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Abstract

Governments borrow funds to finance the excess of cash payments or interest pay-
ments over receipts, usually by issuing fixed income debt and index-linked debt. The
goal of this work is to propose a stochastic optimization-based approach to deter-
mine the composition of the portfolio issued over a series of government auctions for
the fixed income debt, to minimize the cost of servicing debt while controlling risk
and maintaining market liquidity. We show that this debt issuance problem can be
modeled as a mixed integer linear programming problem with a receding horizon.
The stochastic model for the interest rates is calibrated using a Kalman filter and
the future interest rates are represented using a recombining trinomial lattice for
the purpose of scenario-based optimization. The use of a latent factor interest rate
model and a recombining lattice provides us with a realistic, yet very tractable sce-
nario generator and allows us to do a multi-stage stochastic optimization involving
integer variables on an ordinary desktop in a matter of seconds. This, in turn, facil-
itates frequent re-calibration of the interest rate model and re-optimization of the
issuance throughout the budgetary year allows us to respond to the changes in the
interest rate environment. We successfully demonstrate the utility of our approach
by out-of-sample back-testing on the UK debt issuance data.

1 Introduction

Governments borrow funds to finance the excess of cash payments over re-
ceipts, to pay interest on outstanding debt and to refinance maturing debt.
The formulation of government debt strategies requires analyzing a complex
dynamic inter-temporal problem as future costs and risks depend on many
factors such as the size and structure of the existing debt and the evolution



of the interest rates. When borrowing to finance the primary net funding re-
quirement the government can choose from a number of different instruments.
Examples include treasury bills, coupon bonds with fixed or inflation-linked
coupons and retail saving bonds. The government wishes to select the com-
position and the maturity structure of its portfolio that minimize the cost
of servicing the debt at a given risk. This task involves designing the matu-
rity structure of the sovereign portfolio in such a way that the government’s
financing costs are kept low and insulated from macroeconomic shocks.

Most of the academic literature on optimal sovereign debt portfolio empha-
sizes the role of debt management in providing insurance against shocks as
prescribed by optimal taxation theory with the final goal of stabilizing the
debt-to-GDP ratio. According to this literature (see for example Barro (1997)
or Missale (1999)), debt managers should minimize the risk that tax rates
will have to be changed in response to economic developments. While offer-
ing many insights, this approach has few empirical implications. In practice,
the majority of government debt managers make no explicit reference to fis-
cal policy, focusing instead on the budget-smoothing objective. Direct cost
minimisation over a given fiscal horizon is rarely addressed.

In this article we focus on a specific goal, namely to determine the portfolio
composition of the sovereign bond portfolio that minimizes the cost of servic-
ing the debt while controlling risk and maintaining a certain level of market
liquidity. We show that the problem of debt issuance through a series of auc-
tions over time can be modeled as a stochastic optimization problem with a
number of constraints imposed by the financial remit and government debt
stabilization target.

The rest of the paper is organized as follows. Section 2 describes the debt man-
agement problem. Section 3.1 outlines the assumptions underlying the multi-
stage stochastic optimization model. Section 3.2 describes notation used in
setting up the MILP model for optimal debt issuance. Section 3.3 introduces
a small (and less realistic) mixed integer linear programming (MILP) model, in
order to get some insight into the modelling of the problem. Section 3.4 defines
the risk measures considered here. Section 3.5 defines the actual stochastic
optimization model. Sections 3.1-3.5 assume the knowledge of a recombin-
ing interest rate lattice which is derived separately. Sections 4.1-4.3 describe
the filtering-based interest rate model, its calibration and its application in
building a recombining interest rate lattice used in the earlier sections. The
description of scenario generation model is separated from the description of
the main optimization model in the interest of clarity. The effectiveness of
the optimization model as well as scenario generation methodology is demon-
strated through extensive out-of-sample numerical experiments using UK is-
suance data in section 5. Finally, section 6 summarizes the contributions of
this paper and outlines the directions of future research.
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2 The debt management problem

Governments make use of debt instruments in order to finance two major
components of the national accounts:

(1) the government net cash requirement, which is essentially the difference
between government’s income and expenditure in cash returns;

(2) the redemption of maturing government bonds. This is the amount needed
to finance the annual repayment of maturing debt.

In managing the government debt, several governments have as their stated
debt strategy objective the minimization of long-term financing cost while
maintaining a low downside risk around those costs. In the UK, for example,
the government explicitly states in HM Treasury (1998) that “the primary
objective of debt management policy shall be to minimize, over the long term,
the cost of meeting the Government’s financing needs whilst:

• taking account of risk and
• so far as possible, to avoid conflict with monetary policy”.

Although phrased in many different ways, similar statements relating the ob-
jective of government debt management are found in most of the Ministry of
Finance code of practices around Europe and it is explicitly mentioned in the
IMF guidelines for public debt management; see The International Monetary
Fund and The World Bank (2003).

