. For this reason, many early-stage commands (such as generate)

are disabled. In order to help the user remind this fact, the prompt itself is actually

changed, and reads:

MYPROC>

In short, we shall call the environment accessed by executing the launch -i command

the running mode. One can re-enter the running mode of a given process an unlimited

amount of times. Again, we shall not attempt to give here a full description of the various

implications of this fact. However, it is interesting to discuss a specific usage in connection

to what has been described in section 3.2.1, and namely how to shower hard-subprocess

event files previously generated. For example, we have discussed in section 3.2.1 how, in the

case of a process which features particles whose decay products are dealt with MadSpin,

one obtains (at least) one undecayed and one decayed hard-event files, for example:

MYPROC/Events/run 01/events.lhe.gz

MYPROC/Events/run 01 decayed 1/events.lhe.gz

only the latter of which is showered by default when MadGraph5 aMC@NLO steers the

shower. In order to shower the former, one simply has to execute:

MG5 aMC> launch MYPROC -i

MYPROC> shower run 01

Namely, to access the running mode of the relevant process directory, and then execute

the command shower followed by the name of the subdirectory of the Events directory

where the events to be showered are stored. We point out that the shower command can

be executed any number of times with the same argument, e.g. if one desires to change the

seeds or the parameters in the PSMC.

B.2 Setting the hard scales at the NLO

The short distance NLO(+PS) cross sections in MadGraph5 aMC@NLO feature three

hard scales: the renormalisation (µR), factorisation (µF ), and Ellis-Sexton (QES) scales.

The latter appears only at the NLO and, at variance with the former two, its variations

do not induce any changes in the cross sections. For this reason, QES is only useful in the

context of validation studies, performed by developers; regular users are recommended to
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always set it equal to the factorisation scale. In view of the standard way of performing

scale variations, it is convenient to write the hard scales as follows:

µR = fRµR0 , µF = fFµF0 , QES = fESQES0, (B.5)

where µR0, µF0, and QES0 are called reference scales.

Hard scales must be set by the user prior to compiling and running the code. They

can be organised into two categories, typically called “fixed” and “dynamical”; the scales

belonging to the former have constant values, independent of the event kinematics, while

those belonging to the latter depend on the four-momenta of the final-state particles, and

hence have values that change event-by-event during the course of the run. Whether a

scale is fixed or dynamical is determined by an input parameter. For example, in the case

of µR, the following setting in run card.dat:

T = fixed ren scale ! if .true. use fixed ren scale

will instruct the code to use a fixed renormalisation scale. Such a fixed value is also given

by the user in input by setting the pre-factor fR and the reference scale µR0 that appear

in eq. (B.5). For example, the following entries in run card.dat:

91.188 = muR ref fixed ! fixed ren reference scale

2 = muR over ref ! ratio of current muR over reference muR

set µR0 = 91.188GeV and fR = 2 respectively, and hence µR = 182.376GeV.

We now address the case of dynamical scales, again using the renormalisation scale to

give definite examples. A dynamical µR is used when:

F = fixed ren scale ! if .true. use fixed ren scale

With this setting, one still has fR =muR over ref. On the other hand, the input

muR ref fixed is ignored, and the reference scale is defined as follows:

µR0 = muR ref dynamic . (B.6)

The quantity muR ref dynamic is a function of the four-momenta of the final-state parti-

cles; its body is found in the file MYPROC/SubProcesses/setscales.f, where the user may

include his/her definition of the dynamical scale best suited to the process of interest. Al-

though a few examples of typical dynamical scales are given in the version of setscales.f

which is included in the tarball of the package, we urge the user to study the structure

of that file (which is amply commented — note, in particular, the role of the variable

temp scale id in that file, which helps keep track of the functional forms used), and to

change it if need be. It should be clear that setscales.f follows the same rules as all

the other core files of the package (see section A). Hence, in order for any modifications

to it to be taken into account in the current run, one must edit the file before the launch

command is issued.

What said above for the renormalisation scale applies without changes to the factori-

sation and Ellis-Sexton scales; the relevant parameters and functions in run card.dat and

setscales.f have self-explanatory names. Note that, in the case of the factorisation scale,

one can in principle assign two different values to the two incoming hadrons — hence, in

the input cards one can find the variables * ref fixed and * over ref, with *=muF1 and
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muF2, which are respectively relevant to the hadron coming from the left and the right.

At the LO, this is unambiguous — the scales only enter the relevant PDFs. At the NLO,

however, there are several ways to write the logarithmic terms whose arguments are ratios

of scales. In order to avoid complications, at the NLO the two factorisation scales must

always be chosen to be equal; when this is not the case, the code stops.

We point out that the structure outlined above will allow the user to choose one scale

to be fixed and another one to be dynamical; however, in the vast majority of cases one will

want the scales to be either all fixed (not necessarily to the same value), or all dynamical.

In the latter case, the functions in setscales.f are such that different functional forms

can be adopted for different scales. Again, this is a somehow infrequent situation. Having

this in mind, the default version of setscales.f sets all * ref dynamic functions (with

*=muR, muF, and QES) equal to the same function scale global reference, and one can

limit oneself to modifying the latter for a standard usage.

We conclude this section by summarising schematically what has been described above.

1. Decide whether to use fixed (fixed * scale=T) or dynamical (fixed * scale=F)

scales. This is done at runtime, either by editing run card.dat before executing the

launch command, or directly at the prompt after having executed it.

2a. If fixed scales are chosen: the relevant input parameters are * over ref (these are

the f∗ factors in eq. (B.5)) and * ref fixed (these are the reference scales µ∗0 in

eq. (B.5)). Both can be set at runtime in the same way as fixed * scale.

2b. If dynamical scales are chosen: the relevant quantities are the input parameters

* over ref as in case 2a., and the functions responsible for defining the reference

scales, to be found in setscales.f. Modifications to the latter file must be carried

out before executing the launch command (i.e., no modifications are possible at

runtime); by default, the reference dynamical scales are set equal to HT/2.

Note that the situation of FxFx-merged simulations is somewhat different, owing to the

specific prescriptions for the settings of the scales which are inherent to the method; for

more details, the user is encouraged to check http://amcatnlo.cern.ch/FxFx merging.htm.

B.3 Scale and PDF uncertainties: the NLO case

Among all the dependencies of a cross section, those due to hard scales and PDFs are

special, since it is always possible to write

σ =
∑

i

wibi , (B.7)

where the coefficients wi (typically called “weights”) are independent of both scales and

PDFs, while the “basis” members bi contain all the information on scales and PDFs in

simple forms such as:

bi = f (i)
H1

f (i)
H2
αki

S

{
1, log

µR

QES

, log
µF

QES

}
. (B.8)
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The key point is that, while the weights might be very expensive to compute CPU-wise,

the basis members are straightforward. A convenient strategy is therefore that of first

evaluating the wi’s, and then of using them in eq. (B.7) for all the desired choices of scales

and PDFs; each of these will therefore result in a basically instantaneous evaluation of the

corresponding σ. In practice, what is done in MadGraph5 aMC@NLO is to compute σ for

a given choice of scales and PDFs (the “central” or “default” choice), while at the same time

storing the values of the wi’s (if this is required by the user in input — see later), in order

to re-use them at a later stage, typically for the assessment of the theoretical uncertainties.

We stress that eq. (B.7) is exact,62 and therefore so is the computation of a cross section

starting from the weights for any given scale and PDF choice. A complete discussion, which

includes all the relevant definitions of wi and bi for both fixed-order and MC@NLO cross

sections, is given in ref. [125] and will not be repeated here. The aim of this appendix is

rather that of giving some details on the way in which eq. (B.7) is exploited when computing

scale and PDF uncertainties in the context of (N)LO+PS and f(N)LO simulations.

