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1 Introduction

Extra dimension models [1–4] are important new physics scenarios at the TeV scale that

address the hierarchy problem and are being extensively studied at the LHC. Recently both

ATLAS [5] and CMS [6] have looked for evidence of extra spatial dimension in the diphoton

final state and put bounds on the fundamental Planck scale MS in (4 + d)-dimensions, for

the 7TeV proton-proton collision.

In the extra dimension models, Kaluza-Klein (KK) modes of a graviton (as a result

of the graviton propagating in the extra dimensions), could decay to a pair of photons.

Interaction of the massive spin-2, KK modes h
(~n)
µν with the standard model (SM) particles

localised on a 3-brane, is via the energy momentum tensor Tµν of the SM

L = −κ

2

∑

(~n)

Tµν(x)h(~n)µν (x) , (1.1)

where κ =
√
16π/MP is the reduced Planck mass in 4-dimensions. In process involving

virtual exchange of KK modes between the SM particles, like in the diphoton production

process, the sum of the KK mode propagator D(s) is given by

κ2D(s) = κ2
∑

n

1

s−m2
n + iǫ

,

=
8π

M4
S

(√
s

MS

)(d−2)[

− iπ + 2I

(

Λ√
s

)]

, (1.2)

where s is the partonic center of mass energy, d is the compactified extra spatial dimensions,

Λ is the UV cutoff of the KK mode sum which is usually identified as MS [7, 8] and the

integral I(Λ/Q) is given in [7]. Note that in eq. (1.2), we have included the κ2 (suppression

as a result of gravity coupling), which on summation over the high multiplicity of KK

modes compensates the suppression in the ADD model. In this analysis we have followed

the convention of [7].

Improved theoretical predictions to higher orders in QCD have now been performed for

cross sections of pair production processes viz. di-lepton [9–11], di-gauge boson (γγ [12, 13],
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d 2 3 4 5 6

MS (TeV) 3.7 3.8 3.2 2.9 2.7

Table 1. MS values used for the various extra dimensions d in our analysis.

ZZ and W+W− [14, 15]), which in extra dimension models could result from the exchange

of a virtual KK mode in addition to the usual SM contribution. The real emission of

KK modes lead to large missing ET signals viz. mono-jet [16], mono-photon [17], mono-Z

boson, and mono-W± boson [18, 19]. The next to leading order (NLO) QCD corrections

in some of the above processes are quite substantial and their inclusion in the computation

also lead to a reduction of theoretical uncertainties, making it possible for the experiments

to put more stringent bounds on the extra dimension model parameters.

The diphoton final state is an important signal for extra dimension searches, as the

branching ratio of a KK mode decay to diphoton is twice than that of a decay to individual

charged lepton pair. The quantitative impacts of the NLO QCD correction to the diphoton

final state for extra dimension searches have been studied in [12, 13], where various infrared

safe observable were studied using phase space slicing method. The factorisation scale

dependence gets reduced when O(αs) corrections are included. Fixed order calculation

truncated to NLO, at best yields results for sufficiently inclusive observable. Combining

fixed order NLO and parton shower Monte Carlo (PS) [20, 21], would extend the coverage

of the kinematical region to consistently include resummation in the collinear limit and also

make a more exclusive description of the final state and get as realistic as possible to the

experimental situation. The flexibility to incorporate hadronisation models and capabilities

to simulate realistic final state configurations that can undergo detector simulations are

the main advantage for the experimental collaborations.

ATLAS [5] and CMS [6] have analysed the diphoton invariant mass spectrum, using a

constant K-factor for the full range of the invariant mass distribution to put lower bounds

on extra dimension scale to NLO accuracy. However, this choice is not sensitive to possible

distortions of distributions that can arise at NLO. Our present analysis will further help to

put more stringent bounds on the model parameters. In this analysis we have considered

various distributions for the ADD model parameters d = 2 to 6 with appropriate MS

value as bounded by the experiments [5, 6]. In table 1, the MS values for different extra

dimensions d used in this analysis have been tabulated. For relevant observables we consider

the fixed order results to NLO accuracy and include PS. Factorisation, renormalisation

scale uncertainties and PDF uncertainties are also estimated in an automated way [22].

For photon isolation, both smooth cone isolation and the experimental isolation criteria

are considered.

The rest of the paper is organised as follows. In section 2, we discuss the NLO results

to the diphoton final state in the ADD model and the essential steps needed to implement

the parton showering to NLO accuracy. In section 3, we present selected numerical results

and estimate the various theoretical uncertainties. Finally, in section 4 our conclusions are

presented.
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2 NLO + parton shower

Since the KK modes couple universally to the SM particles through the energy momentum

tensor, both the qq̄ and gg channel would contribute to the diphoton final state at leading

order (LO). In the SM, the gg channel starts only at next to next to leading order (NNLO)

via the finite box contribution through quark loop and the large gluon-gluon flux at the

LHC makes this contribution potentially comparable to the LO results. In the invariant

mass region of interest to extra dimension searches, the box diagram contribution is not

significant enough [12, 13].