The trade-off between cost and risk is a familiar concept in the asset-pricing
literature where investors attempt to optimally select the proportion of risky
and riskless assets that maximize their expected utility functions subject to
appropriate wealth constraints. This suggests that the government might be
able to apply corporate finance theory in determining its debt issuance strat-
egy. However, asset-liability management can not be applied to sovereign debt
management in a straightforward manner. First, the objective and horizon of
government debt management differ from those of private institutions and the
types of risks actively managed at sovereign level also differ from private sec-
tor. In particular, while asset portfolio managers try to maximize asset returns
over holding period subject to upper limit on risk, sovereign debt managers try
to minimize the debt-service cost over a longer horizon subject to an implicit
or explicit constraint on the volatility of debt-service cost(as a proxy for risk).
Second, government debt managers are concerned with maintaining a liquid
and well-functioning government security market. Sovereign fixed-income mar-
ket often serve as a benchmark for corporate issuers, thus implying that small
alterations of the government portfolio often have large impacts on the entire
bond market. Therefore, the objective of minimizing the cost of debt servicing
is subject to the constraint that a minimum level of bonds has to be issued at
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each maturity bracket. Finally, the implementation and transmission of mon-
etary policy interventions occur through financial markets. According to the
liquidity preference theory, debt management has a clear influence on the term
structure of interest rates. Therefore, some constraints are imposed on debt
management by the need to consider consistency with monetary policy.

The purpose of this paper is to integrate corporate portfolio optimization the-
ory in a general framework which can be used by government debt managers to
inform the issuance policy. In doing so we assume that one of the main sources
of risk in sovereign debt portfolio management is the uncertainty about future
short term interest rates. Other important sources of uncertainty such as the
exposure to currency risk or fluctuations of macroeconomic variables (e.g., the
rate of inflation) are not inserted directly into our cost minimization problem
and are assumed to be closely correlated with the single source of uncertainty
used. To model the evolution of interest rates, we use an affine term structure
model introduced in Vasicek (1977) and calibrate it to multivariate time se-
ries data on government bond yields using a Kalman filter. This filtering-based
calibration approach allows us to use the short term rate as an unobservable
variable rather than using a proxy for it and to use potentially noisy yield
data from which to estimate the short rate. Similar approaches have been
previously employed in Babbs and Nowman (1999),Rossi (2004), Gravelle and
Morley (2005) and Date and Wang (2009) among others. Date and Pono-
mareva (2010) provides a review of using Kalman filtering in financial time
series models.

To generate scenarios of uncertain future interest rates (and hence the yields,
which are affine functions of short rate for the chosen short term rate model)
evolving through time, we use a trinomial recombining lattice. Using a recom-
bining lattice is an industry standard way of modeling asset price or interest
rate evolution for pricing purposes. In the present context, using a recombin-
ing lattice means that the number of possible values the yield vector can take
grows linearly with time steps. In a non-recombining lattice, the number of
steps can grow exponentially or combinatorially. The use of a recombining
lattice keeps the mixed integer linear programming (MILP) based multi-stage
stochastic programming problem numerically tractable, even on a desktop
with modest hardware specifications. An alternative approach would be to
use a non-recombining lattice followed by scenario generation heuristics, as
proposed in Dupačová et al. (2003) and Heitsch and Römisch (2003).

The use of scenario based stochastic optimization in bond portfolio manage-
ment is not new, although most of the applications are demand-side applica-
tions (i.e. the optimization problem as seen from the bond purchaser’s point of
view). A two stage stochastic program was formulated in Golub et al. (1995)
to address fixed income portfolio management under interest rate and cashflow
uncertainty, while a similar formulation was used in Zenios (1995) to illustrate
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management of portfolios containing mortgage backed securities. In Dupačová
and Bertocchi (2001), bond portfolio management is formulated as a multi-
period stochastic program in a dynamic setting. Like our paper, Dupačová
and Bertocchi (2001) also uses a recombining lattice as a temporal model for
uncertain interest rates.

On the supply side (i.e., for a sovereign issuance problem), a linear program-
ming based model is presented in Adamo et al. (2004) for minimization of the
total cost of issuance under regulatory constraints. This model is illustrated
using debt issuance data of the Italian government. Other notable work in this
area includes Bernaschi et al. (2007), which provides results on the multivari-
ate simulation of interest rates using observable (ECB) rates as well as analysis
of principal components. The research reported in Consiglio and Staino (2010)
and Balibek and Köksalan (2010) is the closest in spirit to the work reported
here, in the sense that, both these papers also develop multi-stage stochastic
programming models for sovereign debt issuance.

Our model differs from the earlier work mentioned above in several aspects.
These are summarized as follows.

(1) We calibrate the interest rate model using a Kalman filter and noisy
yield measurements and use this to create bond price scenarios for the
optimization model. Arguably, this reflects better market expectation of
the bond prices obtainable through auctions than using primary economic
variables. Using a filter based interest rate model also allows for easy re-
calibration and hence allows for generating interest rate scenarios which
are tuned to more recent market data. For demand-side optimization, a
similar approach was taken in Nielsen and Poulsen (2004) where a two
factor interest rate model is used along with a multi-factor stochastic
program to manage mortgage-backed securities. Filtering-based model is
also used in a simulation framework in the report by Danish National
Bank (2006). The authors are not aware of the use of filtering based
framework to generate scenarios in a supply-side optimization.

(2) We use a recombining lattice-based stochastic programming model as op-
posed to a non-recombining scenario tree used in Consiglio and Staino
(2010) and Balibek and Köksalan (2010) while discussing the sovereign
debt issuance. This makes the problem computationally significantly sim-
pler, as the number of scenarios is reduced significantly, while retaining
consistency with the underlying theoretical interest rate model.