The basic idea relevant to (N)LO+PS is the following. In the LHE file and event-by-

event, the values of σ will be stored that correspond to all the combinations of scales and

PDFs selected by the user in input (we denote the numbers of these combinations by Nµ

and NPDF respectively). These σ’s will have to be treated in the same way as the cross

section associated with the central scales and PDFs (which is part of the standard LHE

information, and corresponds to the variable XWGTUP); namely, each of them will constitute

an entry in a histogram associated with that particular combination of scales and PDFs. In

other words, for each observable of interest, one will have to fill 1+Nµ+NPDF histograms

(the “1” being for the central choices). At the end of the run, and for each observable, the

envelope of the 1+Nµ histograms will give the scale uncertainty affecting that observable,

and the envelope of the 1 + NPDF histograms will be the PDF uncertainty. The precise

definition of these two envelopes is the user’s responsibility. In the case of the scales, one

will typically want to consider the largest and smallest cross sections bin-by-bin, possibly

excluding from the computation of such extremes some of the (µR, µF ) combinations (see

e.g. [367] for a discussion on this point). In the case of the PDFs, the envelope must be

defined following the prescription of the PDF authors.

We now show how the user can choose in input the scales and PDFs that will be used

in the calculation of the uncertainties; we start from the former. In the present version

of MadGraph5 aMC@NLO we have fixed Nµ = 8, which corresponds to the following

combinations:

(f↓
R, f

↓
F ) , (f c

R, f
↓
F ) , (f↑

R, f
↓
F ) , (B.9)

(f↓
R, f

c
F ) , (f↑

R, f
c
F ) , (B.10)

(f↓
R, f

↑
F ) , (f c

R, f
↑
F ) , (f↑

R, f
↑
F ) , (B.11)

these being the pre-factors introduced in eq. (B.5) to define the renormalisation and fac-

62The dependence on PDFs of the (parton-shower) Sudakovs cannot be accounted for by eq. (B.7).

However, this is expected to be rather small, and particularly so when computing PDF uncertainties. See

ref. [125] for more details.
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torisation scales given the reference scales:

(
µα

R, µ
β
F

)
=
(
fα
RµR0, f

β
F µF0

)
, {α,β} ∈ {↓, c, ↑} . (B.12)

The combination (f c
R, f

c
F ) missing in eqs. (B.9)–(B.11) is obviously that corresponding to

the central scales, which is always computed. Equation (B.12) implies that scale variations

are defined by choosing the reference renormalisation and factorisation scales (which is

done as explained in section B.2), and by varying the pre-factors in front of them. Such

prefactors are defined by means of some input parameters found in run card.dat. More

specifically, we have:

f↓
R = muR over ref × rw Rscale down , (B.13)

f c
R = muR over ref , (B.14)

f↑
R = muR over ref × rw Rscale up , (B.15)

f↓
F = muF over ref × rw Fscale down , (B.16)

f c
F = muF over ref , (B.17)

f↑
F = muF over ref × rw Fscale up . (B.18)

Given these inputs, MadGraph5 aMC@NLO will consider all the combinations given in

eqs. (B.9)–(B.11), compute the corresponding bi’s of eq. (B.8) using the central PDFs, and

combine them with the weights according to eq. (B.7). The resulting σ (which could be

denoted by σ(α,β) for consistency with eq. (B.12)) will be stored in the LHE file, provided

the user sets:

.true. = reweight scale ! reweight to get scale dependence

in input.

As far as PDF uncertainties are concerned, we have assumed that one will use

LHAPDF, where all members of an error set are identified by adjacent integer numbers.

Using NNPDF 2.0 [368] as an example to be definite, one will have the following inputs:

lhapdf = pdlabel ! PDF set

90800 = lhaid ! if pdlabel=lhapdf, this is the lhapdf number

90801 = PDF set min ! First of the error PDF sets

90900 = PDF set max ! Last of the error PDF sets

The first two lines instruct the code to use LHAPDF and to choose the central NNPDF

2.0 set as the default. The last two lines will set NPDF = 100; for each of these hundred

NNPDF 2.0 error sets, MadGraph5 aMC@NLO will compute the bi’s of eq. (B.8) using

the central scales, and combine them with the weights according to eq. (B.7). The resulting

σ will be stored in the LHE file, provided the user sets:

.true. = reweight PDF ! reweight to get PDF uncertainty

in input.

For what concerns the storage in the LHE file of the σ’s computed as described above,

we use a format which is fully compatible with the LHA v2.0 [95], and which is now officially

adopted as v3.0 [218]. In the file header, there will be a part (which we call the reweight
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section) where a description is given of the meaning of the weights that will appear in each

event. Its structure may read as follows:

<initrwgt>

<weight id=’1’> This is the central weight </weight>

<weightgroup type=’scale variation’ combine=’envelope’>

<weight id=’2’> muR=0.5 muF=0.5 </weight>

<weight id=’3’> muR=0.5 muF=1.0 </weight>

...

<weight id=’9’> muR=2.0 muF=2.0 </weight>

</weightgroup>

<weightgroup type=’NNPDF20’ combine=’gaussian’>

<weight id=’10’> set001 </weight>

...

<weight id=’109’> set100 </weight>

</weightgroup>

</initrwgt>

Thus, each choice of scales and of PDFs is uniquely identified by an ID number. For

example, id=’1’ will correspond to the central scale and PDF choices, (fR, fF ) = (f c
R, f

c
F )

and PDF number 90800 in the examples given above (this is the same as XWGTUP, and

hence is redundant, but it is convenient to include it in the reweight section as well). As

far as id=’2’ to id=’9’ are concerned, these will correspond to the Nµ combinations

given in eqs. (B.9)–(B.11), the numerical values reported in the header next to muR and

muF being those of fα
R and fβ

F respectively. Finally, id=’10’ to id=’109’ correspond to

the NPDF error sets 90801–90900.

In keeping with the reweight section in the LHE file header, there will be a reweight

section event-by-event, which contains the actual numbers to be used to fill the histograms

as described previously. Its structure will read as follows:

<event>

...

<rwgt>

<weight id=’1’> 3.905e+01</wgt>

<weight id=’2’> 4.142e+01</wgt>

...

<weight id=’109’> 3.876e+01</wgt>

</rwgt>

</event>

The presence of the ID numbers in the reweight section of each event facilitates debugging,

does not require the weights to be always in the same order, and is especially convenient

for on-the-fly manipulations (such as discarding some contributions, sorting them, and so

forth).

We conclude this section with some general comments. The condition Nµ = 8 can be

trivially relaxed (which requires the inclusion of Nµ itself in the list of the inputs); we have

refrained from doing so in the first public version of the code since three choices for each
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of the hard scales typically give a good estimate of the uncertainties. A more extended set

of input parameters would also give one the possibility of performing scale variations by

changing the functional forms of the reference scales w.r.t. those adopted for the central

results. Finally, the complete generality could be achieved by storing in the LHE file the

weights wi’s. This would require, however, that additional information be stored as well

(such as the values of the Bjorken x’s — more details can be found in ref. [125]). While

this can be trivially done, it would render the computation of the basis members bi’s of

eq. (B.8), and their subsequent combination with weights according to eq. (B.7), a much

more involved operation than the present one if performed by an external user.63 Such a

possibility is left open for future developments.

In the case of f(N)LO runs, the information on scale and PDF variations is also available

on an event-by-event basis. In keeping with the fact that here one cannot have unweighted

events, MadGraph5 aMC@NLO will associate to each kinematic configuration an array of

weights (rather than a single weight), each of which gives eq. (B.7) with the basis elements

of eq. (B.8) recomputed for all desired scale and PDF choices. This implies that the second

elements of the pairs in eqs. (3.4)–(3.6) will be turned into arrays, with dimensionality:

1 + (1 +Nµ) +NPDF reweight scale = .true. reweight PDF = .true. (B.19)

1 + (1 +Nµ) reweight scale = .true. reweight PDF = .false. (B.20)

1 +NPDF reweight scale = .false. reweight PDF = .true. (B.21)

The first entry thus always gives the value of the weight associated with central parameters.

In the case of scale variations, this weight is present twice (the “1” in (1 +Nµ)) essentially

for reasons of backward compatibility which should not concern the user. The information

of which weight is which is returned as the array of strings weights info and made available

to the user’s initialisation routine analysis begin — this is equivalent to the id number

discussed before in the context of LHE files.

