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Abstract 

Purpose:We sought to demonstrate that a single systemic administration of L19mTNFa (a fusion 

protein constituted by the scFv L19 specific for the oncofetal ED-B domain of fibronectin and 

tumor necrosis factor a,TNFa) in combinationwithmelphalan induced complete and long-lasting 

tumor eradication in tumor-bearing mice and triggered the generation of a specificTcell ^ based 

immune response that protects the animals from a second tumor challenge, as well as from 

challenges with syngeneic tumor cells of different histologic origin. 

Experimental Design and Results:Treatment with L19mTNFa, in combinationwithmelphalan, 

induced complete tumor regression in 83% of BALB/c mice withWEHI-164 fibrosarcoma and 

33%of animalswith C51coloncarcinoma.All curedmice rejected challengeswith the sametumor 

cells and, in a very high percentage of animals, also rejected challengeswith syngeneic tumor cells 

of different histologic origin.I n adoptive immunity transfer experiments, the splenocytes from 

tumor-curedmice protected naivemice both fromC51colon carcinoma and fromWEHI-164 

fibrosarcoma. 

S imilar results were also obtained in adoptive immunity transfer experiments using 

severely immunodepressed mice.Exper iments using depleted splenocytes showed that Tcells 

play amajor role in tumor rejection. 

Conclusions:The results show that the selective targeting of mTNFa to the tumor enhances 

its immunostimulatory properties to the point of generating a therapeutic immune response 

against different histologically unrelated syngeneic tumors.T hese findings predicate treatment 



approaches for cancer patients based on the targeted delivery of TNFa to the tumor vasculature. 

 

Introduction 

Fibronectin is an extracellular matrix component widely expressed in a variety of normal tissues 

and body fluids. Different fibronectin isoforms could be generated by the alternative splicing of the 

fibronectin pre-mRNA, a process that is modulated by cytokines and extracellular pH(1, 2). The 

complete type III repeat ED-B may be included or omitted in the fibronectin molecule (3). ED-B is 

highly conserved in different species, having 100% homology in all the mammalians studied thus 

far (human, rat, and mouse), and 96% homology with a similar domain in chicken. The fibronectin 

isoform containing ED-B (B-FN) is immunohistochemically undetectable in normal adult tissues, 

with the exception of tissues undergoing physiologic remodeling (e.g., endometrium and ovary) and 

during wound healing (4). By contrast, its expression in tumors and fetal tissues is high (4, 5). 

Furthermore, we showed that B-FN is a marker of angiogenesis (6, 7), and that endothelial cells 

invading tumor tissues migrate along extracellular matrix fibers containing B-FN (8). The function 

of B-FN, however, is still unclear. Fukuda et al. (9) generated mice lacking the ED-B exon and 

showed that, whereas B-FN is highly expressed throughout early embryogenesis, ED-B-deficient 

mice developed normally and were fertile. We previously reported on the possibility to selectively 

target tumor vasculature using a human recombinant antibody specific for B-FN, L19(scFv), in both 

experimental animal models and cancer patients (8, 10–14). This observation paved the way for the 

antibody’s use in vivo for both diagnostic and therapeutic purposes. Indeed, the selective targeted 

delivery of cytokines to the ED-B domain of fibronectin using L19(scFv) dramatically enhances 

their anticancer properties (15–19). Building on this finding, the fusion protein L19-interleukin-2 is 

now in phase I/II clinical trials in patients with different kinds of solid tumors. Tumor necrosis 

factor-a (TNFa) is a pleiotropic cytokine (20) composed of three noncovalently linked TNFa 

monomers, f17.5 kDa each, that yield a compact bell-shaped homotrimer (21). TNFa exerts its 

major antitumor effects mainly via a preferential toxicity for the endothelial cells of the tumor-

associated vasculature and through an increase of the antitumor immune response. The toxicity for 

endothelial cells of the tumor vasculature leads to extensive thrombosis and destruction of tumor 

vasculature resulting in extensive tumor necrosis (22, 23). Furthermore, TNFa increases vascular 

permeability (24) and reduces the tumor’s interstitial fluid pressure (25), a process pivotal to 

facilitating the penetration of antitumor agents at the tumor site. Like other primary 

proinflammatory signals, TNFa promotes the maturation of dendritic cells in vivo and their 

migration to draining lymph nodes (26), and, in some cases, fosters long-lasting protective 

immunity (27, 28). Although TNFa is one of the most potent antitumor cytokines, its unacceptable 



toxic side effects have prevented its systemic administration at therapeutically effective doses. To 

date, the clinical use of TNFa has been limited to locoregional applications, such as ‘‘isolated limb 

perfusion,’’ in combination with melphalan for the treatment of nonresectable high-grade sarcoma 

and melanoma (29–31). TNFa is also being evaluated for the therapy of nonresectable liver tumors 

by isolated hepatic perfusion (32). These results prompted a number of studies aimed at decreasing 