(3) We use a receding horizon approach to carry out multiple, multistage
stochastic programs over a period of time to optimize debt issuance cost
over a given horizon; see Maciejowski (2002) for control engineering ap-
plications of the receding horizon approach. Once a stochastic program-
ming exercise is carried out, one need not stick to the full sequence of
optimal decisions with passage of time, as the uncertainty progressively
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resolves itself. We propose re-calibrating the scenario generation (i.e. in-
terest rate ) model periodically and use it to re-optimize the issuance
over the remaining period, using the issuance data up to that time. To
our knowledge, the use of receding horizon strategy in an optimization
model is new.

(4) Finally, we carry out out-of-sample back-testing to compare the perfor-
mance of our strategy against the actual debt issuance by the UK govern-
ment in the budgetary years 2006-2008. Our results show that a significant
debt-service cost reduction can be achieved by carrying out a rigorous op-
timization exercise. Note that the interest rate model used for scenario
generation is calibrated on one data set and the optimization is carried
out on a different (out-of-sample) data set throughout this exercise and
the actual issuance decisions are not used as inputs to the model.

3 The multistage stochastic optimization model

3.1 Assumptions

We start with the following assumptions about the process of raising debt by
a sovereign government.

(1) The sovereign body raises debt through a series of auctions. At the be-
ginning of the financial year, the dates of debt auctions are fixed. There
are three separate auction calenders; one each for short, medium and long
dated bonds. Imperatives other than purely financial ones play a signif-
icant role in deciding this calendar and we consider these calendars as
input data.

(2) At each auction, a single bond is issued, either from the existing (or
pre-issued) stock or a bond with new maturity.

(3) The average price of any bond at the auction is its arbitrage free price as
determined by the yield curve. The yield of any new bond issued is also
determined by the yield curve on the auction date.

(4) Fiscal policy is responsible for the government net cash requirement.
Thus, the total amount to be raised over the financial year is dictated by
the government’s borrowing requirements and is assumed to be an exoge-
nous constant. Further, the total amounts to be raised through each set
of auctions viz. auctions of short, medium, long dated bonds, are fixed.
These are dictated by the government’s need to maintain liquidity in
markets of bonds with different maturities.

(5) The government does not engage in opportunistic borrowing. As a conse-
quence financial strategies that attempt to take advantage of the market
conditions for issuance of various debt instruments are ruled out. This op-
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erational principle together with the need of pursuing an issuance policy
that is open and transparent are often described in the code of practice
of the debt managing agencies.

Under these assumptions, the optimization model uses a receding horizon ap-
proach as mentioned earlier; see e.g. Maciejowski (2002) for applications in
control engineering. This approach in the present context may be explained
as follows. Suppose that there are N auction dates indexed from t1 through
tN . At each auction date ti, i > 1, data of previous auctions t1, · · · ti−1 are
already available. Also, the multivariate time series data are available until
time ti. It is assumed that, at each ti, a new recombining interest rate lattice
is established and a multi-state stochastic optimization problem is solved to
generate the choice of bond and the amount of debt to be auctioned from ti
onwards, i.e. at ti, ti+1, · · · , tN . If Ti is the number of stages in the stochastic
optimization problem solved at ti, then Ti − Tj = i − j for 1 ≤ i ≤ j ≤ N .
In the numerical experiments reported in 5, this receding horizon approach is
followed based on real UK data and the results are compared with the actual
issuance during the same period.

3.2 Notation

As outlined later in section 4.3, we use a re-combining tree (or lattice) to
model the evolution of interest rates. For a re-combining tree, the number of
nodes (and hence decision variables) grows linearly with time and the problem
remains tractable even for a long time horizon. Given an interest rate lattice
and hence a set of scenarios for future bond yields, we outline here the notation
used in our development of the optimization model. The scenario generation
will be discussed separately in latter subsections.

(1) N = {1, 2, · · · , N}, J = {1, 2, · · · , J} and K = {1, 2, · · · , K} are the
index sets for auctions over the budget year, interest rate scenarios and
bonds to be auctioned respectively.

(2) X
(k)
i.j is a binary decision variable which has a value 1 if kth gilt is auctioned

at ith auction, in jth scenario; X
(k)
ij is 0 otherwise.

(3) u
(k)
i.j is a real valued decision variable which gives the number of units

of bond k sold at auction i in jth scenario. The unit is enforced to be a
multiple of a constant γ in the model with the use of ωi.j as an integer
variable.

(4) P
(k)
i.j is the forecasted price of the kth bond at the ith auction in the jth

scenario; this is explained in more detail later in section 4.3.
(5) The amount raised at a single auction is bounded from above by D and

from below by D, both of which are specified constants.
(6) D0

(k)
i.j is the prior holding of the kth bond at the ith auction in the jth sce-
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nario. ψ is the upper bound for the liquidity constraint this is a constant
for a specific problem to make sure that to many already existing bonds
don’t exist.

(7) τ
(k)
i is time to maturity of bond k starting from time ti. It needs to satisfy

the maturity constraint, i.e. τ ≤ τ
(k)
i ≤ τ , where τ , τ are given constants.

(8) B ≥ 1 is a constant integer which limits the number of times a specific
bond can be used in the considered financial year. The choice of integer
B is a trade-off between flexibility in choosing the lowest cost issuance
and ensuring enough liquidity across all maturities.

