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Abstract (200 words) 

 

Purpose: The correlation between glutamine metabolism and oncogene expression in cancers has lead to a 

renewed interest in the role of glutamine in cancer cell survival. Hyperpolarized [5-13C]glutamine is 

evaluated as a potential biomarker for non-invasive metabolic measurements of drug response in prostate 

cancer cells.  

Methods: Hyperpolarized [5-13C]glutamine is used to measure glutamine metabolism in two prostate cancer 

cell lines (PC3 and DU145) before and after treatment with the two natural anticancer drugs resveratrol and 

sulforaphane. An invasive biochemical assay simulating the hyperpolarized experiment is used to 

independently quantify glutamine metabolism.  

Results: Glutamine metabolism is found to be 4 times higher in the more glutaminolytic DU145 cells 

compared to PC3 cells under proliferating growth conditions by using hyperpolarized [5-13C]glutamine as a 

noninvasive probe. A significant decrease in glutamine metabolism occurs upon apoptotic response to 

treatment with resveratrol and sulforaphane.  

Conclusion: Hyperpolarized NMR using [5-13C]glutamine as a probe permits the noninvasive observation of 

glutaminolysis in different cell lines and under different treatment conditions. Hyperpolarized [5-
13C]glutamine metabolism thus is a promising biomarker for the non-invasive detection of tumor response to 

treatment, as it directly monitors one of the hallmarks in cancer metabolism - glutaminolysis - in living cells. 

 

Word count: 196  



Abbreviations 

 

AUC, Area under the curve; CAD, Caspase-Activated DNase; DNP, dynamic nuclear polarization; DON, 6-

diazo-5-oxo-L-Norleucine; DU145; (DU 145), Human prostate adenocarcinoma cell line; GLS, glutaminase 

enzyme (EC 3.5.1.2); LDH, Lactate; MTT, 3-(4,5-dimethylthiazol-2-yl)diphenyltetrazolium bromide; mU, 

enzyme unit, nano mole substrate converted per minute; NAD+, Nicotinamide adenine dinucleotide oxidized 

form; NADH, Nicotinamide adenine dinucleotide reduced form; OPA, o-Phthalaldehyde; Ox063, trityl 

radical; PC3, (PC-3) Human prostate adenocarcinoma cell line; Q, glutamine; RSV, resveratrol; SFN, 

sulforaphane;  

  



Introduction 

Prostate cancer is the second most common cause of cancer-related death among men in 

developed countries, second only to lung cancer (1). Clinical management of prostate cancer, however, 

remains difficult due to the biological diversity of prostate cancers. This diversity necessitates highly varied 

treatment approaches, ranging from active surveillance to radiation therapy and surgical removal (2,3), often 

with adverse side effects (4). Prostate cancer cells are only modestly responsive to the cytotoxic effects of 

currently available chemotherapeutic agents. Increased concentrations of these cytotoxic drugs fail to 

improve the response to clinical treatments and can lead to resistance to apoptosis in prostate cancer cells (5). 

Toxicity to normal cells is an important issue in selection of therapies and one possible strategy evaluates 

natural compounds that display cancer-specific cytotoxicity (6). Resveratrol and sulforaphane are two 

examples of natural compounds that have attracted attention for their selective toxicity to cancer cells and for 

their ability to sensitize cancer cells to other therapies (7,8). Both Resveratrol and sulforaphane have been 

shown to inhibit growth and induce apoptosis in tumor cells as well as in tumor animal models (9-12). 

Sulforaphane is in clinical trial phase II treating patients with recurrent prostate cancer (13). While 

resveratrol has not yet been in clinical trials, phamacokinetic studies in humans have been performed paving 

the road for testing its anti-carcinogenic effects in humans (14).  

Metabolic hallmarks of cancer cells may lead to the identification of biomarkers needed for 

the evaluation and development of prostate cancer therapies. In addition to increased glycolysis, cancer cells 

often show increased lipogenesis and glutamine metabolism (15). Catabolism of glutamine (glutaminolysis) 

takes place in all proliferating cells, but certain cancer cells exhibit a particular glutaminolytic phenotype that 

makes them highly dependent on glutamine for energy production 16). Cell proliferation and metabolism are 

tightly linked cellular processes. For some cancer cells, activation of the phosphoinositide 3-kinase  (PI3K) 

signalling pathway is instrumental in causing increased levels of glucose uptake and leading to a significant 

up regulation of cellular glucose metabolism. In other cancer cells, the same signalling pathway leads to an 

inefficient glutamine metabolism rather than an excess glucose metabolism (17). The latter types of cancer 

cells cannot survive, when there is not enough extra glutamine and are therefore said to be "addicted" to 

glutamine (17). Both resveratrol and sulphoraphane have been shown to act via the PI3K signalling pathway 

(12,13, 18). PI3K occupies a central role in several cellular processes critical for cancer progression, 

including metabolism, growth, survival, and motility. Among other targets PI3K regulates mTORC1, which 

depends on glutamine for maximal activation (17) and also the cytotoxic function of resveratrol has been 

correlated to the presence of glutamine during cell culturing (6). One hypothesis of this paper is thus that 

cellular glutaminolysis may be a biomarker for drug treatment with resveratrol and sulphoraphane. 

