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1 | INTRODUCTION  

 
Over the past decades, multiparameter flow cytometry has become the method of choice for the differential diagnosis of several hema- tological 

diseases, for the definition of prognostic factors, and for the identification of rare cell populations in peripheral blood (PB) and bone marrow 

samples (BM).1-6 

Flow cytometry, through the presence or absence of specific sur- face antigens, detects abnormal cells and helps in identifying their lineage 

and maturation stage, detects abnormal cells through identifi- cation of antigen expression that differs from the normal. The wider ap- plication of 

flow cytometry in diagnostic and research fields increases the need to distinguish between real and artifact positive signals given 

that antigen-antibody interactions, characterized by weak bindings, may involve unexpected molecules. The presence of dead cells, cell 

doublets, and the nonspecific antibody binding can compete to gen- erate artifacts in the phenotype. In some cases, an antibody can bind similar 

antigens not of interest or an epitope can be shared by different antigens or the Fc of many antibodies can be bound by Fc-receptors expressed by 

different cells of the immune system.7 Undesired anti- body’s binding depends not only on the antibody’s specificity but also on a wide variety of 

other interactions, as well as the physical and bi- ological conditions that the target cell population encountered during the assay. 

The ability to reliably distinguish between positive and negative populations of cells is an essential aspect of clinical flow cytometry.

Abstract 

Introduction: Flow cytometry is a useful tool for diagnosis and minimal residual dis- ease (MRD) study of hematological 

diseases. Standard sample preparation protocols are characterized by stain-lyse-wash (SLW). To prevent nonspecific bindings 

and achieve high sensitivity in MRD studies, lyse-wash-stain-wash (LWSW) is required. To our knowledge, no comparison 

between the two methods has been performed. 

Methods: We compared mean fluorescence intensity (MFI), stain index, signal-to- noise ratio, and percentage of positive 

cells of 104 antibodies and of 13 selected anti- bodies tested in 10 samples simultaneously prepared with the two methods. 

Results: MFI and percentages of positive cells obtained by the two methods did not show significant differences and showed 

a very high correlation. Stain index and signal-to-noise ratio presented higher values for kappa and lambda surface chains in 

LWSW samples and a trend of higher values for the other antibodies in SLW samples. 

Conclusions: We suggest to use LWSW method also at diagnosis to obtain more comparable antibody intensity expressions 

when samples from the same patient are processed for MRD evaluation after bulk lysis. Moreover, LWSW can prevent 

nonspecific bindings, shows no differences in the identification and quantitation of the populations of interest, and reduces 

acquisition of cell debris. 
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Sample preparation is a key phase to prevent nonspecific bindings or artifacts. Washing samples with a saline solution added with albu- min before 

staining or treating them with Fc-block reagents reduce interferences in antibody binding.8 

A large number of guidelines suggest as standard preparation protocols for the immunophenotype study the stain-lyse-wash (SLW) methods 

to obtain best signal discrimination.9-17 However, many reports on minimal residual disease (MRD) studies by flow cytome- try18-22 recommend a 

bulk lysis of the sample, which consists on the lysis of a high number of cells in PB or BM samples followed by wash- ing and staining to increase 

sensitivity. 

In this study, we compared the mean fluorescence intensity (MFI), stain index, signal-to-noise ratio, and percentages of positive cells tested 

with 104 surface antibodies before (SLW) and after lyse and wash (LWSW). Moreover, we compared the above-mentioned param- eters with 13 

selected antibodies used to identify monocyte and lym- phocyte subpopulations. 

 

2 | MATERIALS AND METHODS  

 
2.1 | Samples collection 

From August 2015 to January 2016, a total of 15 PB and 5 BM sam- ples, collected in vacutainers containing EDTA (Becton Dickinson (BD) San 

Josè, California, USA), were obtained from patients sent to our laboratory for routine flow cytometry analysis and tested. 