B.4 Scale and PDF uncertainties: the LO case

At the LO, the structure of the cross section, eq. (B.7), is trivial — the sum contains one

term i = 1 (see however footnote 8), which corresponds to the single PDF-and-coupling

combination (i.e., to a single basis member, eq. (B.8)) relevant to this perturbative order:

this is the reason for the simplicity of eq. (2.2). Thus here, at variance with the NLO case,

from the user’s viewpoint it is therefore as simple to handle w1 as is to handle σ. This

suggests the following strategy: when unweighted events are produced, they are stored in

an intermediate LHE file with a non-standard format, that features the weights w1. After

the end of the run, this LHE file is read by a standalone module, dubbed SysCalc, that

converts the weights w1 into the corresponding cross sections σ, and stores them in a new

LHE file, which has this time the standard format already described in appendix B.3. This

procedure is advantageous because it allows one to run SysCalc as many times as desired

using the same intermediate LHE file obtained at generation time; this implies that the

63This not being the case at the LO, in LO-type generations we can adopt a different strategy — see

appendix B.4.
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type of scale or PDF variations need not be chosen before the event-generation phase, as

is the case at the NLO. The SysCalc module can be installed64 with:

MG5 aMC> install syscalc

from the MadGraph5 aMC@NLO shell. At runtime, MadGraph5 aMC@NLO is in-

structed to save the weights w1 in the intermediate LHE file by setting

T = use syst ! Enable systematics studies

in run card.dat. When this is done, SysCalc is automatically called at the end of the

run (although, as was said before, it can also be run independently afterwards). The

type of scale and PDF variations considered are determined by the following entries in

run card.dat:

0.5 1 2 = sys_scalefact # Central scale factors

-1 = sys_scalecorrelation # for renormalization/scale variate

# -1: make all combination

# -2: only correlated variation

0.5 1 2 = sys_alpsfact # \alpha_s emission scale factors

30 50 = sys_matchscale # variation of merging scale

# PDF sets and number of members (0 or none for all members).

CT10nlo.LHgrid = sys_pdf #

The list of values to the left of sys scalefact collects the multiplicative factors in front

of the reference (fixed or dynamic65) scales, and are thus analogous to the quantities fα
R

and fβ
F that appear in eq. (B.12); at variance with the current NLO implementation, such

a list can contain more than three numbers. We stress that, when use syst=T, the value

of scalefact in run card.dat is ignored. The flag sys scalecorrelation allows one to

choose which of the renormalisation/factorisation scale combinations are considered. When

“-1’ is entered, then all µR and µF values determined by the list sys scalefact are taken

into account, while with “-2” one restricts to code to dealing with µR = µF . More sophis-

ticated options are also available (allowing one to select only some of the possible (µR, µF )

combinations), which will be documented elsewhere. The entry sys pdf is associated with

the study of PDF systematics; if set equal to a PDF error set, all PDF members in that set

will be considered. Alternatively, one can specify the individual PDF members to be taken

into account. Finally, through SysCalc one can also investigate the systematics relevant

to tree-level merging (see section 2.3.4), with sys alpsfact and sys matchscale corre-

sponding to αS-argument and Qmatch variations respectively. More details on SysCalc can

be found at: https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/SysCalc.

B.5 Other LO reweighting applications

In this appendix we comment in the briefest of manners on some technicalities relevant

to the matrix-element reweighting (eq. (2.3)) and the matrix-element method (eq. (2.5))

discussed in section 2.3.3.

64SysCalc requires that LHAPDF be installed as well.
65Note that the setscales.f code relevant to LO calculations is different w.r.t that used in NLO ones.
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As was already mentioned in section 3.1, the former procedure is straightforwardly

accessed through the MadGraph5 aMC@NLO shell, by simply setting reweight=ON in

the interactive talk-to phase. By doing so, MadGraph5 aMC@NLO will use the file

reweight card.dat to modify the parameters (found in param card.dat) used for the

benchmark computation (that essentially corresponds to the denominator of eq. (2.3)).

One may enter any number of such modifications, each of which may contain any number

of parameter changes, to be done through the set command (see the comments inside

the file reweight card.dat). There are currently two main limitations to this procedure.

Firstly, the changes must occur within one given model (i.e., one cannot reweight to matrix

elements computed in a model different w.r.t. that adopted in the benchmark calculation).

Secondly, the accessible kinematical region in the “new” hypothesis must be equal to or

smaller than the original one. The interested reader can find more information by visiting:

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Reweight.

The matrix-element method is handled by MadWeight. As was discussed in sec-

tion 3.1, the current version embedded in MadGraph5 aMC@NLO has vastly increased

the speed of the previous version [136]. Such an increase is mainly due to a better combi-

nation of subprocesses, to a Monte-Carlo-type sum over jet-parton assigments (as opposed

to an exact sum), and to the possibility of performing the simultaneous computation of

P (q|α) in the case of multiple choices of the transfer function. The MadWeight executable

specific to the process generated by the user simply corresponds to employing one of the

reserved output keywords (see appendix B.6), namely to executing, after the generation

phase, the command:

MG5 aMC> output madweight MYPROC

After that, one may continue with using the MadGraph5 aMC@NLO shell interface by

executing:

MG5 aMC> launch MYPROC

Further details can be found at: https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/

MadWeight.

B.6 Output formats and standalone libraries

The main purpose of MadGraph5 aMC@NLO is that of providing a self-contained frame-

work where to compute cross sections and generate events at the desired level of perturba-

tive accuracy, in both the SM and new-physics theories. On the other hand, the code may

also be used to provide one with only a given ingredient of a calculation (e.g., a matrix

element) which is to be performed elsewhere. This has been one of the defining character-

istic of MadGraph, and has been wholly inherited by MadGraph5 aMC@NLO. Another

example is the computation of a quantity which is not a cross section; a case in point is

the likelihood dealt with by MadWeight (see section 2.3.3 and appendix B.5).

All possible executables, libraries, or more elementary objects that can be produced

by MadGraph5 aMC@NLO can simply be seen as outputs of the (meta-)code; they are in

fact in one-to-one correspondence with the optional first keyword of the shell command:

MG5 aMC> output [OutputForm] [MYPROC]
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The possible choices of OutputForm can be readily obtained by using the autocompletion

<TAB> key in the shell after having typed output (or with help output). By doing so,

one will notice that they all apply, bar one case (standalone, see below), to LO-type

generations. Here we shall not list them all, but limit ourselves to commenting on those

which are the most useful from the user’s point of view. These are:

• standalone: self-contained Fortran77 library for the computation of either tree-level

matrix elements (after an LO-type generation), or one-loop matrix elements (after an

NLO-type generation with the keyword virt=coupling1 ... — see appendix B.1).

The directory structure thus created contains a simple program (check sa.f) which

allows one to evaluate the matrix elements pointwise for test purposes.

• standalone cpp: the same as above, but in C++ rather than in Fortran77. Works

only for tree-level matrix elements.

• pythia8: self-contained library for the computation of tree-level matrix elements, in

a format which can be directly used in the Pythia8 PSMC. It includes a simple driver

that one can employ to steer Pythia8 sample runs, and a Processes * directory that

contains the said matrix elements. More details can be found in section 3.2 of ref. [38].

• madweight: this output keyword allows one to set up a computation with Mad-

Weight (see appendix B.5).

We conclude this appendix by stressing that the above list (supplemented by that of the

other output keywords not explicitly given here) is by no means all-inclusive. The reader

who is interested in a particular output format specifically suited to his/her need is encour-

aged to contact us in order for that to be developed and included in future versions of Mad-

Graph5 aMC@NLO. For instance, dedicated outputs for matrix elements to be used in the

MatchBox [181] framework and by EventDeconstruction [369, 370] are being developed.

C Features of one-loop computations

C.1 TIR and IREGI

The aim of this section is that of presenting the basic procedures used in TIR, and in

particular by the program IREGI;66 more details on the latter will be given elsewhere [168].

