
27 December 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

LQG-Based Control and Scheduling Co-Design

Publisher:

Published version:

DOI:10.1016/j.ifacol.2017.08.1312

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Elsevier B.V.

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1662773 since 2018-03-19T10:01:31Z



LQG-Based Control and Scheduling

Co-Design ⋆

Yang Xu1, Karl-Erik Årzén1, Enrico Bini2, Anton Cervin1

1 Department of Automatic Control, Lund University, Sweden,
e-mail: {yang,karlerik,anton}@control.lth.se

2 Department of Computer Science, University of Torino, Italy

Abstract: Control and scheduling co-design becomes an issue when several controller tasks
share the same execution platform and disrupt the ideal sampling and actuation patterns. In
co-design the objective is to optimize the combined performance of all the controllers on the
platform, subject to schedulability constraints. In the paper four LQG-based co-design methods
are reviewed and evaluated: delay-aware, stochastic, periodic, and harmonic LQG co-design.

Keywords: real-time system, linear-quadratic control, fixed-priority scheduling

1. INTRODUCTION

For cost-saving reasons it is not uncommon to let multiple
feedback controllers share the same computational plat-
form. The controllers are usually implemented as periodic
tasks, executing under the control of a real-time operating
system with fixed-priority preemptive scheduling. At the
design stage it is typically assumed that the sampling
period and the delay between sampling and actuation (the
so-called input-output latency) are constant. However,
in a single-CPU, multitasking system, scheduling-induced
interference from high-priority tasks make the above as-
sumptions invalid. This is the motivation for control and
scheduling co-design. The objective of the co-design is
to optimize the total combined performance of all the
controllers on the platform, subject to a schedulability
constraint. This is done by selecting task parameters, i.e,
periods and priorities, and designing the controllers so that
they take the timing effects caused by the scheduling into
account.

Control performance can be measured in multiple ways.
Here the performance of each controller will be measured
using a quadratic cost function of the plant states and the
control signals. The total performance of the system is then
given by the sum of the cost functions for all the control
loops. This performance metric naturally leads to the use
of LQG (linear-quadratic-Gaussian) design techniques.

The aim of this paper is to compare four LQG-based co-
design methods that have been developed by the authors.
In the first method, originally called RiApprox (Bini and
Cervin, 2008) but here referred to as delay-aware LQG
co-design, an approximate response-time analysis is used
to estimate the average input-output delay. The LQG
controllers are then designed assuming constant delays. In
the second method, stochastic LQG co-design (Xu et al.,
2014), the delay distributions are obtained at design-
time using schedule simulation and then stochastic LQG
control design is employed, i.e., the LQG controllers are
⋆ This work was supported in part by the LCCC Linnaeus Center

and the ELLIIT Excellence Center at Lund University.

designed assuming these delay distributions. The task
periods obtained using the above two methods generally
give rise to infinite hyperperiods. In the third method,
periodic LQG co-design (Xu et al., 2015), the idea is to
perturb the periods slightly in order to obtain a finite
hyperperiod, which will correspond to a periodic delay
pattern for the control loops. This periodicity is then
explicitly accounted for by using periodic LQG control
design, resulting in a periodic sequence of feedback gains
for each controller. Finally, the fourth method, harmonic
LQG co-design (Xu et al., 2016), again perturbs the task
periods but this time to make the periods harmonic.
The scheduling-induced delays will be constant and again
ordinary LQG design can be applied in the same way as
in the first method.

1.1 Related Work

Scheduling is fundamental in real-time control system im-
plementation. In the seminal paper (Seto et al., 1996),
a cost was defined as a function of task period. The
design goal was to minimize the total cost by choosing
optimal periods. The paper (Eker et al., 2000) presented
how the cost function of LQ control depends on the sam-
pling period and proposed an on-line adjustment method.
Standard discrete-time LQG control theory is explained in
(Åström and Wittenmark, 1997). The optimal LQG design
problem for delay probability distributions was solved in
(Nilsson et al., 1998) and has also been implemented in
the Jitterbug toolbox (Lincoln and Cervin, 2002).