 

2.2 | Ethics statement 

The data collection and additional analyses, such as statistical tests, were performed anonymously. This study was carried out in accord- ance 

with Declaration of Helsinki and subsequent amendments. 

 

2.3 | Lyse-wash-stain-wash (LWSW) procedure 

1 × 106 of bone marrow cells or 100 μL of peripheral blood is incu- bated in the darkness at room temperature (RT) for 10 minutes with 3 mL 

of NH4Cl lysing solution (pH 7.3), centrifuged at 4°C for 5 min- utes at 500 g. The supernatant is discarded and the sample washed in 3 mL of 

phosphate saline buffer solution (PBS) + bovine serum albu- min (BSA) 0.5% and sodium azide 0.1% (1 mol L−1), stained with the appropriate 

amount of antibodies in darkness at RT for 15 minutes and washed in PBS-BSA. 

 

2.4 | Stain-lyse-wash (SLW) procedure 

1 × 106 of bone marrow cells or 100 μL of peripheral blood is stained with the appropriate amount of antibodies in the darkness at RT for 15 

minutes, incubated in the darkness at RT for 10 minutes with 3 mL of NH4Cl, centrifuged at 4°C for 5 minutes at 500 g. The supernatant is 

discarded and the sample is washed in PBS-BSA. 

Mean fluorescence intensity (MFI), stain index, signal-to-noise ratio, and percentages of positive cells were assessed by correlating 

the population positive for a given antibody with white blood cells in the sample gated by physical cytometric parameters. 

To compare the 2 preparation methods, the same amount of anti- bodies was employed, and the same compensation was applied. 

The 104 antibodies were studied as single reagent in a total of five BM and five PB samples for one replicate for each reagent. Their 

fluorochromes, clones, manufacturers, and SLW/LWSW MFI ratio are reported in Table 1. 

A 100.000 total events for each sample were acquired with Navios flow-cytometer Beckmann Coulter (BC) and data analysis was per- 

formed with Kaluza software (BC). 

Unstained cells and single fluorochrome stained cells were used to set the instrument. Instrument performance was checked daily by 

recording fluorescence intensity with calibrating beads (Flow-Check Pro Fluorospheres BC, Beckman Coulter). 

Moreover, 10 peripheral blood samples treated with both methods were tested with the following selected antibodies: CD45 krome or- ange 

(KO), CD14 phycoerythrin cyanine 5.5 (PC 5.5), HLA-DR fluores- cein isothiocyanate (FITC), CD3 phycoerythrin cyanine 7 (PC-7), CD4 pacific 

blue (PB), CD8 allophycocyanin (APC), CD16 + CD56 phyco- erythrin (PE), CD19 PC-7, CD20 APC-Alexa Fluor 750, CD5 PB, CD10 PC5.5 (BC), 

Lambda PE, Kappa FITC (DAKO). 

In the analysis, the first step was to select white blood cells with- out debris by a FSC/SSC dot plot. The population well separated by all 

other cells, with a positive signal for an antigen (more than 10log of positivity), is selected as described in Figure 1. 

The arithmetic MFI of each event for a given antibody was cal- culated by Kaluza software after the selection of the positive cell 

population. 

Signal-to-noise ratio was calculated as follows: MFI of positive peak/MFI of negative peak and stain index as (MFI of positive peak 

- MFI of negative peak)/2*standard deviation of negative peak. 



 
 

2.5 | Statistical analysis 

Differences between means were studied by T test; correlation be- tween results was assessed by Pearson product-moment correlation 

coefficient, and agreement between two methods was determined by Bland-Altman plot. 

 

 
3 | RESULTS 

 
Means of MFI and of percentages of positive cells obtained by the two methods were not significantly different: mean MFI of SLW and LWSW 

were 27 and 29, respectively (P = .224), while mean % of SLW and LWSW were 20.4% and 20.7% (P = .186), respectively. 

MFI and percentages obtained by the two methods showed a statistically significant correlation: r2 = 0.83 P < .001 and r2 = 0.99  P < .001, 

respectively (Figure 2A and B). 