(9) L is the principal of each bond. Ij represents the total cost of issuance
over the lifetime of debt in scenario j:

Ij =
∑

i∈N

∑

k∈K
u

(k)
i.j L(1 + C

(k)
i ),

where C
(k)
i represents the total amount of coupons over the remaining

life of bond k from time ti onwards. This cost function is calculated in
accordance with the European System of Accounts (ESA95).

3.3 A simplified optimization model for the debt issuance problem

For the set-up outlined above, it is worth considering a deterministic opti-
mization problem first. Let us assume that future prices are “known” as P

(k)
i

for the auction date at ti and for the unit of bond k, the auctions will sell
out. Thus the second subscript for prices P , which indexes the scenarios, is
not used and the overall notation is simplified.

Let X
(k)
i be the binary variable that represents which bond k to issue at the ith

auction and u
(k)
i be a real variable that estimates the amount of bonds to issue

for k bond at ith auction date. The total cost is simply the un-discounted total
cash flow from the issuance of the year. The simplified version of optimization
model without uncertainty can then be expressed as follows.

minimize
∑

i∈N

∑

k∈K
u

(k)
i L(1 + C

(k)
i ) subject to (3.1)

∑

(i,k)∈(N ,K)

u
(k)
i P

(k)
i ≥ D, (3.2)

u
(k)
i P

(k)
i + D0

(k)
i ≤ ψ −

i∑

pt=1

u
(k)
pt P

(k)
pt ∀i ∈ N , k ∈ K, (3.3)
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DX
(k)
i ≤ u

(k)
i P

(k)
i ≤ DX

(k)
i ∀ i ∈ N , k ∈ K, (3.4)

∑

(i,k)∈(N ,K)

X
(k)
i = N, (3.5)

∑

k∈K
X

(k)
i = 1,∀i ∈ N , (3.6)

∑

i∈N
X

(k)
i ≤ B, ∀k ∈ K. (3.7)

The equations in this model can be explained as follows.

• Inequality (3.2) guarantees that the minimum required amount of debt is
raised over through the specified series of auctions.

• Inequality (3.3) ensures that the total issuance for a particular bond (or a
particular maturity) remains under a specified constant ψ.

• Inequality (3.4) constrains the minimum and the maximum issuance size at
each auction.

• Equations (3.5)-(3.6) ensure that all auctions are used and only one bond
is issued at each auction.

• Finally, (3.7) is a constraint to ensure that one bond is used at most B
times in the series of auctions.

Analytically, this model can be solved using a deterministic mixed integer lin-
ear program, with the amounts auctioned and the issuance choice (binary)
variables as the decision variables. Although the model constitutes a useful
exercise, it is overly simplified to illustrate the issues involved in public debt
issuance. The assumption that prices are known and a lack of measure to con-
trol the issuance risk make the problem highly unrealistic. In the subsequent
sections, we will introduce the necessary risk measures and will also intro-
duce a mechanism to generate scenarios for different possible future prices for
bonds.

3.4 Risk Measures

Risk measures provide information about the uncertainty of future debt-service
cost, therefore the value at risk plays a central role in the management of
government debt. An increase in the value of the debt portfolio reflects an
increase in the future burden for taxpayers or it may boost the cost of other
debt instruments often used by debt managers such as swaps or buybacks.

As a measure of risk, we use two different measures: Conditional Value at Risk
(CVaR) and a quantile based supply-side measure called Cost at Risk (CaR),
as discussed in Risbjerg and Holmund (2005).

The CVaR risk measure is used as a system of linear constraints as defined
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in Rockafellar and Uryasev (2000). The CVaR constraint is also bounded to
control the maximum amount of conditional risk tolerated. A similar bound
is explained in Consiglio and Staino (2010):

CV aR :=

∑
j∈J pjφj

1− β
+ ζ

with

φj := max

(
Ij −

∑
j∈J Ij

J
− ζ, 0

)
,

where J is an index set as defined in section 3.2, ζ ∈ R, pj is the probability
of the jth scenario, or a branch of the tree to occur and β corresponds to the
confidence rate between 0 and 1. In the proposed model, the value of CVaR
will be bounded from above by a constant ρ. We also consider that each branch
will have an equal probability to occur, so that we can take pj to be 1

J
. Now

the CVaR constraint becomes:

CV aR :=

∑
j∈J φj

J(1− β)
+ ζ

As the CVaR upper bound is reduced, the difference between costs of different
scenarios is reduced as well. As theory suggests, this will raise the expected
cost in general.

The CaR measure is defined in Hahm and Kim (2003) as:

CaR := E(Ij) + 1.645ς,

where E(Ij) =
∑

j∈J Ij/J and ς is the standard deviation of the achieved
cost. This supply side measure is similar to the popular Value at Risk (VaR)
measure on the demand side, under the assumption of normally distributed
scenarios. In our case, the standard deviation is computed a posteriori as the
sample standard deviation over all the scenarios.

