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Abstract. Gait has recently attracted a great interest in the biometric
field because, contrary to other classical biometric traits such as finger-
print, iris or retina, it allows to capture samples at a distance, through
inexpensive and not intrusive technologies that do not need any sub-
ject’s collaboration. In spite of this advantage, such technique is still not
widespread for human identification task, because it is considered not to
exhibit the fundamental characteristic of being invariant in the lifetime
of each individual. But is this assertion really true? In this paper we in-
vestigate if gait can be considered invariant over time for an individual,
at least in a time interval of few years, by comparing gait samples of
several subjects three years apart. We train a Support Vector Machine
with gait samples of 10 subjects, then we employ it for recognizing the
same subjects with gait samples collected three years later. In addition,
we try to recognize the subjects carrying three different accessories: a
shoulder bag, a backpack and a smartphone.

Keywords: Gait recognition, Computer vision, Kinect, Biometrics

1 Introduction

Biometrics is the science that combines the study of human physiology with
computer science for measuring and analyzing human characteristics. Each in-
dividual has unique traits, both from the physical point of view, such as the
color of iris, the retina, the shape of hand and the fingerprints, and under the
behavioral point of view, such as the timbre of voice, the handwriting and the
walking style [1]. The biometric recognition aims to exploit these features, taken
singularly or in combination, for identifying individuals. Nowadays, there are
many contexts in which it is necessary to identify a person: for access control
to protected systems, in order to ensure access only to authorized persons, for
identification of people responsible for fraud, crimes, and so on. Unlike the ac-
cess control case, in which the subject directly and actively cooperates with the
system because he/she want to gain an access, in the case of people identification
the collaboration of the subject cannot be guaranteed. Therefore, in situations
like an un-controlled surveillance scenario it is important to exploit a human
biometric feature which can be captured at a distance and without the subject’s
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collaboration: the walking style, also called gait, is a promising candidate for
this task.

The study of gait for recognition purposes has recently gained interest due to
it advantages compared to other biometric features [2]. First of all, gait can be
capture at a distance, unobtrusively and, as said before, without the subject’s
cooperation. In addition, the motion capture does not require sophisticated and
expensive instrumentations: a simple and inexpensive RGB or RGBD (video and
depth) camera is sufficient. As a counterpart, gait is not considered as a valid
system for recognizing individuals over time, because the walking style of an
individual could change during lifetime, like other behavioral features [3].

In this paper we investigate if gait can really not be considered a distinctive
biometric trait during the years, or rather if is possible to recognize a person
comparing his gait sequences with the ones observed few years before. In order
to acquire gait samples of different individuals we employ the Microsoft Kinect
sensor, a device originally designed for gaming that is quickly become a valuable
support for scientific research on gesture recognition, gait and motion analysis,
and so on [4]. This device is a RGBD camera which provides, in addiction to RGB
and depth streams, the skeleton tracking feature, that allows to track a human
body in real-time. Such ”skeleton” is a body model composed by 20 joints, each
of which with coordinates in 3D space. By means of the 3D skeleton data, we have
designed a recognition method related to the distance between joints and the
sway of joints: the peculiarity of our method is that the recognition for sways does
not depend on gait trajectories, letting the acquisition of skeleton be independent
from the mutual position between Kinect sensor and shooting subject. We have
collected two datasets of gait samples three years apart: we employ the old
one for training our classification system, and the new one for testing. These
datasets have been designed for reproducing realistic unconstrained surveillance
scenarios, letting people walk in no preset path, in direction of the camera or
away from it, and even carrying basic accessories: in this way we also analyze
how these challengingly scenarios can influence the accuracy of gait recognition
task.

The rest of this paper is organized as follows: Section 2 presents an overview
of the related work on gait recognition systems; in Section 3 the proposed
method for gait features extraction and classification is described, while Sec-
tion 4 presents the datasets of gait sequences we have employed in our study.
The experimental analysis is worked out in Section 5 and the conclusions are
reported in Section 6.