The Figure 2A shows some antibodies with a MFI higher in LWSW than in SLW samples (indicated as white circles) that were  as follows: 

CD235a FITC, CD235a PE, CD25 APC, CD14 PC5.5, 



 

 
 
 

 
 

(Continues) 

TABLE 1 Antibodies, fluorochromes, and clones tested in the study   

Antibody Fluorochrome Company Clone SLW/LWSW MFI Antibody Fluorochrome Company Clone SLW/LWSW MFI   

CD25 APC BC B9E9 0.03 CD4 PB BC 13B8.2 1   

CD235a PE DAKO SC159 0.04 CD33 PE BC 906 1   

CD235a FITC DAKO JC159 0.05 CD4 FITC DAKO MT310 1.01   

Kappa/Lambda FITC/PE DAKO Polyclonal 0.35/0.16 CD117 APC CYTOGNOS 104D2 1.01   

CD14 PC5.5 BC RM052 0.36 CD64 PB BC 22 1.03   

CD11b APC BD D12 0.42 CD43 FITC DAKO DF-T1 1.03   

CD23 PC-7 BD M-L233 0.47 CD8 APC BC SK1 1.04   

CD66 FITC SANQUIN CLB-B13.9 0.49 CD45 APC-H7 BD 2D1 1.05   

CD71 APC BD L01.1 0.55 CD5 PB BC BL1a 1.05   

CD15 PerCP-Cy5.5 BD HI98 0.56 CD38 PC-7 BD HB7 1.05   

CD52 PE INVITROGEN CF1D12 0.57 CD20 APC-A700 BC B9E9 1.06   

CD33 FITC BC D3HL60.251 0.6 CD14 APC BD Mϕ P9 1.07   

CD13 PE BC SJ1D1 0.64 CD20 PC-7 BD L27 1.07   

CD38 APC-A750 BC LS198-4-3 0.67 CD200 APC-A750 BC OX-104 1.11   

CD20 PE DAKO B-LY1 0.69 CD4 PC7 BD SK3 1.13   

CD10 PC5.5 BC ALB1 0.71 CD45 V450 BD HI30 1.13   

CD16 PerCP-Cy5.5 BD 3G8 0.74 CD8 PC-7 BD SK1 1.14   

CD14 FITC DAKO TϋK4 0.74 CD22 PE BD S-HCL-1 1.16   

CD14 PC-7 BD M5E2 0.76 CD3 V450 BD UCHT1 1.17   

CD138 PB BC B-A38 0.77 CD8 PerCP BD SK1 1.17   

CD64 FITC BIOLEGEND 10.1 0.79 CD20 APC-A750 BC B9E9 1.17   

CD138 PC5.5 BC B-A38 0.82 CD14 APC-H7 BD Mϕ P9 1.18   

CD33 PC5.5 BC D3HL60.251 0.83 CD34 FITC DAKO BIRMA-K3 1.2 
  

CD10 APC BD HI10a 0.84 CD71 FITC DAKO Ber-T9 1.2 
  

CD33 APC BC D3HL60.251 0.84 CD20 FITC BD L27 1.22 
  

CD4 APC-H7 BD SK3 0.84 CD45 APC BD 2D1 1.24 
  

CD22 FITC BD S-HCL-1 0.85 CD4 PerCP-Cy5.5 BD SK3 1.26 
  

CD34 APC BC 581 0.86 CD71 APC-A700 BC YDJ1.2.2 1.26 
  

CD45 KO BC J.33 0.88 CD5 PC-7 BD L17F12 1.29 
  

CD79B PE DAKO SN8 0.88 CD34 PC-7 BD 8G12 1.29 
  

CD16 PE BC 3G8 0.9 HLA-DR PE DAKO AB3 1.3 
  

CD23 APC BC 9P25 0.9 CD7 APC BD M-T701 1.31 
  



 

 

 

 

 

 

 

 

 
 

 