 

 Due to the biological diversity of prostate cancer and the lack of non-invasive clinical tools 

that can track tumor progression and effect of therapy, repeated invasive examinations of the patient is 



currently inevitable. Technologies for non-invasive, reliable and accurate measurements of tumor 

progression and antitumor effects would provide a significant advance in prostate cancer treatment. To this 

end, a recent technological improvement in magnetic resonance (MR), hyperpolarized 13C-MR (19), has 

radically increased the sensitivity of MR and in consequence allowed real time metabolism of 13C-labeled 

substrates and their metabolites to be monitored in vivo (20). In particular, this new technology has proven 

promising in the diagnosis of cancer (21). Recently, hyperpolarized [1-13C]pyruvate has been used as a 

biomarker for the diagnosis of prostate cancer in a clinical trial (22). Although the necessary imaging 

technologies are available, the development of treatment strategies for prostate cancer is challenged by the 

lack of relevant biomarkers predictive of treatment efficacy and useful for therapy tracking (23). 

Development of biomarkers that can predict response to treatments will allow improving the efficiency of 

therapies or help avoid unnecessary treatments, while facilitating the evaluation of potential novel 

breakthrough therapies.  

In the current study, we evaluate noninvasive observations of glutamine metabolism as a 

biomarker for the treatment of prostate cancer cells. Hyperpolarized 13C NMR measurements were used to 

probe the metabolic conversion of hyperpolarized [5-13C]glutamine to [5-13C]glutamate in aggressive living 

prostate cancer cell lines (DU145 and PC3). Noninvasive tracking of glutaminolysis shows differences in the 

glutamine metabolism between DU145 and PC3 cells. In agreement with the high glutaminolytic activity, 

both cell lines only proliferate in the presence of glutamine in the medium, thus showing that glutamine 

metabolism is a significant substrate for both DU145 and PC3 cells. Glutaminolysis was ~4fold higher in 

DU145 cells, as validated by disruptive assays. The different glutaminolytic activity of both prostate cancer 

cell lines was further tracked upon exposure to two natural anticancer agents, resveratrol and sulforaphane. 

Treatment with both drugs was more effective in the more glutaminolytic cell line DU145. Thus, 

noninvasive observations of glutamine metabolism are prospective biomarkers for cell line specific 

differences in glutamine metabolism and response to therapy.  

 

Methods 

Cell culture and treatments 

DU145 and PC3 cells (America Tissue Culture Collection) were initially cultured in RPMI 1640 medium 

with 10% FBS, 100 units/ml penicillin, 100 µg/ml streptomycin, 2 g/L glucose, and 0.3 g/L L-glutamine 

(Sigma-Aldrich, St. Louis, MO, USA) at 37°C in a 5% CO2 atmosphere. For cell experiments, DMEM low 

glucose medium (with or without glutamine) was supplemented with 10% FBS, 100 units/ml penicillin, 100 

µg/ml streptomycin and 2 g/L sodium bicarbonate. The glucose concentration in DMEM low glucose media 

was increased up to 2 g/L glucose by adding the proper volume of D-(+)-Glucose solution of 100 g/L 

(Sigma-Aldrich). For cell counting experiments, cells were plated in 24 multi well plates at cell densities of 

1.5x104/well and 3x104/well for DU145 and PC3 cells, respectively. For MTT, Nucleosoma and ATP assays, 



cells were plated in 96 multi well plates at densities of 7.5x103/well and 12x103/well for DU145 and PC3, 

respectively. For assays of glutamine metabolism, cells were grown in T75 flasks prepared by seeding 2x106 

cells.  

 

 

Cell treatment 

Resveratrol and sulforaphane were dissolved in DMSO (Sigma-Aldrich) to obtain 100 mM and 80 mM stock 

solutions, respectively. Cells were plated as described above in full growth media (DMEM 2 g/L glucose, 2 

mM glutamine). Following 24 h attachment, the medium was discarded and serial dilutions of the two drugs 

prepared in growth medium were added to cells at concentrations of 25, 50, 100, 200, 300, 400 µM of 

resveratrol and 5, 10, 20, 40 µM of sulforaphane. Cells cultured in medium containing 0.05 % (for 

sulforaphane experiments) or 0.4% DMSO (for resveratrol experiments) served as control groups. 