IREGI computes the integral that appears as first element in the set of eq. (2.79); owing

to the fact that we apply TIR to a given loop topology (see eq. (2.77)), we can exploit

eq. (2.76) to simplify the notation here and drop the dependence on lt. On the other hand,

at variance with what was done in section 2.4.2, in order to make things more explicit it

is convenient to insert in the notation the dependence on the external (four-dimensional,

owing to the ’t Hooft-Veltman scheme) four-momenta pi and on the massesmi that circulate

in the loop (see eq. (2.60)), so that the integral we are interested in reads as follows:

Iµ1...µr({pi}, {mi}) =
∫

ddℓ̄
ℓµ1 . . . ℓµr

∏m−1
i=0 D̄i

. (C.1)

66The acronym stands for “Integral REduction with General positive propagator Indices”.
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Lorentz-covariance then guarantees that eq. (C.1) can be re-written as follows:

Iµ1...µr({pi}, {mi}) = (C.2)
∑

2j+i0+i1+···+im−1=r

{[g]j [p0]i0 · · · [pm−1]
im−1}µ1...µrIji0...im−1({pi}, {mi}) ,

for certain scalar integrals Iji0...im−1 , and where the symmetric tensor form

{[g]j [p0]i0 . . . [pm−1]im−1}µ1...µr is defined in such a way that all non-equivalent permutations

of the Lorentz indices µ1, . . . µr on j metric tensors g and is external momenta ps contribute

with weight one. For example:

{[g]2[p0]0[p1]0}µ1...µ4 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 ,

{[g]1[p0]0[p1]2}µ1...µ4 = gµ1µ2pµ3
1 pµ4

1 + gµ1µ3pµ2
1 pµ4

1 + gµ1µ4pµ2
1 pµ3

1 ,

{[g]0[p0]0[p1]4}µ1...µ4 = pµ1
1 pµ2

1 pµ3
1 pµ4

1 ,

{[g]0[p0]1[p1]2}µ1µ2µ3 = pµ1
0 pµ2

1 pµ3
1 + pµ2

0 pµ1
1 pµ3

1 + pµ3
0 pµ1

1 pµ2
1 . (C.3)

Given eq. (C.2), the computation of the original tensor integral of eq. (C.1) is reduced

to that of the scalar integrals Iji0...im−1 . One starts by observing that the latter are

independent of the number of dimensions used in the numerator of eq. (C.1), because

the decomposition of eq. (C.2) would hold, with the formal replacement g → ḡ, if one

had replaced ℓ → ℓ̄ in eq. (C.1). Therefore, since working with the same number of

dimensions in all parts of a computation is algebraically convenient, one determines the

Iji0...im−1 directly in d dimensions. This is done by recursively expressing such scalar

integrals in terms of lower-point ones, till only integrals that cannot be further reduced

are obtained — these are just a few and well known: IREGI makes use of those tabulated

in OneLoop [371] and QCDloop [372].

One way of performing such recursive reduction stems from the pioneering work of

Passarino and Veltman [154]: by contracting both sides of eq. (C.1) (in d-dimensions) with

metric tensors and external four-momenta, one relates the Iji0...im−1 integrals to lower-rank

tensor or lower-point scalar integrals. This lowering is due to the fact that, when contract-

ing, one obtains the scalar products ℓ̄2 and ℓ̄·pi, which are then re-expressed as follows:

ℓ̄2 = D̄0 +m2
0 , (C.4)

ℓ̄·pi = (D̄i − D̄0 +m2
i −m2

0)/2 , (C.5)

thus either cancelling some of the denominators or simplifying the dependence on ℓ̄ in

the numerator. The procedure is algebraic, and one ends up with a system of equations

where the unknowns are the scalar integrals, and the coefficients known functions of the

kinematic variables. The solution of such a system is non-trivial, owing for example to

the presence of special kinematic configurations; IREGI implements to a large extent the

strategies proposed in ref. [373].

An alternative and independent way for performing the recursive reduction follows the

work of Davydychev [155]. One introduces the generalised loop-tensor and basic-scalar

integrals:

Īµ1...µr(d, {νi}, {pi}, {mi}) =
(µ2)2−d/2

(2π)d

∫
ddℓ̄

ℓ̄µ1 . . . ℓ̄µr

∏m−1
i=0 D̄νi

i

, (C.6)
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I0(d, {νi}, {pi}, {mi}) =
(µ2)2−d/2

(2π)d

∫
ddℓ̄

1
∏m−1

i=0 D̄νi
i

, (C.7)

where the scale-dependent prefactor is conventional, and the indices ν0, ν1, · · · , νm−1 are

positive integers. By using a Feynman-parameter representation and the d-dimensional

analogue of eq. (C.2):

Īµ1...µr(d, {νi}, {pi}, {mi}) =
i

(4π)
(4πµ2)2−d/2 (C.8)

×
∑

2j+i0+...+im−1=r

{[ḡ]j [p0]i0 . . . [pm−1]
im−1}µ1...µr

×(−1)
∑m−1

i=0 νi+r−j Γ(
∑m−1

i=0 νi − d/2− j)

2j
∏m−1

i Γ(νi)

∫ 1

0

m−1∏

i=0

dyiy
νi+ii−1
i

×δ
(m−1∑

i=0

yi−1
)⎡

⎣−
∑

i<j

yiyj(pi−pj)2+
m−1∑

i=0

yim
2
i

⎤

⎦
j+d/2−

∑m−1
i=0 νi

,

I0(d, {νi}, {pi}, {mi}) =
i

(4π)
(4πµ2)2−d/2Γ(

∑m−1
i=0 νi − d/2)
∏m−1

i=0 Γ(νi)
(−1)

∑m−1
i=0 νi

×
∫ 1

0

m−1∏

i=0

dyiy
νi−1
i δ(

m−1∑

i=0

yi − 1)

×

⎡

⎣−
∑

i<j

yiyj(pi − pj)
2 +

m−1∑

i=0

yim
2
i

⎤

⎦
d/2−

∑m−1
i=0 νi

, (C.9)

one arrives at:

Īµ1...µr(d, {νi}, {pi}, {mi}) =
∑

2j+i0+···+im−1=r

{[ḡ]j [p0]i0 · · · [pm−1]
im−1}µ1···µr

×(4πµ2)r−j

(−2)j

(
m−1∏

i=0

Γ(νi + ii)

Γ(νi)

)

×I0(d+ 2(r − j), {νi + ii}, {pi}, {mi}) . (C.10)

By using eqs. (C.2) (in d dimensions) and (C.10), one finally obtains the relation:

Iji0...im−1({pi}, {mi}) =

[
(µ2)2−d/2

(2π)d

]−1
(4πµ2)r−j

(−2)j

(
m−1∏

i=0

Γ(1 + ii)

Γ(1)

)

× I0(d+ 2(r − j), {1 + ii}, {pi}, {mi})|d=4−2ϵ . (C.11)

With eq. (C.9) one is also able to derive relationships among scalar integrals in different

dimensions. For instance, eq. (6) of ref. [155] can be easily obtained:

I0(d− 2, {νi}, {pi}, {mi}) = −4πµ2
m−1∑

s=0

νs I0(d, {νi + δis}, {pi}, {mi}) , (C.12)
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gg→dd̄bb̄tt̄ uū→dd̄tt̄ ud̄→dd̄W+ZH gg→ t̃1t̃⋆1g

# Feynman diagrams 54614 10947 187138 3952

# topologies 8190 811 8098 437

∆(k0) 0 4 2 0

# non-zero hel. configs. 128 16 27 8

Generation time 15h 28min 25h 1min 38s

Running time 18.6s (19%) 895ms (72%) 26.4s (32%) 83.6ms (68%)

Output code size 600 Mb 20 Mb 700 Mb 6 Mb

Runtime RAM usage 3.6 Gb 152 Mb 8.3 Gb 81 Mb

Stability 2 · 10−8 1 · 10−7 4 · 10−7 1 · 10−7

Table 15. Performances of MadLoop5 in the context of the computations presented in section 4.3.
See the text for details.

where by δis we have denoted the Kronecker symbol. Furthermore, other recursion re-

lations for the scalar integrals I0(d, {νi}, {pi}, {mi}) can be obtained with the help of

the integration-by-parts method [374, 375], which exploits the fact that integrals are

translation-invariant in dimensional regularization. The practical implementation in IREGI

of the method discussed here follows ref. [375].