All the partonic contributions to NLO in QCD have been calculated for the diphoton

final state [12, 13], for both large (ADD) [1–3] and warped (RS1) [4] extra dimension

models. QCD radiative corrections through virtual one loop gluon and real emission of

gluons to the q q̄ → γ γ subprocess, would contribute to both SM and extra dimension

models. The q(q̄) g → q(q̄) γ γ begins to contribute for both SM and extra dimension

models at NLO. The LO g g → γ γ extra dimension process will also get one loop virtual

gluon and real gluon emission radiative corrections. There will also be interference between

the SM and extra dimension model to give contributions up to O(αs). In this analysis we

have not included the O(αs) corrections as a result of the interference between the SM box

diagram contribution and LO extra dimension contribution to the g g → γ γ subprocess, as

it is quite suppressed in the region of interest to extra dimension models [12, 13]. The term

we have neglected contributes only about 0.1% to the gg subprocess. All other interference

terms between the SM and ADD model to order O(αs) have been included.

The q(q̄) g → q(q̄) γ γ NLO contribution has an additional QED collinear singular-

ity when the photon gets collinear to the emitting quark and can be absorbed into the

fragmentation function which gives the probability of a parton fragmenting into a photon.

Parton fragmentation functions are additional non perturbative inputs which are not very

well known. At the LHC, secondary photons as a result of hadron decaying into collinear

photons and jets faking as photon are taken care of by photon isolation criteria [5, 6]

which also substantially reduces the fragmentation contribution. Since the fragmentation

is essentially a collinear effect, the fragmentation function can be avoided by the smooth

cone isolation proposed by Frixione [23], which ensures that in no region of the phase

space the soft radiation is eliminated. The smooth cone isolation is able to eliminate the

not so well known fragmentation contribution and at the same time, ensures infrared safe

(IR) observable. Centered in the direction of the photon in the pseudo rapidity (η) and

azimuthal angle (φ) plane, a cone of radius r =
√

(η − ηγ)2 + (φ− φγ)2 is defined. The

hadronic activity H(r) is defined as the sum of hadronic transverse energy in a circle of

radius r < r0 and Eγ
T is the transverse energy of the photon. For all cones with r ≤ r0 the

isolation criterion H(r) < H(r)max has to be satisfied, where H(r)max is defined as

H(r)max = ǫγ E
γ
T

(

1− cos r

1− cos r0

)n

. (2.1)

Efforts for the experimental implementation of the smooth cone isolation is on going.

Automation is an essential ingredient of this work. We have chosen to work in the

aMC@NLO framework [24], which automatises the MC@NLO formalism [20] to match
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NLO computations with parton showers. In this paper we present results matched to

HERWIG [25]. For the NLO computation, isolation of IR poles and phase space integration

are carried out by MadFKS [26], which automatises the FKS subtraction method [27] using

the MadGraph [28] matrix-element generator, whereas for one-loop amplitudes the results

of refs. [12, 13] are used. The automation within the MadGraph framework requires a new

HELAS [29] subroutine to calculate helicity amplitudes with massive spin-2 particles [30,

31]. In addition, for our present analysis we have implemented the sum over the KK modes

to take care of the virtual KK mode sum (eq. (1.2)) that contributes to process in the ADD

model [31]. We use this framework to generate the events for 8TeV run at the LHC. For

the invariant mass distributions we have reproduced the results of [12, 13] using the fixed

order results from MadFKS. Also numerical cancellation of the singularities from the real

and virtual terms have been explicitly checked.

3 Numerical results

In this section, we present the results for various kinematic distributions of photon pair

in SM and ADD model. We have included all the subprocess contributions to NLO.

The following input parameters are used: α−1
em = 132.507, GF = 1.16639 × 10−5GeV−2,

mZ = 91.188GeV. Our calculation is LO in the electroweak coupling, and therefore the

dependence on the scale in this coupling constant is beyond the precision of our results. In

our electroweak scheme, mW and sin2 θW are computed from mZ , αem and GF , this value

for the αem gives a W-boson mass (mW = 80.419GeV) that is close to the experimental

value. We use MSTW2008(n)lo68cl for (N)LO parton distribution functions (PDF) [32].

The MSTW PDF also sets the value of the strong coupling αs(mZ) at LO and NLO in

QCD. The renormalisation and factorisation scales are chosen as µF = µR = Mγγ , the

invariant mass of the photon pair. The events that have to be showered are generated

using the following generation cuts: |ηγ1,2 | < 2.6, p
γ1,2
T > 20GeV, diphoton invariant mass

100GeV < Mγγ < MS and the photon isolation is done using the Frixione isolation with

r0 = 0.38, ǫγ = 1 and n = 2 (see eq. (2.1)). More specific analysis cuts can be applied

subsequently to generate the events.