Antibody Fluorochrome Company Clone SLW/LWSW MFI Antibody Fluorochrome Company Clone SLW/LWSW MFI  

CD59 PE INVITROGEN MHCD5904 0.9 CD20 PerCP-Cy5.5 BD L27 1.33  

CD4 V450 BD RPA-T4 0.9 CD22 PC5.5 BC SJ10.1H11 1.33  

CD38 APC BC LS198-4-3 0.92 CD71 APC-H7 BD M-A712 1.37  

CD5 FITC BC BL1a 0.92 CD15 PE BC 80H5 1.38  

HLA-DR APC BC IMMU-357 0.93 CD19 APC BC J3-119 1.4   

CD45 V500 BD HI30 0.94 CD3 APC IMMUNOSTEP 145-2C11 1.4   

CD56 PE BC N901 0.95 CD45 PerCP-Cy5.5 BD 2D1 1.42   

CD117 PE CYTOGNOS 104D2 0.95 CD3 PE DAKO UCHT1 1.44     

HLA DR FITC BC B8.12.2 0.96 CD14 PE DAKO TϋK4 1.44     

CD138 APC BD MI15 0.96 CD138 FITC CYTOGNOS B-A38 1.52     

CD3 FITC DAKO UCHT1 0.97 CD8 APC-H7 BD SK1 1.52     

CD38 PB BC LS198-4-3 0.97 CD5 PE BC BL1a 1.53     

CD5 PC5.5 BC BL1a 0.97 CD34 PE BD 8G12 1.54     

CD20 APC BC B9E9 0.97 CD3 PC7 BC UCHT1 1.58     

CD55 PE Southern 143-30 0.99 CD23 PE DAKO MHM6 1.59     

  Biotech            

CD56 APC BC N901 0.99 CD24 PE BD ML5 1.61     

CD56 V450 BD B159 1 CD33 PC-7 BD P67.6 1.86     

CD19 PB BC J3-119 1 CD2 PC-7 BC 39C1.5 1.89     

CD19 PC-7 BC J3-119 1 CD45 PB DAKO T29/33 2.47     
 

  

BD: Becton Dickinson (San Josè, CA, USA); BC: Beckman Coulter (Brea, CA, USA); BIOLEGEND (San Diego, CA, USA); CYTOGNOS (Salamanca, Spain); DAKO (Golstrup, Denmark); IMMUNOSTEP (Salamanca, 

Spain); INVITROGEN (Waltham, MA, USA); SANQUIN (Amsterdam, The Nederlands); Southern Biotech (Birmingham, AL, USA). 

APC, allophycocyanin; APC-A700, allophycocyanin-alexa 700; APC-A750, allophycocyanin-alexa 750; FITC, fluorescein isothiocyanate; KO, krome orange; PB, pacific blue; PC5.5, phycoerythrin cyanine 5.5; 

PC-7, phycoerythrin cyanine 7; PE, phycoerythrin. 
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FIGURE  2  Linear regression of MFI and percentages values of 

104 antibodies in samples simultaneously prepared with LWSW and 

SLW methods. (A) Linear regression of MFI values of 104 antibodies 

in samples simultaneously prepared with LWSW and SLW methods. 

White circles represent samples with visible higher MFI in LWSW 

than in SLW samples. White squares represent samples with visible 

higher MFI in SLW than in LWSW samples. (B) Linear regression 

of percentage of cells positive for 104 antibodies in samples 

simultaneously prepared with LWSW and SLW methods 

 
 
 

 
 
 

 
FIGURE 1 Gating strategy and exemplificative dot plots. (A) 

physical parameters obtained by the two methods. (B) antibody with 

similar MFI obtained by the two methods. (C) antibody with higher 

MFI obtained by SLW than LWSW method. (D) antibody with higher 

MFI obtained by LWSW than SLW method 

 
 

CD11b APC, and CD71 APC, while the antibodies with higher MFI in 

SLW than LWSW sample were CD57 FITC and CD14 PE (indicated  

as white squares). 