IREGI can use either of the two methods presented above for the recursive reduction,

the actual choice being made by the calling code (in our case, MadLoop5). The current

default in MadGraph5 aMC@NLO is the use of Passarino and Veltman; this is straight-

forward to change, since it is simply controlled by a parameter in an input card. IREGI

has a minimal internal stability control: should e.g. Passarino and Veltman procedure be

flagged unstable, the code will turn to using Davydychev’s. We stress that this by no

means replaces the stability control performed by MadLoop5, described in section 2.4.2.

C.2 Quantitative profile of MadLoop performances

We have already stressed that the results presented in section 4.3 can be used as benchmarks

for the validation of other codes. However, they reveal only one aspect of the performances

of MadLoop5, which we complement in this appendix by reviewing some quantitative

characteristics of the handling of the scattering processes considered before. A summary

of such characteristics is reported in table 15.

The number of topologies is the upper bound of the sum over the index t in eq. (2.77),

and it corresponds to the number of independent loop reductions (i.e., of evaluations of

the Red[ ] operator introduced in eq. (2.58)) for one kinematic configuration. As one can

see from the table, such a number is much smaller than the number of Feynman diagrams,

which emphasises the importance of the optimization induced by eq. (2.76). The quantity

∆(k0) is equal to the number of coupling-constant combinations, minus one, at the Born

level, which is larger than zero in the case of a mixed-coupling expansion. See the beginning

of section 2.4, and eqs. (2.17) and (2.22) in particular, for more details. The generation
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time includes the compilation of the source code. The running time corresponds to the

time taken by the code output by MadLoop5 to compute the one-loop squared matrix

element summed over colours but for a single helicity configuration.67 The percentage in

parenthesis specifies the fraction of the running time spent in the loop reduction which,

we remind the reader, is independent of the number of non-zero helicity configurations

considered. The complementary fraction of the time is spent in the computation of the

coefficients C(r)
µ1...µr;h,l

of eq. (2.79), and scales linearly with the number of helicity combi-

nations. The size of the output code includes external data files (that essentially contain

the colour coefficients Λlb) loaded by the library which is in itself much lighter. The RAM

measure reported is the runtime peak of residential memory allocated. The figures given

in the last row are the relative accuracies estimated by the MadLoop5 internal stability

tests in the context of double-precision computations that use the kinematic configurations

considered in section 4.3 (however, we stress again that the matrix-element results have

been obtained in quadruple precision); obviously, these pointwise accuracies have only an

indicative value, since the real figure of merit necessitates averaging over a large statistical

sample of independent kinematic configurations.

We conclude this appendix by stressing that the data reported in table 15 can be ob-

tained by the user by using the command check profile in the MadGraph5 aMC@NLO

shell. For example, one would have

MG5 aMC> check profile g g > t t~ z [virt=QCD]

in the case of the virtual corrections to tt̄Z production (i.e., process e.8 of table 6).

C.3 Computation of the integrand polynomial coefficients

We have discussed in section section 2.4.2 how the use of the loop-integrand representation

of eq. (2.78) increases the speed of OPP-based integral reductions, as well as giving one

the possibility of using TIR methods. This appendix elaborates on the techniques adopted

in MadLoop5 for the computation of the coefficients C(r)
µ1...µr;h,l

. The key fact is that such

coefficients are fully symmetric tensors of rank r with only
(3+r

r

)
independent entries. In

renormalisable theories and in the Feynman gauge the number of loop propagators sets

the maximal rank in ℓµ of that loop-integrand numerator, so that the total number of

coefficients necessary to express the numerator of any loop of a, say, 2 → 6 process, is at

most Ncoeff (rmax = 8) ≡
∑rmax=8

r=0

(3+r
r

)
= 495 which is well within the reach of modern

computers. We start by rewriting the analogue of eq. (2.78) for any polynomial P (rmax)(ℓµ)

of maximal rank rmax with the following shorthand and symbolic notation:

P (rmax)(ℓµ) = C(rmax)

k̇
ℓk̇ , (C.13)

where k̇ takes values between 1 and Ncoeff (rmax), and effectively defines a map between

the sets of Lorentz indices µi and integer numbers. The choice of such a map is arbitrary,

and we use what follows:

C(r)
µ1,··· ,µr , µ1 ≤ · · · ≤ µr → C(rmax)

k̇(µ1,··· ,µr)
, (C.14)

67The timing indicated is for a single core of a 2.7 GHz i7 CPU, with the gfortran compiler v4.8.1 without

optimization flags (which have been shown to have a negligible impact).
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W
(1)

i,0,k̇1,j

W
(2)

i,1,k̇2,k

W
(3)

i,1,k̇3,µ

W
(4)

i,2,k̇4,ν

W
(5)

i,3,k̇5,m

δmi

w(1)
ρ

w(2)
n w(3)

σ

w(4)
p

V
(1)
j,1,ṡ1,k

V
(2)
k,0,ṡ2,µ V

(3)
µ,1,ṡ3,ν

V
(4)
ν,1,ṡ4,m

ℓ

p1

Figure 19. An example of the MadLoop5 construction of the coefficients C(rmax)

k̇
. W denotes the

loop currents and V the vertex polynomials (see the text). The figure depicts an L-cut diagram;
the original box loop is obtained by sewing the two fermion lines at the top.

k̇(µ1, · · · , µr) = Ncoeff (r − 1) +
r∑

i=1

(1− δ0µi)
(µi + i− 1)!

i!(µi − 1)!
, (C.15)

where we define Ncoeff (−1) = 0 (relevant to r = 0). To make things more explicit with

one example, eq. (C.13) reads, with rmax = 2:

C(2)

k̇
ℓk̇ ≡ C(2)

0 + C(2)
1 ℓ0 + C(2)

2 ℓ1 + C(2)
3 ℓ2 + C(4)

4 ℓ3

+C(2)
5 ℓ0ℓ0 + C(2)

6 ℓ0ℓ1 + C(2)
7 ℓ1ℓ1 + C(2)

8 ℓ0ℓ2 + C(2)
9 ℓ1ℓ2

+C(2)
10 ℓ

2ℓ2 + C(2)
11 ℓ

0ℓ3 + C(2)
12 ℓ

1ℓ3 + C(2)
13 ℓ

2ℓ3 + C(2)
14 ℓ

3ℓ3 . (C.16)

The computation of the coefficients C(rmax)

k̇
with MadLoop5 is entirely numerical and fol-

lows the MadGraph procedure for evaluating Feynman diagrams. At tree level, the internal

currents of a given Feynman diagram are denoted by w(n)
j , with the integer n labeling them

and the index j spanning the representation of the particle associated with the current. In

MadLoop5 the loop currents are promoted to more general objects embedding polynomials

in ℓµ and they are denoted by W (n)

i,r,k̇,j
, with the additional index i specifying the choice

of the external current for the first L-cut particle (which is non-physical and whose only

constraint is to reproduce the Lorentz trace when summed over). The index k̇ labels the

coefficients of the polynomial of maximal rank r according to the convention of eq. (C.15).