2 Related Work

In this paper, we propose an application of gait analysis in the fields of surveil-
lance [5] and forensic science [6], but it has also been widely applied in the health
care field, for example for postural control [7], rehabilitation [8], falls detection
for elderly people [9], and so on. Regardless of the specific application context,
in the literature we can find two ways for collecting data on human body used
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for analyzing the gait [10]. In the past decades, the most common methods were
the appearance-based ones, that employ the body silhouette from 2D images for
reconstructing the shape of human being. This kind of methods are quite inex-
pensive in terms of computational cost, but they are usually not robust to vari-
ation of scale and viewpoint of the camera. A notable example of this approach
is the work of Wang et al. [11], where the background subtraction procedure
has been combined with the image segmentation in order to isolate the spatial
silhouettes of a walking person. Recently, Hu et al. [12] have reduced the gait
features space taken from different views by implementing a unitary projection
method. Ortells et al. [13] have extracted reliable gait measures from corrupted
silhouettes in gait sequences by applying a weighted averaging method.

The second kind of methods are based on the model, using some technique
for reconstructing a 3D model of the body: they require more computational
power than the appearance-based techniques, with the advantage of being in-
dependent on viewpoint and scale. Some examples of model-based methods are
those of Bouchrika et al. [14] which have proposed a methodology based on ellip-
tic Fourier descriptors for extracting body joints and build motion templates for
gait description. Argyropoulos et al. [15] have used a channel coding approach
for constructing a model of gait employed in their gait recognition system. Jung
et al. [16] have developed a system to enable face acquisition and recognition in
surveillance environments, by analyzing the 3-D gait trajectory.

Thanks to the spread of RGBD cameras, there was a significant increase of
model-based approaches for gait studies. To mention a few, Ahmed et al. [17]
have defined two types of features, i.e. joint relative distance and joint relative
angle, which are robust against pose and view variations. Dikovski et al. [18]
have investigate the role of different types of features and body parts in the
gait recognition process. Andersson et al. [19] have extracted anthropometric
attributes, gait kinematic and spatio-temporal parameters.

We have already explored the gait recognition task through Kinect sensor
in other works, in particular in [20], where we discriminate between pair of
subjects with similar anthropometric features, and in [21], where we face people
recognition in a controlled surveillance scenario. In the present paper we collect
new gait data on some subjects we had already studied in these works, and we
verify if they are still recognized by the old datasets collected few years ago. To
the best of our knowledge, the present paper is the first attempt of recognizing
individuals by their walking style using gait data from the past.

3 Proposed Method

In our analysis we employ the Microsoft Kinect sensor as input device for cap-
turing the gait sequences. In this section we describe how we collect, clean and
manage the skeleton data provided from this sensor for performing gait recog-
nition task. Kinect provides both RGB and depth streams and, thanks to the
skeletal tracking capability, it allows to follow in real-time the body movement
represented by a human skeleton map. In detail, the body model (shown in
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Jp = Hip_Center J10 = Wrist_Right
y J1=Spine J77 = Hand_Right
J2=Shoulder_Center  Jy, = Hip_Left
J3=Head J13=Knee_Left
Jg = Shoulder_Left J14=Ankle_Left
N Js = Elbow_Left J15=Foot_Left
Jg = Wrist_Left J16 = Hip_Right
J7=Hand_Left Jy7=Knee_Right
Jg=Shoulder_Right  Jyg= Ankle_Right
z Jg = Elbow_Right J19=Foot_Right

Fig. 1. The Kinect skeleton body model.

Fig. 1) is constructed in each frame of the video stream, and it is made up of 20
joins, labeled Jy, ..., Jig. Each joint is a 3D point in the Kinect coordinates sys-
tem (z,y, z), centered on the sensor, where z, y and z represent the horizontal,
vertical and depth direction respectively. Thus, we define J,i = (J,ix, J,i7y, J,i)z)
the coordinates of the k-th joints at time ¢ and a gait sequence as an interrupted
sequence of skeleton maps, from when the user is detected by the sensor, until it
comes out of the field of view. Moreover, the sensor provides an estimate of the
floor plane where the user is walking, given by the equation ax +by+cz+d = 0,
where n = (a, b, ¢) is the normal vector and d is the height of the camera center
with respect to the floor.