The dependence of the prediction of an observable on the factorisation and renor-

malisation scales, is a result of the uncalculated higher order contributions, which can be

estimated by varying µF and µR independently around the central value µF = µR = Mγγ .

The variation is done by the following assignment µF = ξF Mγγ and µR = ξR Mγγ , where

the values for (ξF , ξR) used are (1,1), (1/2,1/2), (1/2,1), (1,1/2), (1,2), (2,1), (2,2). The

various ratios of µF , µR and Mγγ that appear as arguments of logarithms in the pertur-

bative expansion to NLO are within the range [1/2,2]. The variation of both µF and µR

are taken as the envelope of the above individual variations. Variation of only µF would

involve the choice ξR = 1 and varying ξF and vice-versa for variation of only µR. The PDF

uncertainties are estimated using the prescription given by MSTW [32]. Fractional uncer-

tainty defined as the ratio of the variation about the central value divided by the central

value, is a good indicator of the scale and PDF uncertainties and is plotted in the lower
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Figure 1. Transverse momentum distribution pγγT of the diphoton for the fixed order NLO and

NLO+PS. The ADD model parameters used are d = 2 and MS = 3.7TeV. The lower inset

displays the scale and PDF, fractional uncertainties for the NLO+PS results.

insets to the various figures. As described in ref. [22], the generation of these uncertainty

bands can be done at virtually no extra CPU cost within the aMC@NLO framework.

To begin with, we compare the fixed order NLO result with NLO+PS for the trans-

verse momentum of the diphoton log10 p
γγ
T using generic cuts: Mγγ > 140GeV, |ηγ | < 2.5,

pγ1T > 40GeV, pγ2T > 25GeV and r0 = 0.4. In figure 1, log10 p
γγ
T distribution is plotted

for d = 2 with appropriate MS value. It is clear that at low pγγT values, NLO+PS cor-

rectly resums the Sudakov logarithms, leading to a suppression of the cross section, while

the fixed order NLO results diverges for pγγT → 0. At high pγγT , the NLO fixed order and

NLO+PS results are in agreement. In the lower inset of the figure 1, we have the scale

and PDF variation of the NLO+PS, which increase with pγγT as observed in [33].

We now present the results for the various kinematical distributions to NLO accuracy

with PS (labelled as NLO+PS), for analysis specific cuts. Both the experiments ATLAS

and CMS have looked for diphoton invariant mass in the region 140GeV < Mγγ < MS .

ATLAS cuts [5]: the rapidity of the individual photons is in the region |ηγ | < 2.37, with an

exclusion region 1.37 < |ηγ | < 1.52, the transverse momentum of the individual photons

pγT > 25GeV and for photon isolation: sum of transverse energy of hadrons
∑

ET (H) <

5GeV with ∆r < 0.4. ∆r =
√

∆φ2 +∆η2 is a cone in the azimuthal angle, rapidity plane.

For CMS the corresponding cuts are [6]: |ηγ | < 1.44, pγT > 70GeV, photon isolation: (i)

sum of the energy of hadrons
∑

E(H) < 0.05Eγ with ∆r < 0.15, (ii) sum of transverse

energy of hadrons
∑

ET (H) < 2.2GeV + 0.0025Eγ
T with 0.15 < ∆r < 0.4. In addition to
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Figure 2. Invariant mass distribution Mγγ for ATLAS (left panel) and CMS (right panel) for d = 2

extra dimensions and MS = 3.7TeV. The SM contribution to NLO+PS and ADD to LO+PS and

NLO+PS have been plotted. For the NLO+PS (ADD) results, the lower inset displays the scale

and PDF fractional uncertainties.

the ATLAS and CMS photon isolation, if we also include the Frixione isolation criteria,

there is no appreciable change in the results.

In figure 2, we have plotted invariant mass distributions dσ/dMγγ of photon pair in

the SM as well as in the ADD model for ATLAS (left panel) and CMS (right panel).

For ADD model we have obtained the distributions for MS = 3.7TeV and d = 2. The

central value curves correspond to the choice µF = µR = Mγγ , have been plotted for

the ADD (NLO+PS) and purely SM (NLO+PS) contribution. The label ADD refers to

the total contribution coming from SM, ADD and the interference between them. The

corresponding ADD (LO+PS) contribution gives an indication of the quantitative impact

of the NLO QCD correction. At larger invariant mass of the photon pair the ADD effect is

dominant. To demonstrate the sensitivity of our predictions to the choice of scale and PDF

uncertainties, in the lower inset fractional uncertainty by varying (a) both µF and µR and

(b) PDF error sets, are plotted. The difference in the distribution in figure 2 for ATLAS

and CMS can be attributed to the very different cuts used for their analysis. In figure 3,

the corresponding plots for d = 3, 4 are plotted for the CMS cuts. The choice of MS used

for the plots corresponds to the lower bounds obtained by [5, 6] using the diphoton process.