3.5 Definition of the optimization model

The mixed integer linear programming model for the optimal debt issuance
problem is defined as follows.

minimize
1

J

∑

j∈J
Ij subject to (3.8)
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∑

(i,k)∈(N ,K)

u
(k)
i.j P

(k)
i.j ≥ D, ∀j ∈ J , (3.9)

u
(k)
i.j P

(k)
i.j = γωi.j,∀ i ∈ N , k ∈ K, j ∈ J , (3.10)

φj = Ij − 1

J

∑

j∈J
Ij − ζ, ∀ j ∈ J , (3.11)

1

J(1− β)

∑

j∈J
φj + ζ ≤ ρ, (3.12)

u
(k)
i.j P

(k)
i.j + D0

(k)
i.j ≤ ψ −

i∑

pt=1

u
(k)
pt.jP

(k)
pt.j ∀i ∈ N , k ∈ K, j ∈ J , (3.13)

DX
(k)
i.j ≤ u

(k)
i.j P

(k)
i.j ≤ DX

(k)
i.j ∀ i ∈ N , k ∈ K, j ∈ J , (3.14)

∑

(i,k)∈(N ,K)

X
(k)
i.j = N, ∀j ∈ J , (3.15)

∑

k∈K
X

(k)
i.j = 1,∀i ∈ N , j ∈ J , (3.16)

∑

i∈N
X

(k)
i.j ≤ B, ∀j ∈ J , k ∈ K, (3.17)

if τ ≥ τ k
i or τ ≤ τ k

i thenXk
i.j = 0 ∀ i ∈ N , j ∈ J . (3.18)

The optimization procedure is schematically illustrated in figure 1. The goal

J
J

JĴ
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is to minimize the average cost of debt servicing as defined by ESA95 over all
interest rate scenarios J and the set of auctions N . The rest of the notation
in the above model is as defined in section 3.2 and the model is subject to
assumptions stated in section 3.1. The set of equations is an expanded version
of the model presented earlier in section 3.3 and can be explained as follows.

• Inequality (3.9) is a constraint to make sure the amount raised is at least
the fixed objective D over the year.

• Equation (3.10) exists to ensure that the auctions are done in increments
of γ, ωi.j being an integer variable to ensure the increments are respected.

• The systems of inequalities (3.11)-(3.12) corresponds to the CVaR risk mea-
sure bounded from above by ρ with confidence β.

• Equation (3.13) is a liquidity constraint and ensures that the total amount
of a specific bond in issuance doesn’t exceed an upper bound ψ.

• Equation (3.14) ensures that each auction will raise funds within the bound-
aries set by a government.

• Equations ( 3.15)-(3.16) impose constraints that all auctions are used and
only one bond is auctioned on each auction date.

• The inequality (3.17) ensures that a single bond is used no more than B
times.

• Finally, the last constraint (3.18) ensures that if the maturity of a particular
bond does not match the maturity constraint of a problem at the ith auction
it may not be auctioned by the model.

The optimization model discussed so far assumes that a mechanism is available
for generating scenarios of bond prices. These scenarios need to be arbitrage-
free, since we are assuming that the auction prices are determined by the
secondary market. In the next section, we discuss the stochastic interest rate
model for generating these price scenarios (or equivalently, bond yield scenar-
ios) and also outline our method of calibrating this model.

4 Generation of bond price scenarios for optimization

4.1 Vasicek term structure model

Future debt costs and future debt financing are subject to unknown future
interest rates. In order to assess and quantify the interest rate costs it is
necessary to model the future evolution of interest rates at which the future
debt financing takes place. The uncertainty about future interest rates needs
to be modelled in a fashion which is both realistic and tractable. For this
purpose, we assume that the instantaneously compounded interest rate (or
short rate), rt, follows the affine Gaussian dynamics first proposed in Vasicek
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(1977):

drt = a(b− rt)dt + σ dWt, (4.1)

where a, b are constants and σ is the volatility considered constant here as
well. Wt is the standard Brownian motion. The mean and the variance of rt+∆

conditional on rt, ∆ ≥ 0, is given by:

E(rt+∆ | rt) = b + e−a∆(rt − b), (4.2)

Var(rt+∆ | rt) =
σ2

2a
(1− e−2a∆). (4.3)

where b = b − λσ
a

and λ is the price of risk which is assumed to be constant
through time.

The price of a zero-coupon bond maturing at time T (T > t), at time t can
be proved to be:

P (t, T ) = A(t, T )e−B(t,T )r(t), (4.4)

where A,B are functions of time to maturity T − t and are given by

B(t, T ) =
1

a

[
1− e−a(T−t)

]
, (4.5)

A(t, T ) = exp

{(
b− σ2

2a2

)
[B(t, T )−∆]− σ2

4a
B(t, T )2

}
. (4.6)

where a, σ are defined in 4.1. Finally, the yield (return on the bond) corre-
sponding to a zero coupon bond at time t, maturing at a time T > t, is given
by:

y(t, T ) = − 1

T − t
P (t, T ) = log(A(t, T ))−B(t, T )rt. (4.7)

Remark: Unlike most of the conventional literature on simulation of debt
issuance (see, e.g. Bernaschi et al. (2007)), we do not use macroeconomic
variables to model the evolution of interest rates. Our supporting argument
is that, the secondary sovereign debt market for OECD countries is quite liq-
uid and reflects the view of the market participants about the evolution of
macroeconomic variables. It makes sense to model the interest rate movement
based on the data which reflects the “demand-side” view of these participants
when one is making decisions about auctioning debt. Alternative models are
possible; see e.g. James and Webber (2000) for a variety of short rate mod-
els and Diebold and Li (2006) for a dynamic version of the commonly used
Nelson-Siegel model first proposed in Nelson and Siegel (1987). Our choice of
a one factor Gaussian model allows us to use a one dimensional recombin-
ing lattice to represent the uncertainty in the interest rates in a realistic, yet
computationally tractable fashion, as explained later in Section 4.3.
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4.2 Kalman filtering-based calibration