Bland-Altman analysis of percentages of positive cells showed 

mean difference of −0.20 with standard deviation of 2.04, and all dif- 

ferences between SLW and LWSW values were within a range of ±5% 

(Figure 3). 

Bland-Altman analysis of MFI of positive cells showed mean of 

differences of −2.14 with standard deviation of 17.9 (data not shown). 

Signal-to-noise ratio and stain index were higher in SLW than 

LWSW samples (59.8 vs 41.7 P < .001, 24.4 vs 17.8 P = .001, 

respectively). 

Means of debris obtained by SLW (31.8%) and LWSW (19.3%) 

were significantly different P < .001) (Figure 4). 

Analysis of 13 selected antibodies tested in 10 samples showed: 

 

• no statistical significant differences in the percentages of positive 

cells; 

• higher MFI for CD3 (means: 30.6 vs 23.6 P < .01) in SLW than 

LWSW samples and for HLA-DR (means: 12.3 vs 27.1 P < .05), 

CD16 + 56 (means: 74.4 vs 123.6 P < .01) in LWSW than SLW 

samples; 

• higher signal-to-noise ratio in SLW samples for CD45 (means: 51.6 

vs 36.6 P < .05), CD3 (means: 230.8 vs 36.9 P < .05), CD19 (means: 

92.8 vs 46.8 P < .01), and CD10 (means: 49.7 vs 20.6 P < .01); 

• higher stain index in SLW than LWSW samples for CD3 (means: 

57.9 vs 20.2 P < .01), CD19 (means: 30.1 vs 20.9 P < .01), and 

CD10 (means: 28.4 vs 14.81 P < .01); 

• higher MFI, stain index, and signal-to-noise ratio in LWSW samples 
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FIGURE  3     Bland-Altman  analysis 

of percentages of cells positive for 104 

antibodies in samples simultaneously 

prepared with LWSW and SLW methods 
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FIGURE 4 Percentages of debris obtained in LWSW and SLW samples 

 

for surface kappa and lambda chains (means MFI: kappa LWSW 

18.9 vs kappa SLW 7.4 P < .05; lambda LWSW 30.8 vs lambda SLW 

2.1 P < .01; means stain index: kappa LWSW 8.8 vs kappa SLW 

4.2 P < .01; lambda LWSW 14.6 vs lambda SLW 7.6 P < .05, 

means signal-to-noise ratio: kappa LWSW 22 vs kappa SLW 7.6 P 

< .05; lambda LWSW 33.3 vs lambda SLW 12 P < .05). 

 
 

 

4 | CONCLUSION  

 
Different methods to prepare samples for flow cytometry analysis have been described in a high number of study groups, and the SLW 

method is considered the standard one, because it provides the best signal output. However, in the antigen-antibody interactions, some 

difficulties can occur for the interactions with similar epitopes or for the interferences of different cells of immune system that can bind the Fc 

with a specific Fc-receptor.7 A solution for this problem, in par- ticular for the study of surface kappa and lambda chains, is offered by some 

study groups that recommended the sample washing with PBS added with BSA to remove interfering free extracellular immu- noglobulins23 or 

to avoid artifacts of cytophilic antibodies.9 Therefore, lyse and wash of a sample before staining, as in LWSW method,  can prevent artifacts 

and, in MRD studies, allows to obtain a higher 

 
number of cells. To our knowledge, no comparison between these two methods has been described and it is not known whether a sec- ond 

wash gives significant differences in terms of antigens’ binding and expression. We compared the expression of 104 antibodies as- sessed by 

both SLW and LWSW to identify differences between the two methods. Samples prepared with both methods did not show sig- nificant 

differences in terms of percentage and MFI of positive cells even though stain index and signal-to-noise ratio were significantly higher in SLW 

than LWSW samples. The antibodies with higher MFI in LWSW method, indicated as white circles in Figure 2A (CD235a FITC, CD235a PE, 

CD25 APC, CD14 PC5.5, CD11b APC, and CD71 

APC), showed an MFI increase that overcame the slight increase of background. In two cases, indicated as white squares (CD57 FITC and CD14 

PE), this phenomenon was observed in SLW samples. Moreover, the LWSW method increased both the intensity of background and of positive 

signal, but the stain index was reduced because the back- ground exceeded the signal. However, the selection of positive cell populations was 

not affected by these differences, and no different percentages were obtained. 