Collection of Skeleton Maps

We collect the skeleton map only if all of its joints are fully tracked: the sensor
provides in automatic this kind on information. For each sample, we also take
track of the direction of the walk, distinguishing if it is toward or away from
the camera. Kinect does not provide any automatic mechanism for recognizing
frontal and rear poses, then we have checked this condition by simply monitoring
the position of the center of mass (joint Jy), and in particular its depth coordinate
z: if this value decreases over time, the subject is walking toward the camera
(we remind that the origin of the coordinates system is the sensor), otherwise
he/she is walking in the other direction. In this way we can properly collect data
on left/right arms and legs when a change of direction is detected. Obviously
this mechanism fails if the subject walks backwards, but within the scope of this
paper we assume that this case is not applicable. For comparing gait samples
from different viewpoints and with no linear walking paths, we also apply a
translation and a rotation to each joint: our objective is to obtain, for each
collected walk, a sample in linear direction and totally in front of the sensor,
that is a sample where the axis z coincides with the walking direction. To this
end, for each frame we need to detect the angle of walking direction with respect
to axis z, and to rotate all the joints of such angle. We can define the direction
of walk as the tangent line to the trajectory of Jy, in the point (JS’I, Jéyz), then
the i-th walking direction angle 6; is estimated by approximating the derivative
with the incremental ratio:
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Table 1. Classical anthropometric measures.

Description Joints
Torso J4 Ja, T8 T
Height J5, 05, 1, 0o, Jia, Jis, Jia, Jis
Left joints Right joints
Arm JiJE JE T J&JE T, Jh
Leg Jf27Jf37Jf4:Jf5 JfGnythi&Jfg
i1 i
f; = tan! (H) . (1)
0,z 0,z

For changing the local coordinates system we first translate the axes origin
to Jo and then we rotate the axes according to the walking direction and the
floor normal n. The transformation matrix is defined as

cos®; 0 sinf; 100—J§,
T, = a b ¢ |-[010-J5,|. (2)
—sin6; 0 cosb; 001 —J5.,

This process is repeated for each frame, obtaining a gait sequence in a new
coordinate system (X,Y,Z), where axis Y is the normal vector of the Kinect
floor plane and Z coincides with the walking direction.

Features Extraction

We extract two kinds of gait features, the first one related to the distance between
pair or group of joints, and the second one related to the sway of single joints.
The first kind of features aims at describing the gait under the anatomical point
of view, by computing the length of the different body parts. These length are
computed every frame as the distance, in the 3D space, between pairs or groups
of joints. Each distance features is represented by the temporal average of the
corresponding collected measures, in order to obtain a single value for each kind
of distance in a gait sequence. We collect 27 distance features, summarized in
Tables 1 and 2.

The second kind of features aims at characterize the gait style, by computing
the sway of body joint, along the lateral (X axis) and vertical (Y axis) directions.
For each walking sample, composed by few strides, we consider the time series
J};’ x and Jzi,y of each joint: for each one of these two directions, we compute
the temporal average and the median absolute deviation. As a result, for each
one of the 19 joints (the center of mass is excluded, because it coincides with
the system origin after the change of coordinates) we obtain 4 sway features
(temporal average and median absolute deviation for both lateral and vertical
directions), for a total of 76 sway features. Considering both distance and sway
features we collect 103 gait parameters. We decided to choose these particular
features because in our previous investigation [21] we have noticed that the
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Table 2. Distances between adjacent (a) and not-adjacent (b) joints (L = left, R =
right, C' = center).

Description Joints

C shoulder-spine-hip |J&, Ji, J&

L-C-R shoulder Ji, Js T

L-C-R hip Jio, J&, Jig

Description Left joints|Right joints Description|Joints

Shoulder-elbow Ji, Ji JE, T L-R elbow | J&, J&

Elbow-wrist JE, Tk Js, Jio L-Rwrist  |Jg, Ji

Shoulder-elbow-wrist|JS, J&, J&  |J&, J&, Jio L-R hand  |J%, J}

Hip-knee Jio, Jis Jig, Jiz L-R knee  |Jis, Ji;

Knee-ankle Jis, Jiy Jin, Jig L-R ankle Jiy, Jis

Hip-knee-ankle Jio, Jig, Jis | Jie, Jin, Jig L-R foot Jis, Jig
(a) (b)

classical gait parameters (such as stride length and walking speed) are poorly
estimated by Kinect sensor, due mainly to the limited depth range, which allows
to perform only 3 or 4 strides in a single gait sequence. On the contrary, features
like distance between elbows and knees or head oscillation appears to be more
effective for recognition task.

We use these features for building a features matrix containing the features
of all the gait sequences collected for each subject: this matrix will be used
for the classification task. We construct this matrix as follows. First of all, we
start with a matrix where each row contains the 103 features collected in a gait
sequence. Then we normalize the features by column, in order to obtain values in
the range [0, 1]. Finally we reduce the number of features by means of Principal
Component Analysis (PCA): the number of components is chosen by selecting
the minimum number of components having sum of their explained variances
greater than a fixed threshold. The classification task is carried out through
the Support Vector Machine (SVM), a consolidate machine learning technique
for performing supervised classification. Considering the purpose of the paper,
the traing phase is accomplished usign the samples in our old dataset, and the
testing samples have been collected recently.