By including higher order corrections, the scale dependence goes down from about 25% at

LO, to about 10% at NLO, as can be seen from the ratio plots. The PDF uncertainty does

not change significantly and remains about 8%.

We now consider the fractional scale uncertainties on the invariant mass distribution as

a result of the variation of the scales µF and µR (both independently and simultaneously)

in going from LO+PS to NLO+PS. Note that the LO cross sections depend only on

µF through the PDF sets, but at NLO level the scale µR enters through αs(µR) and

log(µF /µR) coming from the partonic cross sections after mass factorisation. As expected

the inclusion of NLO QCD correction reduces the factorisation scale dependence resulting

from the LO observable which is clear from figure 4 (left panel). In the high Mγγ region,

the uncertainty of about 25% at LO+PS gets reduced to 5% when NLO+PS corrections
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ADD and SM contributions to NLO+PS accuracy. The lower insets gives the corresponding scale

and PDF, fractional uncertainties for NLO+PS (ADD).
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Figure 4. For the invariant mass distribution, with d = 2 and MS = 3.7TeV, the fractional

uncertainties as a result of µF variation (left panel), µR variation (central panel) and µF , µR

variation (right panel).

are included. On the other hand, the µR dependence enters only at NLO level (see middle

panel of figure 4) which will get reduced only if NNLO corrections are included. Hence,

we see our NLO corrections are sensitive to the choice of µR but the variation is only 5%

and is fairly constant for the range of invariant mass considered. If we vary both µF and

µR simultaneously as shown in figure 4 (right panel), we find that the reduction in the µF

scale dependence at NLO level is mildly affected by the µR variation in the large invariant

mass region. In the small invariant mass region, the LO and NLO results exhibit smaller

µF dependence compared to the large invariant mass region. But µR dependence coming

from the NLO results does not change much with the invariant mass Mγγ . Hence variation

due to µR at small Mγγ is larger compared to that resulting from µF . This explains the

behavior at small invariant mass regions where the NLO+PS variation is in excess of the

LO+PS (see right panel of figure 4).

The rapidity distribution of the diphoton pair is plotted in figure 5 for d = 3 (left panel)

and d = 4 (right panel). For this analysis we have chosen Mγγ > 600GeV, the region where

the effects of ADD model begins to dominate over the SM diphoton signal at NLO (see

figure 3). The scale and PDF uncertainties to NLO are displayed as insets at the bottom
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Figure 6. The transverse momentum distribution pγγT of the diphoton for d = 3 (left panel) and

d = 4 (right panel).

of each figure. The scale uncertainties are usually larger than the PDF uncertainties in the

rapidity distribution except for the central rapidity region where they are comparable. For

d = 3 the scale uncertainties are about 20% around the central rapidity region, which come

down to about 10% when NLO+PS corrections are included. The PDF uncertainties for

LO+PS and NLO+PS are comparable.

Finally, we plot the transverse momentum distribution in figure 6 for d = 3 (left

panel) and d = 4 (right panel), for the SM and ADD model to NLO+PS accuracy, with

Mγγ > 600GeV. The ADD results are also plotted for LO+PS. The scale and PDF

uncertainties are displayed as insets at the bottom of the plots for NLO+PS (ADD).

4 Conclusion

In this analysis, we have presented the diphoton final state in the large extra dimension

model to NLO in QCD and matching to parton shower is implemented using the aMC@NLO

– 8 –
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framework. All the subprocesses that contribute to the diphoton final state from both the

SM and ADD model are considered to NLO in QCD. This is the first time MC@NLO

formalism has been used for a processes in the ADD model and we hope it would signifi-

cantly help extra dimension searches at the LHC to constrain the ADD model parameters.

Using a set of generic cuts we first demonstrated the importance of NLO+PS over the

fixed order NLO computations, by considering the pγγT distribution. We have presented our

results for various observables viz., invariant mass, rapidity and transverse momentum of

the diphoton, both for the ATLAS and CMS detector specific cuts to NLO+PS accuracy.

It is important to note that there is substantial enhancement of the various distributions

due to the inclusion of NLO corrections and both the theoretical and PDF uncertainties

have been estimated. There is a significant decrease in theoretical uncertainties from over

20% at LO to about 10% when NLO corrections are included. The results are presented

for different number of extra spatial dimensions d = 2− 6 and the respective values of fun-

damental scale MS that have been experimentally bounded. The event files for d = 2− 6

are available on the website http://amcatnlo.cern.ch and we are working on making the

code that was used to generate these events publicly available.
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