Figure 19 shows a complete example of the different numerical objects manipulated by

MadLoop5 in order to construct the polynomial coefficients for the integrand of a box loop

diagram . Note that since the currents w(#) attached to the loop are independent of the

loop momentum ℓµ, it is irrelevant to know whether they are external currents or originate

from larger trees. The starting loop current W (1)

i,0,k̇1,j
is a polynomial of rank 0 since it does

not have any loop momentum dependence; its index k̇1 can therefore only take the value

0. For all loop diagrams, the starting current is always W (1)

i,0,k̇1,j
= δijδk̇10.
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The objects V (#)
a,r,ṡ,b are the representations (polynomials of rank r in the loop momen-

tum) of the vertex plus propagator structures, with a and b the incoming and outgoing loop

current indices respectively. For example, the explicit expression of V (1)
j,1,ṡ1,k

for a massless

quark in figure 19 reads:

V (1)
j,1,ṡ1,k

ℓṡ1 = ıgsγ
ρ
jiw

(1)
ρ︸ ︷︷ ︸

vertex

γµik(ℓµ + p1µ)︸ ︷︷ ︸
propagator

, (C.17)

where the denominator of the propagator is removed since it is already accounted for in

the integral-reduction procedure. To be more definite, we show here the expression of each

coefficient of the vertex polynomial of eq. (C.17):

V (1)
j,1,0,k = ıgs(/w

(1)
/p1)jk , V (1)

j,1,ṡ1,k
= ıgs(/w

(1)γ(ṡ1−1))jk for ṡ1 = 1, . . . , 4 . (C.18)

In renormalisable theories, the rank of the vertex polynomials is maximally equal to one

as only one power of the loop momentum can arise from either the propagator or the

vertex itself (but not from both). This constraint in not enforced by MadLoop5, since

it would make it impossible to compute one-loop diagrams in effectives theories (such as

HEFT). The numerical routines for the evaluation of vertex polynomials are generated

automatically by ALOHA for each process, using the UFO model specifications; this is

what renders the optimisation discussed in this appendix applicable to any model.

Each subsequent loop current W (n+1) is obtained from the previous one W (n) and the

vertex polynomial V (n) placed in between via the defining implicit relation:

W (n+1)

i,r1+r2,k̇1,j
ℓk̇1 = (W (n)

i,r1,k̇2,m
ℓk̇2)(V (n)

m,r2,ṡ,j
ℓṡ). (C.19)

The r.h.s. of eq. (C.19) is a multiplication of two polynomials and each coefficient of W (n+1)

is obtained by summing the corresponding terms in the expanded product. This implies

that a symmetrisation of the coefficients is performed after each loop vertex and this step is

crucial in order to limit their proliferation and the resulting computing time. To illustrate

this, eq. (C.19) is rewritten here for the case r1 = r2 = 1 with k̇1 = 9, corresponding to

the term multiplying ℓ1ℓ2 which can come either from k̇2 = 2, ṡ = 3 or k̇2 = 3, ṡ = 2:

W (n+1)
i,2,9,j = W (n)

i,1,2,mV (n)
m,1,3,j +W (n)

i,1,3,mV (n)
m,1,2,j . (C.20)

Note the implicit summation on the index m which spans the representation of the particle

circulating in the loop just before the vertex V (n). Eq. (C.19) is then iteratively used to

compute all loop currents, until the second L-cut leg, which includes the last vertex and

the L-cut propagator, is reached. The coefficients Ck̇ of an n-point loop diagram are then

simply obtained by closing the Lorentz trace:

Ck̇ = W (n+1)

i,r,k̇,i
. (C.21)

In the example of figure 19, this translates into:

Ck̇ = W (5)

i,3,k̇,m
δmi =

4∑

i=1

W (5)

i,3,k̇,i
, (C.22)
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with the sum written explicitly for clarity. It is clear that many loop diagrams can share

some of their constituting loop currents; for example the L-cut box diagram of figure 19

can be prolonged to form loops with more propagators. MadLoop5 takes advantage of this

and computes each loop current only once, for the first loop diagram in which it appears.

An algorithm analogous to the one described in ref. [24] is used for choosing the L-cut

location in order to maximise the number of loop currents recycled.

We conclude this appendix by stressing that all of the optimisations inherited from the

integrand representation of eq. (2.78) can be turned off in MadGraph5 aMC@NLO via the

option loop optimized output of the interactive interface and that, when this is done,

the structure of the code output by MadLoop5 is completely different. For this reason

and despite being significantly slower, the non optimized output mode provides a powerful

self-consistency check and is useful for debugging purposes.

D Third-party codes included in MadGraph5 aMC@NLO

The tarball of MadGraph5 aMC@NLO is self-contained, and ready-to-run. This is also

thanks to the fact that several third-party codes are included into it. We list all of them

here: ALOHA [92], CutTools [156], FastJet (core) [376], HELAS [91], HERWIG6 [142],

MINT [171], OneLoop [371], Pythia6 [141], QCDloop [372], RAMBO [377], StdHEP [378],

Vegas [379, 380].

In the case of FastJet, what is included in MadGraph5 aMC@NLO is a stripped

version of that code (visit www.fastjet.fr for more details). For more extended jet-

reconstruction capabilities, the user might want to install FastJet proper (thus including

all the relevant plugins).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[54] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and
D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

[55] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3,
Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

[56] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations,
Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

[57] C.F. Berger et al., An automated implementation of on-shell methods for one-loop
amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].

[58] R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in
MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [INSPIRE].

[59] W.T. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the
gluonic case, JHEP 06 (2008) 038 [arXiv:0805.2152] [INSPIRE].

[60] M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085
[arXiv:0905.0883] [INSPIRE].

[61] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order
computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272]
[INSPIRE].

– 137 –

http://dx.doi.org/10.1088/1126-6708/2002/02/044
http://arxiv.org/abs/hep-ph/0109036
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109036
http://dx.doi.org/10.1088/1126-6708/2003/07/001
http://arxiv.org/abs/hep-ph/0206293
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206293
http://dx.doi.org/10.1016/S0010-4655(03)00159-0
http://arxiv.org/abs/hep-ph/0208036
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0208036
http://dx.doi.org/10.1016/j.nima.2004.07.096
http://arxiv.org/abs/hep-ph/0403113
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0403113
http://dx.doi.org/10.1016/j.cpc.2006.07.011
http://arxiv.org/abs/hep-ph/0602213
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0602213
http://dx.doi.org/10.1016/j.cpc.2009.04.023
http://arxiv.org/abs/0710.2427
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.2427
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/0708.4233
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.4233
http://dx.doi.org/10.1088/1126-6708/2007/09/028
http://arxiv.org/abs/0706.2334
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.2334
http://dx.doi.org/10.1088/1126-6708/2008/12/039
http://arxiv.org/abs/0808.3674
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.3674
http://dx.doi.org/10.1016/j.cpc.2013.01.014
http://arxiv.org/abs/1207.6082
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6082
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/hep-ph/9807565
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807565
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0012260
http://dx.doi.org/10.1140/epjc/s10052-007-0495-0
http://arxiv.org/abs/0709.2881
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2881
http://dx.doi.org/10.1103/PhysRevD.78.036003
http://arxiv.org/abs/0803.4180
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4180
http://dx.doi.org/10.1088/1126-6708/2008/09/122
http://arxiv.org/abs/0808.2128
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2128
http://dx.doi.org/10.1088/1126-6708/2008/06/038
http://arxiv.org/abs/0805.2152
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.2152
http://dx.doi.org/10.1088/1126-6708/2009/08/085
http://arxiv.org/abs/0905.0883
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0883
http://dx.doi.org/10.1088/1126-6708/2009/10/003
http://arxiv.org/abs/0908.4272
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4272


J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

[62] K. Hasegawa, S. Moch and P. Uwer, AutoDipole: automated generation of dipole subtraction
terms, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [INSPIRE].

[63] S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in
Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].

[64] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043
[arXiv:1002.2581] [INSPIRE].

[65] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from
unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080
[arXiv:1006.0710] [INSPIRE].

[66] R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the
MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [INSPIRE].

[67] S. Becker, C. Reuschle and S. Weinzierl, Numerical NLO QCD calculations,
JHEP 12 (2010) 013 [arXiv:1010.4187] [INSPIRE].

[68] V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044
[arXiv:1103.0621] [INSPIRE].

[69] G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986
[arXiv:1110.1499] [INSPIRE].

[70] S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and
seven jets in electron-positron annihilation, Phys. Rev. Lett. 108 (2012) 032005
[arXiv:1111.1733] [INSPIRE].