4 Datasets

In this section we introduce the datasets used in our experimentation. In [20] we
have collected a dataset of 20 subjects (called KinectUNITO’13): each subject
has been recorded while walking along a straight corridor, in front or rear to the
camera. For each subject we have collected 20 gait samples, 10 for each of the
two directions (approaching to or moving away from the camera). In this partic-
ular configuration each gait sequence follows approximately a straight path. For
our study we also collect a brand new dataset, slightly different from the previ-
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ous one. Due to the transformation matrix in equation 2, we can compare gait
sequences with different walking paths, not only straight. For this reason, the
new dataset (called KinectUNITO’16) was acquired in a big lecture hall, letting
the subjects to follow a curvilinear path. In addition, for reproducing a more
realistic uncontrolled surveillance scenario we also collect gain sequences where
the subjects carry some accessory: a shoulder bag, a backpack and a smartphone,
for a total of 4 different scenarios (with any accessory or with one of these ac-
cessories). For each of these 4 scenarios we collect 4 walking sequences, 2 from
the frontal view and 2 from the rear one, for a total of 16 samples per subject.
This dataset contains the gait sequences of 10 subjects, 8 males and 2 females
aged from 30 to 50, all of them involved in the old trial. Such scenarios have
been chosen for a particular reason: in fact, the Kinect sensor is set up only
for recognizing people standing in front of the camera, any other configuration
represents a challenge for the skeleton tracking capability. The major inaccura-
cies in skeleton acquisition takes place when the arms are partially occluded, as
in rear poses; when something covers the arm, like a shoulder strap; or when
the arm is bent for keeping something. We have added scenarios concerning all
these conditions to the dataset for analyzing in detail how much serious is the
performance loss with such obstacles.

The gait sequences for both datasets have been collected using the Kinect
for Windows v1.

5 Experimental Results

In this section we present the experiments we have worked out for analyzing the
performance of the proposed method in terms of person identification accuracy.
We apply the methods described in Section 3 on the samples acquired from the
two datasets presented in Section 4: in particular, for the classification task we
employ C-SVM, where parameter C' has been computed through 10-fold cross-
validation procedure, with both linear (LIN) and radial basis functions (RBF)
as kernel functions. The performance has been evaluated as portion of samples
classified correctly among all samples. We use the samples in KinectUNITO’13
for training the SVM, while the samples in KinectUNITO’16 are used in the
testing phase, accordingly to the paper purpose, that is to investigate if gait can
be a distinctive biometric trait during the years: to do so we try to recognize
an individual by comparing his current gait sequences with the ones observed
few years before. As reported in Section 3, the Kinect sensor has some difficulty
in tracking the skeleton in rear samples. For this reason, in a first attempt we
employ only the front samples of the two datasets. Later we will also add the
rear samples, and we will compare the performances for analyzing how much the
rear poses may have an impact on the recognition task.

We start by describing the first classification experiment. Considering only
front samples, we train the SVM with 10 samples per subject. For the testing
phase we have four different sub-cases, that we label as follow: walking a) without
any objects, b) with a bag, ¢) with a backpack, d) with a smartphone. For each
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6
0 i I
1 2 3 4 5 6 7 8 9 10
Subject

ubje
[ without any object N with bag I with backpack 3 with phone

Accuracy
=y

Fig. 2. Classification accuracy considering only front samples.

subject we have two front samples per case, for a total of 8 gait sequences. As
described in Section 3, we apply the PCA in order to reduce the number of
features: in this case we fix this threshold to 90%, with a reduction of features
from 103 to 20. As kernel function for SVM, we select the linear one, because
we observe better performances for this dataset. The results of the classification
task are shown in Fig. 2, where the z-axis represents the subjects and the y-axis
the recognition accuracy in terms of correctly classified samples: each color of the
block represent the number of correctly classified samples in each sub-category.
We remind that each sub-category contains 2 samples, for a total of 8 samples
per subject. We can notice that 7 subject over 10 have been recognized in more
the 50% of cases: three of them in more the 75% of cases and one subject is
correctly classified in all 8 cases. The worst results concern the subjects 2 and
7, which are recognized only in one case. As expected, the classification task
is more effective if the individual carries anything: in this case, all the samples
of 7 subjects have been correctly classified, and just 1 subject has been never
classified in the correct way. Also the backpack is not a great obstacle: 6 subjects
have been always well classified, and just 1 subject has been always misclassified.
The bag decreases more the accuracy (4 subjects always classified correctly, but
5 subjects always misclassified), but the worst performance is obtained when
an individual is walking when talking on the phone: in this scenario only 3
subjects have been classified correctly, while all the other ones have been always
misclassified.