To set up a calibration problem formally in discrete time, we need to discre-
tise (4.1). From (4.2)-(4.3), a natural discretisation of (4.1) which preserves
the conditional mean and the variance of rk+1 at time tk+1 is given by

rk+1 = b + e−a∆t(rk − b) +

√
σ2

2a
(1− e−2a∆t)εk+1, (4.8)

where {εk} is a sequence of scalar i.i.d. Gaussian random variables with zero
mean and unit variance and ∆ = tk+1 − tk is assumed to be a constant for
all k. rk is an unobserved variable as there is no observable security which
pays return instantaneously. Instead, one may observe yields y(tk, Ti) as de-
fined in (4.7) from zero coupon bonds at each time tk, for different maturities
T1, T2, . . . TN , Ti > tk. To describe the observation equation, denote by yk a
vector in RN whose ith element is y(tk, Ti). Time dependent vectors Ak and Bk

are defined similarly using (4.5)-(4.6). Then one can express the yield vector
as an affine function of short rate rk as

yk = log(Ak)−Bkrk. (4.9)

Further, one may assume that our model of the short rate is imperfect and
that the vector of observed yields at time tk is given by

Rk = yk + σyek, (4.10)

where {ek} is a vector valued, i.i.d. Gaussian sequence with zero mean and
identity matrix as covariance and σy > 0 is a constant indicating the dispersion
of the observed yields from their value given by the model. (4.8) and (4.10)
form a linear state space system. We can use Kalman filter to calibrate the
model from observed time series rk, k = 1, 2, . . . , M . The recursive equations
for the Kalman filter are repeated below for easy reference. The optimal es-
timate of rk+1 based on measurement Rk (respectively, based on Rk+1) is
denoted as r̂k+1|k (respectively, r̂k+1|k+1). vk denotes the innovations vector at
time tk while Σk denotes the covariance matrix of innovations at time tk. The
set of equations given below outline the recursive propagation of estimates
from r̂k|k−1, Pk|k−1 to r̂k+1|k, Pk+1|k after measuring Rk.

vk = Rk − log(Ak)−Bkr̂k|k−1, (4.11)

Σk = σ2
yI + BkPk|k−1B

>
k , (4.12)

r̂k|k = r̂k|k−1 + Pk|k−1BkΣ
−1
k vk, (4.13)

r̂k+1|k = b + e−a∆(r̂k|k − b), (4.14)

Pk+1|k = e−2a∆Pk|k−1 +
σ2

2a
(1− e−2a∆)− e−2a∆P 2

k|k−1B
>
k Σ−1

k Bk. (4.15)
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The joint probability density function (also called the likelihood function) of

observations is maximized over the parameter vector θ =
[
a λ b σ r0 σy

]>

to get the estimate of parameters. Here λ is assumed to be constant through
time. Since the forecast errors are i.i.d., the log likelihood function is expressed
by:

L(θ) =
M∑

k=1

log p(Rk|Fk−1, θ). (4.16)

Further, as the errors are Gaussian, maximizing the likelihood function L is
also equivalent to minimizing

−L(Rk, θ) =
1

2

M∑

k=1

(
log det(Σk) + vT

k Σ−1
k vk

)
, (4.17)

where the constant terms are ignored. This smooth nonlinear cost function
can be minimized over the set of parameters using any standard nonlinear
solver. We use MATLAB’s “off-the-shelf” optimizer fminsearch which seemed
to perform satisfactorily.

4.3 Re-combining lattice for interest rates

As in the previous section, after each (re-)calibration we build a re-combining
trinomial lattice using a procedure in Hull and White (1994) and use it for
setting up an optimization problem at each auction. This idea of solving mul-
tiple, possibly multi-stage optimization problems during the financial year is
realistic as the sovereign debt issuing authority can dynamically adjust its
decisions during the year as the economic environment evolves. This idea of
using multiple optimizations over the trajectory of an uncertain variable is
similar to the receding horizon approach used in predictive process control,
see e.g. Maciejowski (2002). We build a Q step lattice at the beginning of each
quarter using the parameters of recent calibration. A construction for Q = 3
is shown in figures 2-3 to explain the idea of a receding horizon. We take the
short rate at each node to be:

r
(j)
i =





r
(j)
i−1 exp

(
2σ2

a
(1− e−a∆)

)
for the upper branch of the lattice,

r
(j)
i−1 for the middle branch of the lattice,

r
(j)
i−1 exp

(
−2σ2

a
(1− e−a∆)

)
for the lower branch of the lattice.

(4.18)

The forecasted short rate used for future auctions is then linearly interpolated
from the tree if the auction date does not coincide with a tree node. Using the
Vasicek pricing formula, we can obtain the price of a bond with maturity Tk,
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at time ti and corresponding to a short rate r
(j)
i by summing over all coupons:

P
(k)
i.j =

∑

ti<tc≤Tk

c(k)A(ti, tc)e
−B(ti,tc)r

(j)
i + LA(ti, Tk)e

−B(ti,Tk)r
(j)
i , (4.19)

where L is the principal of each bond, c(k) is the coupon of the kth bond , tc
belongs to the the set of maturities of all the remaining coupons for the bond
considered and A(t, T ), B(t, T ) are as defined in section 4.1.
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5 An Application to the UK Government Debt Portfolio

5.1 Problem parameters

We apply the proposed optimization model to the UK government debt prob-
lem for the 2007 − 08 year. The model parameters N,K and D for the debt
problem (auctions, bonds and amounts to be raised), as defined in section 3.2
are:

Subproblem N K D (in bn)

short (1− 7 years) 4 16 10

medium (7− 15 years) 4 8 10

long (> 15 years) 11 10 23.4

Table 1. Parameters used for optimization.