[71] G. Cullen et al., Automated one-loop calculations with GoSam,
Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

[72] T. Binoth et al., Automized squark-neutralino production to next-to-leading order,
Phys. Rev. D 84 (2011) 075005 [arXiv:1108.1250] [INSPIRE].

[73] S. Agrawal, T. Hahn and E. Mirabella, FormCalc 7, J. Phys. Conf. Ser. 368 (2012) 012054
[arXiv:1112.0124] [INSPIRE].

[74] Z. Bern et al., Four-jet production at the Large Hadron Collider at next-to-leading order in
QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].

[75] S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop
amplitudes in the standard model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].

[76] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual
corrections to multi-jet production in massless QCD,
Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].

[77] D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated
squark and gluino production to next-to-leading order, Phys. Rev. D 87 (2013) 014002
[arXiv:1211.0286] [INSPIRE].

[78] S. Badger, B. Biedermann, P. Uwer and V. Yundin, Computation of multi-leg amplitudes
with NJet, J. Phys. Conf. Ser. 523 (2014) 012057 [arXiv:1312.7140] [INSPIRE].

[79] Z. Bern et al., The BlackHat library for one-loop amplitudes,
J. Phys. Conf. Ser. 523 (2014) 012051 [arXiv:1310.2808] [INSPIRE].

– 138 –

http://dx.doi.org/10.1016/j.cpc.2010.06.044
http://arxiv.org/abs/0911.4371
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4371
http://dx.doi.org/10.1007/JHEP04(2011)024
http://arxiv.org/abs/1008.5399
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5399
http://dx.doi.org/10.1007/JHEP06(2010)043
http://arxiv.org/abs/1002.2581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2581
http://dx.doi.org/10.1007/JHEP08(2010)080
http://arxiv.org/abs/1006.0710
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0710
http://dx.doi.org/10.1007/JHEP06(2010)086
http://arxiv.org/abs/1004.2905
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2905
http://dx.doi.org/10.1007/JHEP12(2010)013
http://arxiv.org/abs/1010.4187
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4187
http://dx.doi.org/10.1007/JHEP05(2011)044
http://arxiv.org/abs/1103.0621
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.0621
http://dx.doi.org/10.1016/j.cpc.2012.10.033
http://arxiv.org/abs/1110.1499
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1499
http://dx.doi.org/10.1103/PhysRevLett.108.032005
http://arxiv.org/abs/1111.1733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1733
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://arxiv.org/abs/1111.2034
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2034
http://dx.doi.org/10.1103/PhysRevD.84.075005
http://arxiv.org/abs/1108.1250
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1250
http://dx.doi.org/10.1088/1742-6596/368/1/012054
http://arxiv.org/abs/1112.0124
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0124
http://dx.doi.org/10.1103/PhysRevLett.109.042001
http://arxiv.org/abs/1112.3940
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3940
http://dx.doi.org/10.1007/JHEP04(2013)037
http://arxiv.org/abs/1211.6316
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6316
http://dx.doi.org/10.1016/j.cpc.2013.03.018
http://arxiv.org/abs/1209.0100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0100
http://dx.doi.org/10.1103/PhysRevD.87.014002
http://arxiv.org/abs/1211.0286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0286
http://dx.doi.org/10.1088/1742-6596/523/1/012057
http://arxiv.org/abs/1312.7140
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.7140
http://dx.doi.org/10.1088/1742-6596/523/1/012051
http://arxiv.org/abs/1310.2808
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.2808


J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

[80] G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the standard
model and beyond, arXiv:1404.7096 [INSPIRE].

[81] H. van Deurzen et al., Multi-leg one-loop massive amplitudes from integrand reduction via
Laurent expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].

[82] T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop
amplitudes, arXiv:1403.1229 [INSPIRE].

[83] E. Byckling and K. Kajantie, Particle kinematics, Wiley, U.S.A. (1971).

[84] N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy,
Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

[85] N.D. Christensen et al., A comprehensive approach to new physics simulations,
Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].

[86] N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface
between WHIZARD and FeynRules, Eur. Phys. J. C 72 (2012) 1990 [arXiv:1010.3251]
[INSPIRE].

[87] C. Duhr and B. Fuks, A superspace module for the FeynRules package,
Comput. Phys. Commun. 182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].

[88] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a
complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250
[arXiv:1310.1921] [INSPIRE].

[89] A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M. Rausch de Traubenberg,
Automated mass spectrum generation for new physics, Eur. Phys. J. C 73 (2013) 2325
[arXiv:1301.5932] [INSPIRE].

[90] C. Degrande, Automated computation of the R2 rational terms and ultraviolet counterterms
by NLOCT: an illustration on the 2HDM, in preparation.

[91] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: helicity amplitude subroutines for
Feynman diagram evaluations, KEK-91-11, Japan (1992) [INSPIRE].

[92] P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: automatic
libraries of helicity amplitudes for Feynman diagram computations,
Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].

[93] C. Degrande et al., UFO — the Universal FeynRules Output,
Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

[94] J. Alwall et al., A standard format for Les Houches event files,
Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].

[95] J.M. Butterworth et al., The tools and Monte Carlo working group summary report,
arXiv:1003.1643 [INSPIRE].

[96] E.N. Argyres et al., Stable calculations for unstable particles: restoring gauge invariance,
Phys. Lett. B 358 (1995) 339 [hep-ph/9507216] [INSPIRE].

[97] W. Beenakker et al., The Fermion loop scheme for finite width effects in e+e− annihilation
into four fermions, Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260] [INSPIRE].

[98] G. Passarino, Unstable particles and nonconserved currents: a generalization of the fermion
loop scheme, Nucl. Phys. B 574 (2000) 451 [hep-ph/9911482] [INSPIRE].

– 139 –

http://arxiv.org/abs/1404.7096
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7096
http://dx.doi.org/10.1007/JHEP03(2014)115
http://arxiv.org/abs/1312.6678
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6678
http://arxiv.org/abs/1403.1229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.1229
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://arxiv.org/abs/0806.4194
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4194
http://dx.doi.org/10.1140/epjc/s10052-011-1541-5
http://arxiv.org/abs/0906.2474
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2474
http://dx.doi.org/10.1140/epjc/s10052-012-1990-5
http://arxiv.org/abs/1010.3251
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3251
http://dx.doi.org/10.1016/j.cpc.2011.06.009
http://arxiv.org/abs/1102.4191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4191
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1921
http://dx.doi.org/10.1140/epjc/s10052-013-2325-x
http://arxiv.org/abs/1301.5932
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5932
http://inspirehep.net/search?p=find+R+KEK-91-11
http://dx.doi.org/10.1016/j.cpc.2012.05.004
http://arxiv.org/abs/1108.2041
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2041
http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1108.2040
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2040
http://dx.doi.org/10.1016/j.cpc.2006.11.010
http://arxiv.org/abs/hep-ph/0609017
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0609017
http://arxiv.org/abs/1003.1643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1643
http://dx.doi.org/10.1016/0370-2693(95)01002-8
http://arxiv.org/abs/hep-ph/9507216
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9507216
http://dx.doi.org/10.1016/S0550-3213(97)00316-7
http://arxiv.org/abs/hep-ph/9612260
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9612260
http://dx.doi.org/10.1016/S0550-3213(00)00010-9
http://arxiv.org/abs/hep-ph/9911482
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911482


J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

[99] W. Beenakker, F.A. Berends and A.P. Chapovsky, An effective Lagrangian approach for
unstable particles, Nucl. Phys. B 573 (2000) 503 [hep-ph/9909472] [INSPIRE].

[100] W. Beenakker, A.P. Chapovsky, A. Kanaki, C.G. Papadopoulos and R. Pittau, Towards an
effective Lagrangian approach to fermion loop corrections, Nucl. Phys. B 667 (2003) 359
[hep-ph/0303105] [INSPIRE].

[101] M. Beneke, A.P. Chapovsky, A. Signer and G. Zanderighi, Effective theory approach to
unstable particle production, Phys. Rev. Lett. 93 (2004) 011602 [hep-ph/0312331]
[INSPIRE].