In the second classification experiment we also consider the rear samples of
the two datasets: the training set is now composed by 20 samples per subject,
and the testing set contains 16 samples per subject, 4 for each sub-case listed
above. In this experiment we fix threshold for PCA to 80%, because we have
noticed that higher values produce over-fitting of data: the features reduce from
103 to 14. As kernel function we select the RBF, because we have observed that
in this case it produces an accuracy higher than the linear kernel. The accuracy
of this second classification task is shown in Fig. 3. As in the first experiment,
we notice that 7 subject over 10 have been correctly classified in more the 50%
of cases. We can also observe a slight improvement on classification for subject
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Fig. 3. Classification accuracy considering both front and rear samples.

2, and a marked improvement for subject 7. On the other hand, for some subject
(e.g. the number 10) the recognition rate decreases when we consider also the
rear samples: such worsening is due to the limits of Kinect sensor, that is less
efficient in acquiring rear poses, with a negative impact on the training phase.
If we analyze each sub-case, we can notice that the classification accuracy for
an individual carrying anything is still high, at least 50% for each subject. For
the sub-case of backpack, the accuracy is become slightly worse respect to the
previous experiment, with 3 subjects classified correctly in less than 50% of
cases: during the skeleton tracking we have noticed that the straps of backpack
sometimes occlude an arm. On the other hand, the accuracy of classification
if an individual is carrying a bag or is making a phone call improves when
we also consider rear poses: in fact 5 subjects with a smartphone have been
correctly classified at least 50% of times, and even 9 subjects with a bag have
been correctly classified at least 50% of times.

Finally, in order to understand if the rear poses acquired from Kinect sensor
can be considered for gait analysis, in Fig. 4 we compare the accuracy rate of the
two experiments, without considering the distinction in sub-cases: in such figure
each subject is reported in the z-axis, while the y-axis shows the percentage of
samples correctly classified in the two experiments (the pink line for the first
one, and the light blue line for the second one). In 7 subjects over 10 the use
of only front samples gives a better accuracy, then apparently the rear poses
decrease the performances of classification task. But if we look the graphs more
carefully, we notice that the line of front poses presents more peaks, both negative
and positive, respect to the line with also rear poses, that results more stable,
with only a negative peak of accuracy lower than 30%. Obviously the accuracy in
second case should be lightly due to the employment of more samples for training
the SVM, but we have to consider that the rear samples are less accurate, because
of the limits of the Kinect sensor in acquiring the figure in rear pose.

6 Conclusion

In this paper we have proposed a gait recognition system that collects a rich set
of static and dynamic gait features, by computing the distance between joints
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Fig. 4. Comparison between classification with only front samples (pink line) and with
both front and rear samples (light blue line).

and the sway of joints respectively, from a set of gait samples acquired through
the Kinect sensor: the distinctive trait of our system is that it makes the gait
samples invariant with respect to the acquisition viewpoint. The recognition
systems is based on the SVM supervised classification, preceded by a phase
of feature space reduction through PCA. The experimental analysis has been
performed using two datasets acquired three years away from each other: both
datasets include samples in front and rear poses, but the second one also includes
gait samples in which people carry some object. The objective of study is double:
we want to understand if gait can be considered an invariant biometric trait over
years in our lifetime, and we also want to analyze how the use of unusual gait
samples, i.e. rear poses or people carrying objects, can modify the accuracy of
gait recognition. Results show that gait allows to recognize a person even after
years, or at least after few years, making it compliant to forensic and security
applications: just think of those situations where the perpetrator of crime has
been observed through surveillance cameras years before trial. Moreover we have
also observed that the presence of accessories makes the recognition task worse in
case of only frontal acquisitions, but the addition of rear poses during the learning
task can make the recognition task more stable, at the cost of lowering a little
its accuracy. Future works will be devoted to the extension of experiments to a
larger dataset of subjects, and the exploitation of the proposed gait recognition
approach in security and forensic applications, as a support to investigation.
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