 

Cell counting 

Once harvested by trypsination, cells were pelleted and resuspended in an appropriate volume of PBS, then 

diluted 1:2 with trypan blue (Sigma-Aldrich) and counted with a hemocytometer.  

 

ATP assay 

CellTiter-Glo assay was purchased from Promega (Madison, WI, USA). Measurements were made 

according to the manufacturer’s instructions. Briefly, plates containing 25x103 cells in 100 µL per well were 

removed from the incubator and allowed to equilibrate at room temperature for 20 minutes. An equal volume 

of CellTiter-Glo reagent was added directly to the wells. Plates were incubated at room temperature for 30 

minutes on a shaker and luminescence was measured on a microplate reader (PerkinElmer, Waltham, MA, 

USA).  

 

MTT assay 

The MTT assay measures the cellular capacity to reduce 3-(4,5-dimethylthiazol-2-yl)diphenyltetrazolium 

bromide (Sigma-Aldrich) to blue formazan products by various oxidoreductase enzymes (24, 25). Cells were 

grown in 96 well plates and after removing the supernatant, 100 µL of MTT solution (0.5 mg/mL in growth 

media) were added to each well. After incubation for 4 h, the resultant formazan crystals were dissolved in 

isopropanol (100 µL) and the absorbance intensity measured by a microplate reader at 570 nm. All 

experiments were performed in quadruplicate, and the MTT conversion (%) was expressed as a percentage 

relative to the control cells.  

 

Nucleosome ELISA 



Nucleosome Cell Death ELISA kit was acquired by Roche Applied Sciences (Germany) and used according 

to the instructions. Cells were grown as described above in 96 multiwell plates. After 24 h of resveratrol or 

sulforaphane treatments, cells were lysed with the lysis buffer supplied in the kit. Lysed cells were pelleted 

with a 200 g centrifugation for 10 minutes. 20 µL of supernatants were incubated in ELISA wells with 80 µL 

immunoreagent per well. ELISA assays were quantified at a detection wavelength of 405 nm. The 

enrichment of mono- and oligonucleosomes released into the cytoplasm of cell lysates was detected by 

biotinylated anti-histone- and peroxidase-coupled anti-DNA-antibodies and was calculated as follows, 

enrichment factor = absorbance of sample cells/absorbance of control cells. Both sample and control values 

were first corrected by subtracting the blank absorbance. Enrichment factor was used as a parameter of 

apoptosis (26) and is given as the mean ± SD of three independent experiments performed in triplicate. 

 

 

Metabolic conversion of glutamine with RP-HPLC assay 

Cells were grown in T75 flasks, harvested and assessed for viability by trypan blue exclusion. For lyzed 

cells, the harvested cells were submitted to three rounds of freeze-thawing at -80 °C before continuing with 

the assay. After centrifugation, cells were suspended by adding 225 µL 0.1 M NaH2PO4 pH 7.5, 15 µL 100 

mM Norvaline (internal concentration reference) and 60 µL 100 mM Glutamine (or 60 µL H2O in blank 

samples). Samples containing 0.5 million cells were incubated for 30 minutes at 37°C, then 150 µL 6% 

perchloric acid were added to stop the reaction and samples were put on ice for 15 min. Finally, 14 µL 

saturated K2CO3 were added to re-equilibrate pH and samples were pelleted at 15000 g for 15 min at 4°C. 

Supernatants were filtered with 0.2 µm PVDF syringe filter and analysed by reverse-phase HPLC as 

described (27). No de-amidation of glutamine is occurring using this mild protein denaturing procedure 

allowing the determination of glutamate concentrations. Three replicates for blanks and samples were 

prepared for each condition.  

 

In vitro hyperpolarized 

 13C-NMR polarization medium was prepared as described (28). In brief, Ox063 radical (Albeda Research, 

Denmark ) and the gadolinium complex Gadoteridol (Bracco Imaging Spa, Italy) were dissolved to 35 mM 

and 4 mM, respectively, in anhydrous DMSO. Cesium hydroxide monohydrate (42.0 mg, 0.25 mmol) and 