TNFa toxicity without modifying its antitumor properties, thereby allowing its use not only for 

locoregional treatments but also for systemic therapy. Resulting strategies include the production of 

engineered TNFa mutants (33), encapsulation of TNFa in liposomes (34), and the targeted delivery 

to tumors of TNFa through its coupling to specific ligands (17, 35–38). These last endeavors seem 

to represent the most promising strategy. We recently generated the fusion protein L19mTNFa (17), 

consisting of mouse TNFa (mTNFa) and the human antibody fragment L19(scFv) directed to the 

ED-B domain of fibronectin. When injected i.v. into tumor-bearing mice, this fusion protein 

selectively accumulates around the tumor vasculature and, 48 hours after injection, the dose of 

L19mTNFa in the tumor is roughly 35 times higher than the dose achieved with a control fusion 

protein in which mTNFa is conjugated to an irrelevant scFv (TN11). Here, we show that a single 

systemic administration of L19mTNFa and melphalan in mice bearing two histologically unrelated 

syngeneic tumors induces complete and long lasting tumor eradication and triggers the generation 

of a specific T cell–based immune response that protects the animals from a second tumor 

challenge, as well as from challenges with syngeneic tumor cells of different histologic origin.  

 

Materials and Methods 

Animal tumor models. WEHI-164 mouse fibrosarcoma (3 � 106 cells; European Collection of 

Animal Cell Cultures, Sigma-Aldrich, Milan, Italy), C51 mouse colon adenocarcinoma (0.5 � 106 

cells; kindly provided by Dr. M.P. Colombo, Department of Experimental Oncology, Istituto 

Nazionale Per Lo Studio E La Cura Dei Tumori, Milan, Italy), all of BALB/c origin, were s.c. 

implanted in the left flank of immunocompetent syngeneic BALB/c mice or of severe combined 

immunodeficiency (SCID) beige mice. All mice were 8 to 10 weeks old and purchased from Harlan 

UK (Oxon, United Kingdom). The tumor volume was determined using the following formula: (d)2 

� D � 0.52; where d and D are the short and long dimensions (cm) of the tumor, respectively, 

measured with a caliper (8). Housing, treatment, and sacrifice of animals followed national 

legislative provisions (Italian law no. 116; January 27, 1992) for the protection of animals used for 

scientific purposes. Lung metastases were established in BALB/c mice injecting 75 � 103 C51 cells 

in 100 AL PBS [20 mmol/L NaH2PO4, 150 mmol/L NaCl (pH 7.4)] into the tail vein. When 

respiratory distress was present and/or a 10% weight loss was recorded over a 24-hour period, the 



mice were sacrificed and the lungs were infused through the trachea with 15% India ink solution. 

Only normal lung parenchyma was stained black by the ink solution, whereas the tumor metastases 

appeared white and could be counted.  

Tumor therapy. Groups of tumor-bearing mice (when the tumors reached a volume off0.2 cm3) 

received an injection in their tail vein of the fusion proteins L19mTNFa or TN11mTNFa (the 

expression, purification, and characterization of the fusion proteins have previously been reported; 

ref. 17) or of recombinant mTNFa (2 � 107 units/mg, kindly provided by Dr. A. Corti, Department 

of Oncology, Cancer Immunotherapy and Gene Therapy Program, San Raffaelle M. Scientific 

Institute, Milan, Italy), in 100 AL of PBS. As already reported (17), in the therapeutic protocols 

with a single compound, 1 pmol/g of L19mTNFa, TN11mTNFa, or mTNFa was used, whereas 0.7 

pmol/g was used in combination with other drugs. The group of controls received 100 AL of PBS 

only. Lyophilized melphalan (Alkeran, Glaxo Smith Kline, Research Triangle Park, NC) was 

reconstituted (10 mg/mL) in the solvent provided by the manufacturer immediately before use and, 

after further dilution in PBS, was administered i.p. (4.5 Ag/g in 400 AL). The weight of the animals 

and the tumor volume were recorded at 24-hour intervals before and after treatments. Toxicity was 

evaluated on the basis of weight loss, as reported by Borsi et al. (17). The mice were sacrificed 

when the tumor reached a volume of 1.5 cm3. TNFa cytolytic assays were carried out in the 

presence of actinomycin D as described by Borsi et al. (17). Quadruplicates were carried out and the 

results expressed as a percentage of cell viability (average F SD) versus mTNFa (pg/mL).  