As well as using the real bonds that were available during that financial year,
some of the parameters of the optimization models are chosen based on the
government remit as follows with those defined in table 1.

• γ = 250 is the amount in million pound sterling to increment the amount
raised at an auction.

• D = 1, 500 million and D = 4, 000 million, these are set in the remit.
• B = 2 is the maximum amount of times we choose to issue a particular

bond in the set of auction considered for short dated and medium dated
bonds. B = 3 for the long dated bonds issuance problem.

We will refer to the problem of issuance of short dated bonds as the short sub-
problem. Similarly the medium dated bonds and long dated bonds correspond
to the medium subproblem and the long subproblem respectively. The CVaR
measure of risk will be compared to the traditional VaR measure and the CaR
measure introduced in Hahm and Kim (2003). ψ is 20 billion for the short
subproblem, 22 billion for the medium subproblem and 40 billion for the long
subproblem. The use of longer term debt doesn’t decrease the expected cost,
as the cost function takes into account all coupon and principal repayments,
not discounted by the effect of inflation. The effect of inflation reduces quite
considerably the actual cost of the debt.
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5.2 Calibration of interest rate model

We use the procedure in section 4.2 to calibrate a one factor Gaussian term
structure model to UK government bond data. Gilt yields from 2006 to 2008,
obtained from the UK Debt Management Office, were used for the numerical
experiments. We use daily data from April 2006 to March 2008. The model is
calibrated every quarter from March 2007 to March 2008, based on the past
data stretching back one year. In other words, we move the one year calibration
window forward through time as the year unfolds into the next financial year.
The re-calibration takes into account the fact that the interest rate model
parameters may not be constant and drift through time, e.g. due to the impact
of the earlier issuance and due to the changes in the market sentiment. The
choice of re-calibration every quarter corresponds to quarterly review. We take
26 long, short and medium dated bonds over that period and calibrate over
506 yields per bond, i.e. a total of 13, 156 yields were used. The parameters
obtained through four calibration experiments are listed in table 1 below. It
can be seen that only the long run mean b shows a significant variation through
time. We describe how these parameters are used to construct a trinomial tree
at each quarter for scenario based optimization in the next section.

time a λ b σ r σy

0 months 0.114278 0.070403 0.060242 0.036074 0.067142 0.010748

3 months 0.114278 0.070403 0.063255 0.036074 0.067142 0.010748

6 months 0.114278 0.070403 0.066417 0.036074 0.067142 0.010748

9 months 0.114278 0.070403 0.069738 0.036074 0.067142 0.010748

Table 2. Parameters of Vasicek model (UK 2006-2008 data)

5.3 Numerical results for the optimization model

A sequence of mixed integer linear programming problems, with problem data
as in section 5.1 and scenarios generated using parameters in section 5.2, are
solved using CPLEX version 11.0.0 running on Intel dual core, 2.66 GHz pro-
cessor with 3.24GB RAM. Due to relatively small number of integer variables
(with at most 16 bonds in any one subproblem), the problem can be solved
quite quickly even for multiple stages. In tables 3-6, the solving time (S.T.) is
in seconds, while the standard deviation and the risk measures are in million
pound sterling. Q is the number of stages for stochastic program solved af-
ter each (re-)calibration for the auctions over the remaining year. Tables 3-5
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show that the achieved expected cost is approximately the same irrespective
of the number of stages in all three subproblems. However, adding a number
of stages reduces the variability in the solution in terms of sample standard
deviation (S.D.) over all scenarios.

With 4 stages, it can be seen from table 6 that the optimization approach
would have resulted in an average of 27.5% savings over the strategy of is-
suance used by the government. Note that the actual government debt issuance
decisions are not used as input to the optimization and only the issuance man-
date is used. No knowledge of the future is assumed at any stage. Thus the
optimization results may be considered as out-of-sample results of the model.

Q S.D. CaR CVaR S.T. E[I]

1 241.883 12, 299.80 5, 050.310 0.046875 11, 762.00

2 182.563 12, 175.50 4, 800.770 0.078125 11, 751.50

3 151.424 12, 115.40 4, 691.210 0.28125 11, 748.00

4 132.354 12, 079.50 4, 630.850 1.4375 11, 746.20

Table 3. Results for the short subproblem

Q S.D. CaR CVaR S.T. E[I]

1 1, 260.630 20, 067.90 27, 259.80 0.015625 17, 903.10

2 999.506 19, 532.90 26, 881.80 0.03125 17, 865.80

3 838.865 19, 228.10 26, 481.30 0.046875 17, 851.20

4 722.165 19, 024.00 26, 316.60 0.0625 17, 845.30

Table 4. Results for the medium subproblem

Q S.D. CaR CVaR S.T. E[I]

1 5, 165.570 71, 691.90 11, 446.90 0.3125 59, 941.40

2 4, 002.660 69, 387.50 11, 194.30 0.046875 59, 763.90

3 3, 311.090 68, 119.10 11, 034.60 0.0625 59, 713.00

4 2, 890.570 67, 372.10 10, 973.40 0.203125 59, 692.40

Table 5. Results for the long subproblem
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Fig. 4. Comparison of cost of issuance in sterling pounds with respect to CVaR
upper bound for the short subproblem

Subproblems Actual cost Model cost

Short problem 15, 193.75 11, 746.20

Medium problem 20, 750.00 17, 845.30

Long problem 87, 207.50 59, 692.40

Total cost 123, 151.25 89, 293.90

Table 6. Comparison of the cost of issuance

The above results are based on cost minimization without using a constraint
on CVaR. The results for the short subproblem when an upper bound on
CVaR is used as an active constraint are illustrated in figure 4.