[5-13C]glutamine (35.3 mg, 0.24 mmol) (Cambridge Isotope Laboratories, Tewksbury, USA) were weighed 

into a microcentrifuge tube. The two solids were briefly whirl-mixed and polarization medium (52 µL, 57.5 

mg) was added. The resulting slurry was sonicated and whirl-mixed until a solution was obtained. The 

approximate density of the liquid sample was ~1.5 g/mL and the resulting concentrations were: Ox063 

radical 20 mM, gadolinium 2.3 mM and 13C 2.7 M. 30 µmol of a [5-13C]glutamine sample prepared 

according to the protocol described above were hyperpolarized and dissolved in 5 mL 40 mM phosphate 



buffer pH 7.0 with addition of HCl to neutralize the base. The pH after dissolution was 7.1. The sample was 

hyperpolarized under DNP conditions at 1.2 K and 3.35 T in a prototype polarizer (19). For cellular NMR 

assays, cells were harvested by trypsinization and counted. Cell viability was assessed with trypan blue 

exclusion. 10 million cells were dissolved in 500 µl 40 mM phosphate buffer of pH 7.3 and placed in a flat 

bottom 10 mm NMR tube adjusted in the NMR spinner to cover the active volume. The sample tube, with a 

connected inlet tubing, was placed into a 14.1 T magnet and equilibrated for 5 minutes at 310 K. 1 ml of the 

dissolved hyperpolarized [5-13C]glutamine was injected through the tubing, resulting in a glutamine 

concentration of 3.5 mM in the cell suspension. A time series was acquired by applying a 20 degree pulse 

every 2 s and 48 time points were recorded. The acquisition was started just before the injection of the 

hyperpolarized [5-13C]glutamine. 

 

 

Kinetic fitting 

The data from the data sets containing the signals from glutamine and glutamate were first corrected for the 

effect of pulsing by dividing the data sets with cos(a)n where a is the flip angle (20°) and n is the pulse 

ordinal number. The corrected data were then fitted to the following two differential equations: 

 

1) dS/dt = -k*S(t) – 1/T1S*S(t) 

 

2) dP/dt = k*S(t) – 1/T1P*P(t) 

 

Here, S denotes the signal from substrate glutamine, T1S denoted the T1 of glutamine, P denotes the signal 

from glutamate and T1P denotes the T1 of glutamate. The T1 of glutamine was determined from the decay of 

the substrate signal (20 ± 2 s). The T1 of glutamate was fitted to 24 ± 2 s. All fitted curves had a coefficient 

of determination R2 above 0.91.  

 

Data Analysis 

Each experiment was repeated at least in triplicate and means ± SD for each value were calculated. Statistical 

analysis of the results was performed using the Student’s t-test and one-way ANOVA, followed by Dunnett’s 



multiple comparison test. Significant differences are indicated with “*” (P<0.05) in all figures. All the 

statistical analyses were performed using the statistical package GraphPad Prism. Spectral analysis was 

performed using the software MNova (Mestrelab Research, Santiago de Compostela, Spain).  



Results 

 

Glutamine addiction of prostate cancer cells 

PC3 and DU145 are widely used aggressive human prostate cancer cell lines derived from different origin. 

Both cell lines have been shown to exhibit a strong dependence on glutamine for proliferation (29,30). This 

dependence may be connected to a glutaminolytic phenotype of the cell type. Cell growth characteristics 

were evaluated for PC3 and DU145 cell lines to compare their dependence on glutamine for growth (degree 

of glutamine addiction). Figure 1 shows the growth of DU145 and PC3 cells in the absence and in the 

presence of glutamine, as evaluated by the cell number and cell viability (MTT conversion). The growth of 

both cell lines was diminished by glutamine withdrawal in a time-dependent manner. A significant decrease 

of cell proliferation was reached after 72 h of glutamine withdrawal (P<0.05) in both cell types (Figure 

1(A,B)). Glutamine depletion affected MTT conversion relative to the decrease in cell number in both cell 

lines as shown in Figure 1(C,D). In DU145 cells, MTT conversion significantly decreased by 36 ± 1.2 % 

already after 24 h (P<0.05), while in PC3 cells MTT conversion significantly decreased (by 28 ± 0.77 %) 

only after 48 h (P<0.05). ATP levels in the two cell types were measured to evaluate, if the cell proliferation 

arrest occurred as a result of reduced mitochondrial activity. Cellular ATP was strongly reduced in DU145 

cells during glutamine restriction relative to control conditions (by 77,7 ± 1.5% at 48 h and 79.4 ± 2.1 % at 

96 h), while it was moderately diminished in PC3 (by 29.7 ± 1.03% at 48 h and 34.9 ± 5.9 % at 96 h). 

Glutamine depletion is clearly able to introduce proliferation arrest in PC3 and DU145 cells, thus underlining 

the importance of this metabolic pathway for both cell types to propagate.  