Adoptive immunity transfer experiments (Winn assay), cell-mediated cytotoxicity, and 

enzyme-linked immunospot assay. WEHI-164- or C51 tumor–cured mice were given a s.c. 

booster dose in the contralateral flank with cells derived from the same tumors (3 � 106, WEHI-

164; 0.5 � 106, C51) and, after 12 days, the total splenocytes were obtained, following the 

procedure described by Meazza et al. (39). To establish the amount of effector splenocytes able to 

protect naı¨ve mice against WEHI-164 or C51 tumor, different effector-tumor cell ratios (E/T), 

from 5:1 to 0.3:1, were calculated. In the adoptive immunity transfer experiments using splenocytes 

from WEHI-164 tumor–cured mice, an E-T ratio of 1:1 was used with WEHI-164 tumor (3 � 106 

cells) whereas with C51 tumor (0.5 � 106 cells) an E/T ratio of 5:1 was used. For in vitro depletion, 

negative magnetic separation (Clin ExVivo Dynabeads, Dynal Biotech ASA, Oslo, Norway) was 

used, following the manufacturer’s instructions. The magnetic beads were coated with anti- CD4 

(clone GK1.5, ATCC), anti-CD8 (clone 2.43, ATCC), anti-B (clone RA3-3A1/6.1, ATCC) rat 

monoclonal antibodies (mAb) or rabbit anti-asialo-GM1 antiserum (Wako Chemicals GmbH, 

Dusseldorf, Germany). The recovered splenocytes underwent a second specific antibody incubation 

and a complement-mediated depletion step with 1:10 rabbit complement (Cederlane, Hornby, 



Ontario, Canada). Cell depletion was assessed by immunofluorescence and cytofluorimetric 

analysis by indirect staining of B cell subset (primary mAb, clone RA3- 6B2, Southern Biotech, 

Birmingham, AL; secondary antibody, FITCconjugated goat F(abV)2 anti-rat IgG; Southern 

Biotech) and by direct staining for CD4 (FITC-conjugated YTS 191.1.2 mAb; Immunotools, 

GmbH, Germany), CD8 (PE-conjugated YTS 169.4 mAb; Immunotools) and natural killer (FITC-

conjugated DX-5 mAb, Caltag Laboratories, Burlingame, CA) subsets. Isotype-matched mAbs of 

unrelated specificity were used as controls. Analysis was done on a FACScan (Becton Dickinson, 

Milan, Italy). Cell-mediated cytotoxicity was evaluated by a standard (4 hour) 51Cr release assay in 

mixed lymphocyte-tumor cell cultures, using either immune splenocytes obtained from WEHI-164 

tumor–cured mice, 12 days after the third WEHI-164 tumor challenge, or splenocytes from naı¨ve 

mice as described by Croce et al. (40). Inhibition test of lysis with concanamycin A (0.2 Ag/mL, 

Sigma-Aldrich) was done as described by Seki et al. (41). Enzyme-linked immunospot assay was 

conducted using ex vivo splenocytes from either naı¨ve or WEHI-164 tumor-cured mice as 

described by Croce et al. (40). A >2-fold increase in the number of spots compared with the control 

was considered a positive response. 

 

 Results 

L19mTNFa in combination with melphalan cures different murine tumors. Tumor-bearing 

mice were treated with a single i.v. administration of L19mTNFa (0.7 pmol/g) in combination with 

melphalan (4.5 Ag/g), given i.p., as described in Materials and Methods. For control molecules, we 

substituted L19m TNFa with mTNFa or TN11mTNFa. Two murine experimental models, WEHI-