As the optimization is non-convex and contains integer valued variables, the
efficient frontier of expected cost vs. CVaR is highly discontinuous. The right-
most point on the graph corresponds to the CVaR unconstrained problem with
Q = 4 and the resulting CVaR ≈ 4.6 billion, as given in table 3. By imposing
a CVaR constraint and restricting CVaR to 70% of its unconstrained value
results in a very modest increase in the expected cost by less than 0.1%. This
is partly a result of a benign economic environment; nevertheless, it shows
that the CVaR constraint can be used effectively to trade-off downside cost
risk against the expected cost. Similar plots are obtained for the medium and
long subproblem and are omitted for brevity.
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5.4 A posteriori analysis

The above model proposes an optimization based approach to debt issuance.
However, the issuance is often driven by exogenous factors of uncertainty, such
as a change in political sentiment or macroeconomic shocks. Not all the sources
of uncertainty can be adequately represented in an optimization model. From
table 6 it appears that the implementation of our model would have resulted
in a significant cost reduction for the UK government in the period considered.
What the model does not tell is whether the implementation of the proposed
cost minimization procedure leads to a maturity structure which is radically
different from the one adopted in the real world. It is therefore of interest to
compare our model with the actual issuance by the UK government.

Figure 5 compares the real issuance by the UK government in the auction
calendar 2007-08 and the model issuance for the same calendar. At least in
this instance, the model issuance does not result in large differences or strong
discontinuities compared to the actual issuance. Note that the period under
consideration precedes the huge increase in the financing requirement the UK
government had to cover during the recent banking crisis. In general, the
reliability of any model would have been stretched to the limit in the recent
financial crisis.

An important exogenous factor which the government takes into account when
issuing debt is the net debt to GDP ratio. The differences in the amounts issued
from figure 5 are rather small. However, they have an important impact on
the total cost of the issuance and can be seen in the debt to GDP ratios. The
“golden rule” of the UK Treasury is to keep it below 40%. However, this hasn’t
occurred since 2006 and an attempt to enforce it makes the problem infeasible.
In figure 6, we compare the real evolution of the debt to GDP ratio compared
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Fig. 6. Histogram of debt to GDP ratio throughout the financial year

to the model’s performance. Again, we see that our simple cost minimization
model doesn’t have a significant adverse impact on the debt-to-GDP ratio;
in fact the ratio is reduced by around 2%. At least for this data-set, the a
posteriori analysis shows that our model performs only modestly out of line
with the government strategy while achieving a significant cost reduction. This
result increases the confidence in practical applicability of the model.

6 Concluding Remarks

In this paper we address the optimal sovereign debt issuance problem using a
multi-stage, mixed integer stochastic programming model. The uncertainty in
the interest rates is modeled using a re-combining lattice based on a Kalman
filter calibration. The filter parameters are periodically updated to reflect the
impact of issuance on the interest rate model and the optimization is repeated
multiple times during the year using a receding horizon strategy. The model
takes into account many of the constraints that debt managers encounter when
planning the sovereign debt issuance strategy. Back-testing our model using
the UK conventional government bonds shows significant reduction in the cost
of debt servicing, eventually reducing the debt to GDP ratio.

Our paper extends the existing literature on debt management in several im-
portant ways:

(1) Unlike most research in sovereign debt issuance, we assume that the
yields are determined by demand-side expectation (or a fair price un-
der risk-neutral measure). Several macroeconomic variables, which can
be realistically expected to affect the yields, are assumed to be read by
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the market participants who would adjust their bids accordingly. This
approach avoids the need for multivariate modelling of macroeconomic
variables and generation of scenarios with multiple sources of uncertainty
in a stochastic optimization framework.

(2) To keep the generated scenarios arbitrage-free, we work with a latent
factor based linear Gaussian model which is calibrated using a Kalman
filter. The impact of debt being issued on the yield curve is implicitly
accounted for by re-calibrating the yield curve model throughout the
issuance period.

(3) We work in a receding horizon framework which offers a chance to re-
calibrate the model and re-optimize over the remaining budget year at
specific dates (e.g. auction dates or periodically within the year). This
leads to stochastic optimization problems of successively decreasing di-
mensions and also allows one to account for any modifications in the
government remit during the year. This intuitively attractive approach
permits a greater practical flexibility.

(4) We have also provided rigorous back-testing over a budgetary remit of an
OECD country and compared the performance of our strategy with the
performance of actual issuance; both in terms of costs as well as in terms
of secondary effect on debt-to-GDP ratio.

There are many different directions in which this work can be extended. Per-
haps the most important extension is to treat the interest rate as endogenous
and model the impact of the issuance itself on the interest rate explicitly. Note
that this is done only implicitly in the current model (through re-calibration).
An explicit treatment of endogenous interest rates will link the more conven-
tional macroeconomic models with our approach.
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