 In order to noninvasively probe glutamine metabolism in real time with hyperpolarized [5-
13C]glutamine in prostate cancer cells, a protocol was adapted that we developed previously for liver cancer 

cells (28). [5-13C]glutamine was polarized to approximately 30 % in the solid state. The final concentration 

of the substrate in the NMR tube was 4 mM. Figure 2A displays the hyperpolarized 13C NMR experiment 

after injection of [5-13C]glutamine into a cell suspension of DU145 cells. A time series of 1D 13C NMR 

spectra shows the build-up of the metabolic product signal ([5-13C]glutamate) and the decay of a signal with 

similar chemical shift originating from [1-13C]pyroglutamate,. The pyroglutamate signal is not a result of 

metabolism, but results from a chemical impurity present in commercially available [5-13C]glutamine (28). A 
13C NMR spectrum of the cell suspension taken 20 seconds after injection of hyperpolarized substrate is 

displayed separately in Figure 2B, showing the substrate peak from [5-13C]glutamine and the natural 

abundance signal from the C1 of glutamine, together with the intracellular metabolite signal which is 

detected at a signal to noise ratio of ~75. The T1 of [5-13C]glutamine at 37 °C and 14.1 T was determined 

upon correction for the loss of signal due to excitation pulses to 20 ± 2 s.  

 

 



Glutamine addiction correlates to glutamine metabolism in prostate cancer cells  

The proliferative dependency of aggressive prostate cancer cells on glutamine availability supposedly 

correlates to activated oncogenes that influence glutamine catabolism (29). The first metabolic step in 

glutamine catabolism is its conversion to glutamate in a reaction catalyzed by the enzyme glutaminase. 

Glutamate forms from the hyperpolarized [5-13C]glutamine probe by two catalysed steps, the cellular uptake 

and the glutaminase catalysed reaction. It was therefore evaluated, if hyperpolarized [5-13C]glutamine 

metabolism is a possible biomarker for the glutamine dependence in prostate cancer cells. The formation of 

the metabolic product [5-13C]glutamate was compared between the two prostate cancer cell types and an 

evaluation of the area under the curve (AUC) is shown in Figure 2D. The AUC was 37.3 ± 4.8 a.u. in DU145 

cells whereas it was 9.0 ± 1.0 a.u. or approx. 4 times lower in PC3 cells. The kinetic profile is similar for the 

DU145 and the PC3 cells, although the latter show less product formation (Figure 2C). The decay over time 

of the hyperpolarized substrate ([5-13C]glutamine) is identical in experiments performed with the two cell 

types, because the decay is dominated by relaxation rather than metabolism.  

The hyperpolarization data indicating different glutamine metabolism in DU145 and PC3 cells were 

validated by conventional biochemical methods. To mimic the hyperpolarization protocol, glutamine was fed 

to whole cells (5x105) enabling a quantification of combined glutamine uptake and metabolism to glutamate. 

The quantification was made with RP-HPLC after disrupting the cells with perchloric acid. Production of 

glutamate from glutamine was determined as 30±2 and 11±4 mU/million cells, in DU145 and PC3, 

respectively (Figure 2E). In consequence, both the non-invasive hyperpolarized NMR assay and the 

disruptive assay show a 3-4-fold larger metabolism of glutamine to glutamate in DU145 cells, which are 

more addicted to glutamine than PC3 cells. The measured glutamine to glutamate conversion was stable 

under the chosen growth conditions in both cell types when measured at 48 and 96 hours.  

 

Resveratrol and sulforaphane treatment in PC3 and DU145 

DU145 and PC3 cells were exposed to increasing concentrations of resveratrol and sulforaphane to 

determine, if the degree of glutamine addiction is reflected in the response to drug treatment. The effect of 

treatment was measured in both cell types as a decrease in cell proliferation, a decrease in MTT conversion 

and as an induction of apoptosis (Figures 3 and 4). Dose response curves were performed to identify the 

appropriate drug concentration to induce apoptosis. DU145 was sensitive to resveratrol treatment, with 

significant apoptosis achieved at 50 µM (p<0.05), and a maximum of 3.5 ± 0.51-fold increase in nucleosome 

release into the cytoplasm obtained at 200 µM. PC3 cells were less responsive to resveratrol-induced 

apoptosis showing significant apoptosis with 1.8 ± 0.86-fold increase in nucleosome release into the 

cytoplasm, only at the highest tested concentrations (300 and 400 µM; see Figure 3F). When DU145 cell 

were treated with resveratrol at high concentration (400 µM, Figure 3E) this resulted in a decrease of 

apoptotic enrichment factor. This effect may be due apoptotic cells progressed into late apoptotic 



cells (secondary necrotic cells). In this state the cell membrane becomes more permeable, resulting 

in the leakage of intracellular molecules such as nucleosomes release into the cytoplasm (31). 

Alternatively high concentration of an apoptosis-inducing stimulus could induce necrosis rather 

than apoptosis (32).  