164 fibrosarcoma and C51 colon carcinoma, were used for their different in vitro sensitivities to 

mTNFa. In fact, as shown in Fig. 1A, in the presence of actinomycin D, WEHI-164 cells are f300 

times more sensitive than C51 cells to mTNFa. The treatment with L19mTNFa and melphalan 

induced complete and irreversible tumor eradication in 83% of mice bearing WEHI-164 

fibrosarcoma (74 out of 89 mice treated in different experiments carried out using identical 

conditions; Fig. 1B) and in 33% (6 out of 18) of mice bearing C51 colon carcinoma (Fig. 1C). On 

the contrary, using mTNFa (Fig. 1C) or TN11mTNFa (data not shown), in combination with 

melphalan, no tumor eradication was observed in C51 colon carcinoma–bearing mice (0 out of 9 in 

both cases), whereas in the case of WEHI-164 fibrosarcoma, eradication was achieved in 54.5% (6 

out of 11) of the mice treated with mTNFa and melphalan (data not shown) and in 61% of the mice 

treated with TN11mTNFa and melphalan (22 out of 36 mice treated in different experiments carried 

out using identical conditions; Fig. 1B). The therapeutic efficacy on WEHI-164 fibrosarcoma– 

bearing mice of L19mTNFa or melphalan alone is reported in Fig. 1B. Only a moderate increase of 



survival time of the tumorbearing mice was observed in either case. In order to assess whether the 

combined treatment with L19mTNFa and melphalan induced tumor eradication in 

immunocompromised mice, we s.c. induced WEHI-164 tumor formation in SCID beige mice. In 

these animals, the treatment resulted in no tumor eradication but only in tumor growth retardation 

(Fig. 1D), indicating that the treatment ‘‘per se’’ was not sufficient to cure the tumor, and strongly 

suggesting that the immune system plays a crucial role in the antitumor activity of L19mTNFa.  

Cured mice reject challenges of syngeneic tumors of different histologic origin. To better 

investigate the immune system’s involvement in tumor eradication induced by the treatments, we 

assessed whether WEHI-164-cured and C51-cured mice were able to reject tumors on challenge. 

One hundred percent of the cured mice rejected challenges with the same tumor cells. In the case of 

WEHI-164 fibrosarcoma, the mice resisted challenges with 15 � 106 cells (five times the dose used 

to induce the tumor in 100% of the mice; Table 1A). Moreover, 100% of C51 colon carcinoma–

cured mice rejected challenges with histologically unrelated syngeneic WEHI-164 fibrosarcoma. 

(Table 1B). In WEHI-164 tumor–cured mice, the challenge with the histologically unrelated 

syngeneic C51 colon carcinoma was rejected by 60% of the animals, when the injected number of 

tumor cells was 0.5 � 106 (a cell dose inducing tumors in 100% of the animals), and by 30% of the 

mice challenged with 3 � 106 tumor cells (Table 1A). The ability of WEHI-164 tumor–cured mice 

to reject challenges with syngeneic tumor cells of different histologic origins increased if the cured 

mice were first challenged with the same tumor (WEHI-164). In fact, in WEHI-164 tumor–cured 

mice, after the first homologous tumor challenge, a new challenge with either C51 (3 � 106 cells) 

or RENCA (renal cell carcinoma, 1 � 106 cells) tumors was rejected by 100% of the mice (Table 

1A). This finding was not restricted to s.c. implants, but also to lung metastasis generated by i.v. 

injection of the C51 tumor cells (Fig. 2; Table 1A). 

 Immunologic correlates of tumor rejection: in vitro and in vivo studies. To study the 

contribution of different host cellular effector mechanisms responsible for tumor clearance and for 

tumor immunity induced by L19mTNFa/melphalan therapy, we evaluated the ability of total spleen 

cells from several WEHI- 164 tumor–cured mice to kill different tumor cell lines (WEHI- 

164 fibrosarcoma, C51 colon carcinoma, RENCA renal carcinoma, C26 colon carcinoma) in vitro 

in a classical 4-hour 51Cr release assay. Splenocytes, assayed at 12 and 30 days after an in vivo 

WEHI-164 tumor rechallenge, were restimulated in vitro for 5 days with irradiated WEHI-164 

tumor cells. As shown in Fig. 3A, at 12 days, high specific lysis was detected on WEHI-164 target 

cells and on all other syngeneic tumor cell lines tested. At day 30, a strong specific lysis was still 

found for WEHI-164 tumor cells and, to a lesser extent, for C51 targets (Fig. 3B). The addition 

during the test of concanamycin A, a specific inhibitor of perforin-dependent lysis, resulted in a 



dramatic decrease of specific cells lysis (66% for WEHI-164 and 100% for C51 target cells, 

respectively; Fig. 3B), indicating that CD8+ CTL effectors play an important role in the killing 

process. We then evaluated whether effector splenocytes, at 12 days after WEHI-164 rechallenge, 

presented on restimulation in vitro, a preferential production of IFN-g or of interleukin-4, 

representative, respectively, of type 1- and type 2–specific cytokines. For this purpose, we analyzed 

the frequencies of freshly isolated spleen cells by enzyme-linked immunospot assay. As shown in 