Many variants of the control and scheduling co-design
problem have been proposed. In (Zhang et al., 2008),
an H∞ control design method for real-time scheduling is
proposed. (Samii et al., 2009a) proposed control scheduling
co-design procedures for static-cyclic and priority-based
scheduling. (Samii et al., 2009b) considered synthesis of
multi-mode embedded control systems. (Goswami et al.,
2012) synthesized schedules that optimize control per-
formance, satisfying timing requirements by solving an
integer linear programming problem. (Bund and Slomka,



2013) introduced delay density to derive the delay specifi-
cation for control system. (Aminifar et al., 2013) modified
periods and priorities to optimize performance while guar-
anteeing stability. Harmonic period assignment algorithms
have been presented in e.g. (Bonifaci et al., 2013), (Nasri
et al., 2014).

1.2 Outline

Section 2 contains the problem formulation. Section 3
contains brief descriptions of the four co-design methods.
More detailed presentations are available in the references.
Finally, in Section 4 the four methods are evaluated.

2. PROBLEM FORMULATION

2.1 Real-Time System Model

A real-time system, consisting of n independent tasks
running on a single processor under preemptive fixed-
priority scheduling, is considered. The ith task, denoted
by τi, is characterized by the following parameters:

• The execution time Ci is the length of time the task
τi takes to execute. In this paper, unless otherwise
stated, a constant Ci is assumed.

• The period Ti is the constant time interval between
two consecutive releases of task τi.

• The task priority is implicitly given by the task index
so that τi has higher priority than τi+1.

Furthermore, the following task parameters are defined:

• The start latency Si is the time interval between the
release time and the start time of task τi.

• The response time Ri is the time interval between the
release time and the finish time of task τi.

• The task utilization Ui = Ci/Ti measures the fraction
of computational resources required by the controller.
The total utilization of all control tasks is U =
∑n

i=1 Ui, which should be less than or equal to 1.
• The hyperperiod H is the least common multiplier of
all the task periods.

2.2 LQG Control

Each real-time task τi defined above is used to implement
a discrete-time controller, for which the following timing
parameters are defined:

• The sampling interval hi is the time difference be-
tween two sampling operations of task τi. Here we
assume that sampling jitter has been eliminated by
sampling at the release time; hence, hi = Ti.

• The delay Li is the time interval between the sam-
pling and actuation of task τi. The actuation is per-
formed at the end of execution; hence, Li = Ri.

The plant to be controlled by each controller is described
by a continuous-time linear single-input, single-output
system

ẋ(t) = Ax(t) +Bu(t) + vc(t) (1)

y(tk) = Cx(tk) + e(tk) (2)

where x is the plant state, u is the controlled input, and
vc is a continuous-time white noise process with intensity

R1c. The output y is measured at discrete time instants
tk, with measurement noise e described by a discrete-time
Gaussian white process with variance R2. A, B, and C are
matrices of appropriate sizes.

For each plant, an LQG controller should be designed to
minimize the quadratic cost function

Ji = lim
t→∞

1

t
E

{
∫ t

0

(

xT (s)Q1cx(s) + ρu2(s)
)

ds

}

(3)

The matrix Q is a symmetric positive definite weighting
matrix that penalizes state deviations and ρ > 0 is a
weight used to trade off the relative importance between
the state x and the input u. The global objective is to
minimize the overall cost subject to schedulability:

minimize J =

n
∑

i=1

Ji, s.t. U ≤ 1 (4)

Sampling the state equation (1) with the interval h and
a time-varying delay Lk, a time-varying sampled-data
system is obtained:

x(tk+1) = Φ(Lk)x(tk)+Γ0(L
k)u(tk)+Γ1(L

k)u(tk−1) (5)

Similarly, the cost function (3) is translated into a time-
varying, discrete-time counterpart. Based on the sampled
model, a state feedback law can be designed, which is
based on either the average value of Lk, the distribution
of Lk, or the pattern of Lk over the hyperperiod. Finally,
a Kalman filter for the sampled model is designed and it
is combined with the state feedback to obtain a complete
LQG controller.

3. CO-DESIGN METHODS

3.1 Delay-Aware LQG Co-Design

In the first co-design method, (Bini and Cervin, 2008), the
delay of the controller is approximated as

Li = Rapprox

i =
Ci

1−
∑i−1

j=1 Uj

(6)

This constant value is an approximation of the actual
average delay over all task instances. Then, for each control
task τi, the cost function (3) is approximated as a linear
function of the period and the approximated delay:

Ji = αiTi + βiLi (7)

From this the periods that solve (4) can be found analyt-
ically. In reality, though, the cost functions are nonlinear
but smooth. Then an iterative algorithm can be used to
find the optimal periods.