Mean of differences between SLW and LWSW percentages was 

−0.20, and all differences were within a range of ±5%. Moreover, SLW samples presented a significantly higher percentage of debris than LWSW 

samples that determined higher number of “useful events” with the same threshold setup. 

We also analyzed the expression of 13 selected antibodies in 10 samples prepared with the two methods. No significant difference in terms 

of percentage of positive cells was observed and, except for sur- face kappa and lambda chains, all other antibodies have shown higher values of 

stain index and signal-to-noise ratio in SLW samples than LWSW. 

Despite the high concordance of MFI between the two methods, the signal-to-noise ratios and the stain indexes obtained, confirmed that 

SLW gave the best signal discrimination as reported by some guidelines9-17 and that the expression of kappa and lambda surface 

immunoglobulins became brighter after sample washing.24 

However, to achieve a high sensitivity for MRD evaluation, LWSW should be performed as suggested by the Euroflow consortium.22 

We suggest the use of LWSW also in samples from newly diag- nosed patients because, despite differences in stain index and signal- to-

noise ratio, the percentages of positive cells were similar in the two 
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methods. Moreover, the use of the same method to stain cells from a patient at diagnosis and throughout the follow-up is recommended, to 

obtain more comparable cell parameters. Finally, LWSW, through the sample wash before the staining, prevents artifacts which may occur 

also in fresh samples and allows to acquire a higher number of useful events by reducing cell debris. 

 
 

ACKNOWLEDGEMENTS 

 
Authors thank the Fondazione Neoplasie Sangue Onlus for research support. 

 
 

CONFLICT OF INTEREST  

 
There authors declare no conflicts of interest. 

 

 
AUTHOR’S CONTRIBUTION  

 
VEM, ES, and MG designed the study, analyzed, and interpreted the data; DO, MR, and SC collected data; BB, MB, and PO drafted 

and approved the final version of manuscript. 

 

REFERENCES  

1. Marcondes NA, Fernandes FB, Faulhaber GA. Lineage determination in acute leukemias. Cytometry B Clin Cytom. 2014;86:149. 

2. Shim YK, Rachel JM, Ghia P, et al. Monoclonal B-cell lymphocytosis 

in healthy blood donors: an unexpectedly common finding. Blood. 

2014;123:1319-1326. 

3. Kern W, Bacher U, Schnittger S, Alpermann T, Haferlach C, Haferlach 

T. Multiparameter flow cytometry reveals myelodysplasia-related ab- errant antigen expression in myelodysplastic/myeloproliferative neo- 

plasms. Cytometry B Clin Cytom. 2013;84:194-197. 

4. Parikh SA, Kay NE, Shanafelt TD. Monoclonal B-cell lymphocyto- 

sis: update on diagnosis, clinical outcome, and counselling. Clin Adv Hematol Oncol. 2013;11:720-729. 

5. Cao F, Zhao H, Li Y, Dai S, Wang C. Clinicopathological and pheno- typic features of chronic NK cell lymphocytosis identified among 

patients with asymptomatic lymphocytosis. Int J Lab Hematol. 2015;37:783-790. 

6. Paiva B, Vídriales MB, Rosiñol L, et al. A multiparameter flow cytom- etry immunophenotypic algorithm for the identification of newly 

diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia. 2013;27:2056-2061. 

7. Hulspas R, O’Gorman MRG, Wood BL, Gratama JW, Sutherland DR. 

Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom. 2009;76B:355-364. 