[102] A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes
e+e− → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

[103] A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to
charged-current e+e− → 4 fermion processes: technical details and further results,
Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042]
[INSPIRE].

[104] F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more,
Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].

[105] N.D. Christensen et al., Simulating spin- 32 particles at colliders,
Eur. Phys. J. C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE].

[106] J. Alwall et al., Computing decay rates for new physics theories with FeynRules and
MadGraph5/aMC@NLO, arXiv:1402.1178 [INSPIRE].

[107] F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single
Bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124 [INSPIRE].

[108] P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple Bremsstrahlung in
gauge theories at high-energies. 1. General formalism for quantum electrodynamics,
Nucl. Phys. B 206 (1982) 53 [INSPIRE].

[109] R. Kleiss and W.J. Stirling, Spinor techniques for calculating pp̄→W±/Z0 + jets,
Nucl. Phys. B 262 (1985) 235 [INSPIRE].

[110] R. Gastmans and T. Wu, The ubiquitous photon: helicity method for QED and QCD, Int.
Ser. Monogr. Phys. 80 (1990) 1 [INSPIRE].

[111] Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in
massless non-Abelian gauge theories, Nucl. Phys. B 291 (1987) 392 [INSPIRE].

[112] J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and the
Ggqq̄ lepton anti-lepton subprocess, Phys. Lett. B 161 (1985) 333 [INSPIRE].

[113] K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e+e−

annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].

[114] M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories,
Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

[115] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at
tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

[116] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD
amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].

– 140 –

http://dx.doi.org/10.1016/S0550-3213(00)00030-4
http://arxiv.org/abs/hep-ph/9909472
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9909472
http://dx.doi.org/10.1016/S0550-3213(03)00545-5
http://arxiv.org/abs/hep-ph/0303105
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0303105
http://dx.doi.org/10.1103/PhysRevLett.93.011602
http://arxiv.org/abs/hep-ph/0312331
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312331
http://dx.doi.org/10.1016/S0550-3213(99)00437-X
http://arxiv.org/abs/hep-ph/9904472
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9904472
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.001
http://arxiv.org/abs/hep-ph/0505042
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0505042
http://dx.doi.org/10.1016/j.cpc.2013.02.019
http://arxiv.org/abs/1207.0906
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0906
http://dx.doi.org/10.1140/epjc/s10052-013-2580-x
http://arxiv.org/abs/1308.1668
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1668
http://arxiv.org/abs/1402.1178
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1178
http://dx.doi.org/10.1016/0370-2693(81)90685-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B103,124
http://dx.doi.org/10.1016/0550-3213(82)90488-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B206,53
http://dx.doi.org/10.1016/0550-3213(85)90285-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B262,235
http://inspirehep.net/search?p=find+J+IMPHA,80,1
http://dx.doi.org/10.1016/0550-3213(87)90479-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B291,392
http://dx.doi.org/10.1016/0370-2693(85)90774-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B161,333
http://dx.doi.org/10.1016/0550-3213(86)90615-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B274,1
http://dx.doi.org/10.1016/0370-1573(91)90091-Y
http://arxiv.org/abs/hep-th/0509223
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509223
http://dx.doi.org/10.1016/S0550-3213(99)00809-3
http://arxiv.org/abs/hep-ph/9910563
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9910563
http://dx.doi.org/10.1103/PhysRevD.67.014026
http://arxiv.org/abs/hep-ph/0209271
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0209271


J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

[117] C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton
amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [INSPIRE].

[118] K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with
spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].

[119] K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Fast calculation of
HELAS amplitudes using graphics processing unit (GPU), Eur. Phys. J. C 66 (2010) 477
[arXiv:0908.4403] [INSPIRE].

[120] K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Calculation of HELAS
amplitudes for QCD processes using graphics processing unit (GPU),
Eur. Phys. J. C 70 (2010) 513 [arXiv:0909.5257] [INSPIRE].

[121] M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639
[arXiv:0803.0883] [INSPIRE].

[122] J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
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[195] N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade,
JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].

– 144 –

http://dx.doi.org/10.1016/0010-4655(92)90068-A
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,71,15
http://arxiv.org/abs/hep-ph/0601021
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601021
http://dx.doi.org/10.1103/PhysRevD.76.094003
http://arxiv.org/abs/0709.1026
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1026
http://dx.doi.org/10.1088/1126-6708/2008/03/038
http://arxiv.org/abs/0709.1027
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1027
http://dx.doi.org/10.1088/1126-6708/2008/07/040
http://arxiv.org/abs/0712.3913
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.3913
http://dx.doi.org/10.1140/epjc/s10052-012-2187-7
http://arxiv.org/abs/1109.6256
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6256
http://dx.doi.org/10.1016/j.physletb.2012.12.003
http://arxiv.org/abs/1210.6345
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6345
http://dx.doi.org/10.1016/S0550-3213(97)00064-3
http://arxiv.org/abs/hep-ph/9604347
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9604347
http://dx.doi.org/10.1103/PhysRevD.84.054003
http://arxiv.org/abs/1102.2126
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2126
http://dx.doi.org/10.1007/JHEP07(2012)042
http://arxiv.org/abs/1201.0260
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0260
http://dx.doi.org/10.1007/JHEP06(2012)044
http://arxiv.org/abs/1202.4496
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4496
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B126,298
http://dx.doi.org/10.1088/1126-6708/1998/10/006
http://arxiv.org/abs/hep-ph/9806531
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806531
http://dx.doi.org/10.1146/annurev-nucl-102711-094928
http://arxiv.org/abs/1202.1251
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1251
http://arxiv.org/abs/1401.7971
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7971
http://dx.doi.org/10.1007/JHEP12(2012)061
http://arxiv.org/abs/1209.6215
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.6215
http://dx.doi.org/10.1088/1126-6708/2001/11/063
http://arxiv.org/abs/hep-ph/0109231
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109231
http://dx.doi.org/10.1088/1126-6708/2002/08/015
http://arxiv.org/abs/hep-ph/0205283
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0205283
http://dx.doi.org/10.1088/1126-6708/2004/05/040
http://arxiv.org/abs/hep-ph/0312274
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312274
http://dx.doi.org/10.1088/1126-6708/2005/07/054
http://arxiv.org/abs/hep-ph/0503293
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503293


J
H
E
P
0
7
(
2
0
1
4
)
0
7
9

[196] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated
showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

[197] K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging
approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072]
[INSPIRE].
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[337] Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet shape variables,
Phys. Rev. Lett. 79 (1997) 3604 [hep-ph/9707309] [INSPIRE].

[338] R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet
production at LEP and the extraction of αs(MZ), JHEP 11 (2010) 050 [arXiv:1008.5313]
[INSPIRE].

[339] M.S. Bilenky, G. Rodrigo and A. Santamaria, Three jet production at LEP and the bottom
quark mass, Nucl. Phys. B 439 (1995) 505 [hep-ph/9410258] [INSPIRE].

[340] C.R. Schmidt, Top quark production and decay at next-to-leading order in e+e−

annihilation, Phys. Rev. D 54 (1996) 3250 [hep-ph/9504434] [INSPIRE].

[341] C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e+e−

collisions, hep-ph/9802431 [INSPIRE].

[342] P. Nason and C. Oleari, Next-to-leading order corrections to the production of heavy flavor
jets in e+e− collisions, Nucl. Phys. B 521 (1998) 237 [hep-ph/9709360] [INSPIRE].

[343] W. Bernreuther, A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections to
three jet cross-sections with massive quarks, Phys. Rev. Lett. 79 (1997) 189
[hep-ph/9703305] [INSPIRE].

[344] A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections and massive quarks in
e+e− → three jets, Nucl. Phys. B 515 (1998) 279 [hep-ph/9708350] [INSPIRE].

[345] A. Brandenburg, The reaction e+e− → tt̄g at next-to-leading order in αs, hep-ph/9908383
[INSPIRE].
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