Fig. 4A and B, ex vivo immune spleen cells specifically recognized all four different syngeneic 

tumor cells tested, and high frequencies of effector cells were detected for both IFN-g (Fig. 4A) and 

interleukin-4 (Fig. 4B); thus, indicating that the tumor immunity was associated with a strong 

induction of both T helper 1 and T helper 2 types of responses. We also evaluated mTNFa 

secretion, upon in vitro tumor stimulation, by total spleen cells at 30 days after WEHI-164 tumor 

rechallenge. As shown in Fig. 4C, we found that the basal level of mTNFa secretion by 

unstimulated splenocytes from tumor-rejecting mice was higher compared with naı¨ve splenocytes; 

moreover, 4 days after in vitro antigen stimulation using WEHI-164 and C51 tumor cells, the 

amount of mTNFa in the supernatant of the spleen cells of tumor-rejecting mice was more than 

twice that found in the supernatant of naı¨ve spleen cells. Finally, we investigated by adoptive 

transfer experiments whether immune splenocytes of WEHI-164 tumor–bearing mice cured with 

L19mTNFa and melphalan, and rejecting a subsequent homologous tumor challenge, were able to 

protect naı¨ve animals from tumor formation. Mixtures of tumor cells and splenocytes at different 

proportions were s.c. coinjected into naı¨ve mice (Winn assay). Results showed that immune 

splenocytes in the E/T ratio of 1:1 were fully competent in protecting naı¨ve mice (100%, 30 out of 

30) from WEHI-164 tumor formation. Moreover, these mice acquired complete resistance to 

homologous tumor challenges carried out 45 days after the Winn assay using up to 10 � 106 

WEHI-164 cells (Fig. 5A). To determine whether immune splenocytes from WEHI-164 tumor–

cured mice were able to protect naı¨ve animals against the histologically unrelated C51 colon 

carcinoma, a Winn assay was done using 0.5 � 106 C51 tumor cells and an E/T ratio of 5:1. In 

these conditions, 80% (16 out of 20) of the mice completely rejected the C51 tumor cells (Fig. 5B). 

Transferred immune splenocytes also induced resistance to WEHI-164 tumor formation (E/T = 1:1) 

in 78% (seven of seven) SCID beige mice (Fig. 5C) that were able to reject a new tumor challenge 

up to 3 months after the adoptive transfer. Adoptive transfer experiments were also done using 

immune splenocytes after in vitro depletion of specific cell subsets. The results shown in Fig. 5D 

indicate that removal of B cells or natural killer cells did not meaningfully alter the ability of the 

immune splenocytes to reject WEHI-164 tumor (100% rejection, eight out of eight, in B cell–

depleted; and 87% rejection, seven out of eight, in natural killer–depleted spleen cells). Also, 



removal of CD8+ cells did not determine any dramatic change in the ability of immune splenocytes 

to reject WEHI tumor: in fact, six out of eight animals were protected. On the contrary, immune 

splenocytes depleted of CD4+ cells protected only two out of eight animals. These results reveal the 

fundamental role exerted by T cells, the CD4+ subset in particular, in the adoptive rejection 

process.  

 

Discussion  

The findings presented in this study show that the therapeutic combination of the fusion protein 

L19mTNFa and melphalan, given as a single systemic administration, results in a high rate of 

complete and long-lasting tumor eradication without any apparent adverse side effects (>8 months 

with no sign of tumor recurrence at the writing of this article) in both the WEHI-164 fibrosarcoma 

(83%) and the C51 colon carcinoma (33%) models. Treating the tumor-bearing mice with 

melphalan and mTNFa alone or fused to an irrelevant antibody, we obtained, in the case of the C51 

colon carcinoma, no tumor eradication and, 

in the case of WEHI-164 fibrosarcoma, tumor eradication at a reduced rate compared with what was 

achieved with L19mTNFa treatment. The different responses of these two tumors to 

L19mTNFa/melphalan therapy may be due to one of two reasons: either the different sensitivities of 

the two tumor cell lines to mTNFa, or the higher immunogenicity of WEHI-164 fibrosarcoma with 

respect to C51 colon carcinoma. This issue is presently under investigation. We also observed a T 

cell–mediated immune response able to reject further tumor challenges in the mice cured using 

melphalan and mTNFa or TN11mTNFa (data not shown). Thus, the combined treatment of tumor-

bearing mice with melphalan and L19mTNFa, which induces a much higher rate of complete and 

longer-lasting tumor eradication compared with melphalan combined with mTNFa alone or fused to 

an irrelevant antibody, enhances the intrinsic anticancer activity of TNFa. The attempt to treat 