8. Kuonen F, Touvrey C, Laurent J, Ruegg C. Fc block treatment, 

dead cells exclusion, and cell aggregates discrimination concur to prevent phenotypical artifacts in the analysis of subpopulations of 
tumor-infiltrating CD11b (+) myelomonocytic cells. Cytometry A. 2010;77A:1082-1090. 

9. Davis BH, Wood B, Oldaker T, Barnett D. Validation of cell-based fluorescence assays: practice guidelines from the ICSH 

and ICCS. Cytometry B Clin Cytom. 2013;84B:282-285. 

10. Macey MG, McCarthy DA, Milne T, Cavenagh JD, Newland AC. 

Comparative study of five commercial reagents for preparing normal and leukaemic lymphocytes for immunophenotypic 

analysis by flow cytometry. Cytometry. 1999;38:153-160. 

11. Kraan J, Gratama JW, Haioun C, et al. Flow cytometric immunopheno- 

typing of cerebrospinal fluid. Curr Protoc Cytom. 2008;6:25. 

12. Stewart CC, Stewart SJ. Immunophenotyping. Curr Protoc Cytom. 2001;6:2. 

13. Craig FE, Ohori NP, Gorrill TS, Swerdlow SH. Flow cytometric im- munophenotyping of cerebrospinal fluid specimens. Am J 

Clin Pathol. 2011;135:22-34. 

14. Holmes K, Lantz LM, Fowlkes BJ, Schmid I, Giorgi JV. Preparation of cells and reagents for flow cytometry. Curr Protoc 

Immunol. 2001;5:3. 

15. Greig B, Oldaker T, Warzynski M, Wood B. 2006 Bethesda International 

Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: 

recommendations for training and education to perform clinical flow cytometry. Cytometry B Clin Cytom. 2007;72(Suppl. 

1):S23-S33. 

16. Lee JA, Spidlen J, Boyce K, et al. MIFlowCyt: the minimum information about a Flow Cytometry Experiment. Cytometry A. 

2008;73:926-930. 

17. Kalina T, Flores-Montero J, van der Velden VH. EuroFlow standardiza- 

tion of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986-2010. 

18. Patkar N, Alex AA, Bargavi B, et al. Standardizing minimal residual 

disease by flow cytometry for precursor B lineage acute lympho- blastic leukemia in a developing country. Cytometry B Clin 

Cytom. 2012;82:252-258. 

19. Irving J, Jesson J, Virgo P, et al. Establishment and validation of a stan- dard protocol for the detection of minimal residual 

disease in B lin- eage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica. 

2009;94:870-874. 

20. Böttcher S, Stilgenbauer S, Busch R, et al. Standardized MRD flow 

and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: a 



comparative analysis. Leukemia. 2009;23:2007-2017. 

21. Westers TM, Ireland R, Kern W, et al. Standardization of flow cytome- 

try in myelodysplastic syndromes: a report from an international con- sortium and the European LeukemiaNet Working 

Group. Leukemia. 2012;26:1730-1741. 

22. EuroFlow Standard Operating Protocol (SOP) for Bulk Lysis for MRD panels (version 1.1 – 6 May 2014) by ESLHO and 

EuroFlow. http:// www.euroflow.org/usr/pub/prlogin.php [accessed 11 January 2016]. 

23. Johansson U, Bloxham D, Couzens S, Jesson J, Morilla R, Erber 

W. Guidelines on the use of multicolor flow cytometry in the di- agnosis of haematological neoplasms. Br J Haematol. 

2014;165: 455-488. 

24. ICCS e-Newsletter Vol. VI, No. 3, Summer 2015. http://www.cytome- try.org/public/newsletters/eICCS-6-3/article2.php. 

http://www.euroflow.org/usr/pub/prlogin.php
http://www.euroflow.org/usr/pub/prlogin.php
http://www.cytometry.org/public/newsletters/eICCS-6-3/article2.php
http://www.cytometry.org/public/newsletters/eICCS-6-3/article2.php