 
Antiproliferative action of resveratrol in DU145 cells resulted in a 50% reduction (IC50) at 100 µM. In PC3 

cells, no IC50 could be determined with reasonable drug concentrations (33). The MTT conversion was 

significantly decreased to 80.82 ± 4.06 % (P<0.05) at 50 µM in DU145 cells, while a significant decrease to 

80.6 % was achieved in PC3 cells only at 100 µM (P<0.05). Similarly, the effects of sulforaphane on cell 

growth, MTT conversion and apoptosis in DU145 and PC3 cells are shown in Figure 4. Treating DU145 

cells with 5-20 µM sulforaphane resulted in maximum nucleosome release (5.8 ± 1.7 fold increase) into the 

cytoplasm at 5 µM. At this concentration of sulforaphane, cell numbers and mitochondrial activities were 

significantly reduced to 55.0 % (P<0.05) and 63.3 % (P<0.05) of the control. In PC3 cells, apoptosis was 

observed in a concentration-dependent manner with a maximum of 3.17 ± 0.55 fold at 40 µM. At this 

concentration of sulforaphane, cell numbers and mitochondrial activities were significantly reduced to 40.0 

% (P<0.05) and 33.4 % (P<0.05) of the control. Taken together, these data suggested that both drug 

treatments are preferentially cytotoxic to the more glutamine addictive DU145 cell type. 

 The potential of hyperpolarized [5-13C]glutamine to non-invasively monitor the effect of drug 

treatment in prostate cancer cells was evaluated. Metabolic build-up curves of hyperpolarized [5-
13C]glutamate were acquired after administration of hyperpolarized [5-13C]glutamine substrate to either 

DU145 control cells or cells treated with 200 µM resveratrol (Figure 5A). Areas under the curves were 

determined and are shown in Figure 5B. Following treatment, a decrease by 47 % (n=3, P< 0.05) in AUC 

was observed. The metabolic conversion of glutamine was also quantified using the RP-HPLC based 

biochemical assay, Figure 5C. In DU145 cells a significant decrease by 59.3 ± 4.7 % (P<0.05) was observed 

upon treatment with 200 uM resveratrol. The two assays show a similar and much reduced metabolism of 

glutamine to glutamate in the glutamine dependent cell type, DU145. Resveratrol treatment (200 µM) of PC3 

cells resulted in a reduction in produced glutamate by 39.6 ± 2.2 % (P<0.05). Glutamine metabolism was 

similarly quantified for sulforaphane treated cells at the two concentrations with maximum apoptotic effect 

(5 µM for DU145 and 40 µM for PC3). Under these conditions the glutamine metabolism was significantly 

reduced by 55.5 ± 4.2 % (P<0.05) in DU145 and 50.8 ± 6.3 % (P<0.05) in PC3 compared to untreated cells.  

 A simple kinetic model was applied (see Methods section) in order to quantitatively compare 

hyperpolarized 13C-MR and biochemical measurements of glutamine metabolism. This model allowed the 

extraction of the amount of hyperpolarized [5-13C]glutamate produced in the two prostate cancer cell types to 

210 ± 21 amol/s/cell in DU145 cells and 40 ± 10 amol/s/cell in PC3 cells. Using the same model, 



hyperpolarized [5-13C]glutamate formation in DU145 was determined for resveratrol treated cells as 100 ± 

12 amol/s/cell. 

 

Discussion  

The glutaminolytic phenotype shared by many tumor cell types has been associated with a cellular addiction 

to glutamine for the maintenance of cell viability (34). Such glutamine addiction and a glutaminolytic 

phenotype have been reported for the human prostate carcinoma cell types, PC3 and DU145 (29,30). Our 

results confirmed that both cell types are highly dependent on glutamine for proliferation and showed the 

more aggressive prostate cancer cell type, DU145, to be more strongly dependent on glutamine for 

proliferation. While examples have been reported for cells with dramatically changed viability upon 

glutamine withdrawal (34), the prostate cancer cell types DU145 and PC3 are able to survive in glutamine 

deficient medium. Glutamine deprivation instead resulted in proliferation arrest and in a growth correlated 

decrease in MTT conversion in both prostate cancer cell types. The MTT conversion was almost halved in 

DU145 cells after 24 h in glutamine depleted medium (Figure 1C), while it was not significantly changed in 

the PC3 cells at this time point (Figure 1D), suggesting that the DU145 cells are more glutamine dependent 

than PC3 cells. That DU145 cells are more addicted to glutamine than PC3 cells is further supported by a 

time dependent increase in PC3 cell viability for cells grown in glutamine deficient medium (Figure 1D). It 

seems that PC3 in contrast to DU145 cells pick up over time and adapt to the glutamine free growth 

condition. 