WEHI-164 fibrosarcoma grown in SCID beige mice did not result in any cure, but only in a 

retardation of tumor growth (Fig. 1D), due to the antitumor effects of melphalan and of TNFa 

exerted mainly on the angiogenic endothelial cells of the tumor vasculature (22, 23). In addition, all 

cured mice were resistant to tumor challenge, and the tumor rejection was not limited to the original 

tumor that was subjected to therapy, but was extended to histologically unrelated s.c. tumors and 

metastases. Moreover, the results of Winn assays reported here (Fig. 5) show that the splenocytes 

from cured mice protect naı¨ve animals also from histologically 

unrelated syngeneic tumors. Taken together, these findings show that, in addition to the cytotoxic 

effects of TNFa on the tumor vasculature, the immune system plays a role in the processes leading, 

first, to tumor cure and, subsequently, to the acquisition of immunologic memory and effector 



functions, two traits that are instrumental to the recognition and rejection of tumors. These findings 

also indicate that the immunologic response is likely directed against tumor-associated antigens 

(TAA) shared by the different tumors tested. Previous studies by Curnis et al. (36) showed the 

enhancement of TNFa antitumor immunotherapeutic properties by its targeted delivery to amino 

peptidase CD13; this approach achieved only sporadic cases of complete cure, however, and 

rejection of challenges was limited to only few cases of the same tumor from which the animals 

were originally cured. The enhancement of TNFa immunotherapeutic activity generated by its 

targeted administration to B-FN may be due to the cytokine’s high level of accumulation in the 

tumor environment, which, in concert with high local concentrations of melphalan (42), induces 

massive tumor cell killing with high levels of tumor antigens available for antigen-presenting cells. 

Antigen-presenting cells infiltrating into the tumor site with the contribution of TNFa (that 

stimulates endothelial cell adhesion of circulating phagocytic cells) subsequently migrate to lymph 

nodes where they can present TAAs to CD4+ T helper cells (27, 28). Thus, the availability of large 

amounts of TAAs from the necrotic area of the tumor, in conjunction with an 

efficient TAA uptake by antigen-presenting cells, may result in the strong triggering and 

maintenance of the antitumor immune response observed here. The results of the present 

investigation reveal the fundamental role of T cells, and especially of the CD4+ subset, as effectors 

of the antitumor immune response generated by L19mTNFa in combination with melphalan. The 

role of effector CD8+ CTLs, clearly present as shown by the strong cytolytic response against 

tumor targets of different histologic origin (Fig. 3), seems to be less important in the in vivo 

rejection of WEHI-164 tumor in the Winn assay with CD8-depleted immune splenocytes (Fig. 5D). 

No major role in the effector response seems to be played by either B cells or natural killer cells 

(Fig. 5D). CD4+ T helper cells are required for the optimal induction of both humoral and cellular 

effector mechanisms (43). T helper–derived cytokines, particularly T helper 1–type cytokines, are 

fundamental for the maturation and functional competence of CTLs and B cells, as well as for the 

activation of antigen-presenting cells (44). Our results also indicate that in L19mTNFa/melphalan 

tumor–cured mice CD4+ T cells produce large amounts of IFN-g which, in addition to its important 

effects on the triggering and maintenance of immune effector cells, may exert an antiangiogenic 

effect and therefore play a role in the inhibition of tumor growth (45). It is noteworthy that the 

CD4+ T cells of tumor-rejecting mice also produce large amounts of interleukin-4, a T helper 2–

type cytokine. Although some authors report that polarized T helper 2 responses promote, rather 

than inhibit, tumor growth and spread (46, 47), other investigators have observed mixed T helper 

1/2 immune responses that correlate with the tumor rejection (44, 48). The potent T cell–mediated 

immune response against the different types of tumors achieved with this treatment indicates that 



the immune response is directed against TAAs shared by tumors of different histologic origin. In 

fact, the existence of TAAs shared by different types of tumor has been reported for both mouse and 

human tumors (49). Furthermore, considering that TNFa has also shown a potent adjuvant activity, 

L19TNFa could be systemically administered to cancer patients in combination with vaccination 

approaches. This prospect may represent the rationale for a new therapeutic strategy against human 

cancer based on the targeted delivery of TNFa to tumor blood vessels.  
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