The higher sensitivity of DU145 cells to glutamine withdrawal was correlated to a significantly higher 

degree of glutaminolysis in DU145 compared to the PC3 cells, as measured by glutamine metabolism to 

glutamate. The metabolic conversion of hyperpolarized [5-13C]glutamine to hyperpolarized [5-13C]glutamate 

was quantified and proved to be 3-4 times higher in DU145 cells than in PC3 cells. The rates of glutamate 

production obtained in the hyperpolarized experiments are consistent with rates obtained by the conventional 

biochemical method (210 amoles/s/cell and 500 amoles/s/cell, respectively, in DU145 cells and 40 

amoles/s/cell and 180 amoles/s/cell, respectively, in PC3 cells). The rates calculated from the hyperpolarized 

experiments are generally lower than those quantified with RP-HPLC from perchloric acid extracts. The 

difference in the measured rates may be related to the different conditions used in the two assays. The 

applied glutamine concentration, although high in both assays to ensure saturation of the transport into the 

cells, differ (3.5 mM and 20 mM respectively in the hyperpolarized and RP-HPLC experiments) and the 

assay time is much shorter in the hyperpolarized experiments (1.5 min) compared to the conventional 

biochemical assay (30 min).  
The glutamine metabolism is in both assays measured as a result of a combination of an active 

cellular uptake of glutamine and as a result of glutaminase activity. A situation where the uptake of 

glutamine is rate limiting and different in the two cell types could explain why the reported rates obtained 



with the two assays (hyperpolarized assay during 1.5 minute and conventional biochemical assay during 30 

minutes) differs.  In support of an uptake rate limitation in prostate cell glutaminolysis a three times 

increased glutamate production was measured in disrupted DU145 cells (1516 amoles/s/cell) and a two times 

increase in PC3 cells (360 amoles/s/cell). In general, the metabolic conversion of glutamine is high in both 

prostate cancer cell types. The conversion rate measured in PC3 cells is comparable to the rate recently 

reported for the glycolysis in PC3 cells (35). This high rate of glutamine metabolism in prostate cancer cells 

could be the result of an increased cellular glutamine transport, as reported for malignant hepatoma cells 

(36,37) and a consequence of higher glutaminase expression (29)  

 We exposed DU145 and PC3 cells to two well-established natural systemic drugs, resveratrol 

and sulforaphane, that are suggested to act on glutamine dependent cellular regulators. Metabolic response to 

treatment was measured for drug doses matched with maximum apoptotic effect and cellular proliferation 

arrest to 50%. At these drug concentrations, glutamine metabolism was approximately half of that in the 

untreated cells (decreased by 59.3 ± 4.7 % and 55.5 ± 4.2 % in DU145 cells using resveratrol (200 µM) and 

sulforaphane (5 µM), respectively and by 50.8 ± 6.3 % in PC3 cell using sulforaphane (40 µM)). The high 

rate of glutamine metabolism in prostate cancer cells, in particular in the highly glutaminolytic DU145 cells, 

made it possible to monitor and quantify hyperpolarized [5-13C]glutamine metabolism also in drug treated 

cells. In resveratrol treated DU145 cells the rate of glutamate production obtained from hyperpolarized [5-
13C]glutamine was 100 amoles/s/cell, which is slightly below half of the rate measured in the untreated cells 

(210 amoles/s/cell). This change in glutamine metabolism upon treatment is consistent with the biochemical 

measurements (untreated 500 amoles/s/cell and treated 200 amoles/s/cell). The significant effect on 

glutamine metabolism in response to natural drugs shows that glutamine metabolism is a potentially strong 

indicator of the effect of this type of therapy on prostate tumour cells. The earlier response of DU145 cells to 

the natural drugs is consistent with a more glutaminolytic phenotype in DU145 than in PC3 cells. 

Resveratrol treatment did not yield effects on apoptosis and cell proliferation in PC3 cells, while a significant 

decrease in glutamine metabolism by 39.6 ± 2.2% was measured in PC3 cells treated with 200 µM 

resveratrol. The decrease in glutamine metabolism could be correlated to a decrease in mitochondrial 

activity. Glutamine metabolism thus could provide an early biomarker of cellular response to drug treatment 

that is detectable before effects upon cell proliferation and cell death can be detected.  

Our interest in this study has been to evaluate hyperpolarized [5-13C]glutamine metabolism to 

hyperpolarized [5-13C]glutamate as a possible predictive biomarker for the efficacy of prostate cancer 

therapy. The detection of glutamine metabolism in prostate cancer with hyperpolarized [5-13C]glutamine was 

previously unsuccessful both in animals and in cells (38, 39). We show here that the use of an improved 

protocol shown to work in a rat liver cancer model  (28) allows us to follow hyperpolarized [5-13C]glutamine 

metabolism in glutaminolytic prostate cancer cells.  



A suitable noninvasive predictive biomarker of treatment efficacy in prostate cancer ideally 

should have various characteristics: The biomarker should provide significant functional contrast between 

prostate cancer and healthy tissue, it should correlate with a wanted effect of a therapy and it should be 

quantifiable in the relevant cells or tissue (23). This study shows that real time, non-invasive metabolism of 

hyperpolarized [5-13C]glutamine meets these demands as the metabolism of a hyperpolarized [5-
13C]glutamine probe (i) is particularly prominent in highly glutaminolytic prostate cancer cell types, (ii) 

correlates to drug treatment efficacy and (iii) can be quantified in highly glutaminolytic isolated cells.  

Metabolic reprogramming renders cancer cells highly dependent on specific metabolic 

enzymes or processes. As a predictive biomarker, glutamine metabolism offers great promise due to its 

central role in cancer metabolism. In consequence glutamine metabolism has previously been suggested as 

biomarker in tumors that fail to show high aerobic glycolysis (40). Due to the excellent resolution of 

magnetic resonance spectroscopy, metabolism to glutamate can be probed by hyperpolarized NMR methods. 

The noninvasive measurement of glutamine metabolism and its sensitivity to drug treatment, detected herein 

with hyperpolarized [5-13C]glutamine in living prostate cancer cells, therefore potentially provides additional 

diagnostic and prognostic information for drug evaluation and treatment strategies in cancer. 
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Figure captions 

 

Figure 1. Effect of glutamine withdrawal on cell proliferation. DU145 and PC3 cells were cultured with 

(control) or without glutamine ((-) Q) for 4 days. (A-B) Cell counts and (C-D) MTT assays were conducted 

every 24 h. The data represent means ± SD values from three independent experiments performed in 

triplicate. Significant differences are indicated by * P<0.05.  

 

Figure 2. (A) Real time glutamine metabolism in DU145 cells using hyperpolarized [5-13C]glutamine. (B) 

Single spectrum taken 20 s after start of the experiment shown in A), where [5-13C]glutamate has its 

maximum. (C) Metabolic build-up curves of hyperpolarized [5-13C]glutamate from the 2 cell lines (DU145 

and PC3). (D) Area under the curve of the build-up curves from [5-13C]glutamate (n=3). (E) Glutaminase 

activity measured by RP-HPLC under proliferating conditions. The data represent the mean ± SD from 2 

independent experiments performed in triplicate (n=6). Significant difference between DU145 and PC3 cells 

are indicated by “*” (P<0.05). 

 

Figure 3. Effect of resveratrol on survival of prostate cancer cells. (A) DU145 and (B) PC3 cells were treated 

with resveratrol at indicated concentrations for 24 h in DMEM. At the end of the incubation time, cells were 



harvested by trypsinization and were counted. (C-D) Effect of resveratrol on MTT conversion. This assay 

was evaluated by measuring the amount of formazan crystals after resveratrol exposure in DU145 (C) and 

PC3 (D) cells. (E-F) Cell lysates were analyzed by nucleosome ELISA in DU145 (E) and PC3 (F) cells. The 

data represent the means ± SD values from three independent experiments performed in triplicate. 

Significant differences from control (0.2% DMSO) values are indicated by “*” (P<0.05). 

 

Figure 4. Effect of sulforaphane on the survival of prostate cancer cells. (A) DU145 and (B) PC3 cells were 

treated with sulforaphane at indicated concentrations for 24 h in DMEM. At the end of the incubation time, 

cells were harvested by trypsinization and were counted. (C-D) Effect of resveratrol on MTT conversion. 

This assay was evaluated by measuring the amount of formazan crystals after sulforaphane exposure in 

DU145 (C) and PC3 (D) cells. (E-F) Cell lysates were analyzed by nucleosome ELISA in DU145 (E) and 

PC3 (F) cells. The data represented the means ± SD values from three independent experiments performed in 

triplicate. Significant differences from control (0.025% DMSO) are indicated by “*” (P<0.05). 

 

Figure 5: (A) Metabolic build-up curves of hyperpolarized [5-13C]glutamate from untreated and treated 

DU145 cells. (B) Area under the curve of the build-up curves from [5-13C]glutamate (n=3) in control and 

resveratrol treated DU145 cells (200 µM). Glutaminase activity for DU145 and PC3 cells, expressed as mU 

of glutamate per million cells, measured after 24 h treatment with 200 µM resveratrol. The data represent the 

mean ± SD from 2 independent experiments performed in triplicate (n=6). Significant difference between 

untreated vs. treated DU145 is indicated by “*” (P< 0.05).  
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