Two priority assignment strategies are proposed. One is
Seto’s rate-monotonic priority assignment (Seto et al.,
1996). The other one is a brute force method: All n!
priority assignments are tested and the one giving the
smallest cost is selected. In this paper the first approach is
taken. The periods and priorities returned by this method
are also used as a starting point for the other methods.

3.2 Stochastic LQG Co-Design

The second co-design method, (Xu et al., 2014), assumes
knowledge of the delay distributions of the controller
tasks. They can in principle be obtained in two different



ways: using probabilistic response-time analysis or by a
sufficiently long schedule simulation. Here, the second
approach has been chosen.

For a given set of task parameters, the procedure to
compute the overall cost J as a function of the periods
consists of the following steps:

(1) Compute response-time distributions for each task i;
(2) Design an LQG controller using the response-time

distribution as delay distribution for each task i;
(3) Calculate the LQG cost Ji of each task i;
(4) Calculate the overall cost J .

The overall cost function for a two-task example is shown
in Fig. 1. As can be seen, the function is both non-linear
and non-convex. Relying on nonlinear optimization, (4) is
solved. Two different methods for the period assignment
have been considered:

• Local solution. A heuristic derivative-free optimiza-
tion method is proposed to find the local optima. This
is called the Sequential Search method.

• Global solution. The DIRECT sampling-based op-
timization method, (Jones et al., 1993), is used to
search for the global optimum.

The initial periods are in both cases obtained using the
delay-aware LQG method.

3.3 Periodic LQG Co-Design

Assuming constant execution times, the task response
times vary from instance to instance, but they have a
pattern that repeats over the hyperperiod. Knowledge of
this pattern makes it possible to use periodic LQG design
techniques to design controllers that are aware of the delay
periodicity, see (Xu et al., 2015). The starting point for the
design method is again the task period obtained from the
delay-aware LQG co-design method. Since these periods
are real-valued, the hyperperiods may be large or infinite.
In order to apply periodic LQG design, the following
method to perturb the periods has been proposed to obtain
a finite and short hyperperiod:

Definition 1. Given a tolerance ǫ ∈ (0, 1), let [k1, . . . , kn] ∈
N

n be such that

1−
mini{kiTi}

maxi{kiTi}
≤ ǫ. (8)

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

2

4

6

8

10

12

14

T
2

T
1

J

Fig. 1. Example with two control tasks showing the total
cost J as a function of periods T1 and T2. The cost
function is non-smooth and non-convex.

The approximate hyperperiod Ĥ is then given by

Ĥ = max
i

{kiTi}. (9)

The following method is proposed for period assignment:

(1) Set a value of ǫ of desired proximity. A typical value
could be between 10−3 and 10−2.

(2) Compute the set of integers [k1, . . . , kn] such that (8)
holds;

(3) Calculate the modified periods as

T̂i =

∑n

j=1 kjCj

ki
(10)

This choice implies that the tasks with the modified

periods T̂i are fully utilizing the processor.

Via a schedule simulation, it is straightforward to obtain
the sequence of delay values Lk over a hyperperiod. A cor-
responding periodic LQG controller can then be designed
by solving a periodic Riccati equation.

In a real system, the execution times are typically not
constant. One approach then is to use the average re-
sponse time for each job, and reformulate the problem
into the constant execution time case. However, if the
execution time variations are large, this will not yield a
good approximation. In that case it is possible to design
a periodic-stochastic LQG controller. To design such a
controller, the response time distributions for every job
over the hyperperiod needs to be calculated first. Also here
one can either use probabilistic response time analysis,
e.g., (Tanasa et al., 2015), or simulate the schedule with
randomly distributed execution times for sufficiently long
and record the response times. Given this the periodic-
stochastic LQG controller can be obtained by iteratively
solving the corresponding Riccati equations.

3.4 Harmonic LQG Co-Design

In industry, harmonic periods are often selected for ease
of implementation. The harmonic LQG co-design method,
(Xu et al., 2016), exploits this but now also for control per-
formance reasons. Consider the simple two-task example
shown in Fig. 2. In the upper plot the tasks have periods
{3, 5} and constant execution times {1, 3}. It is assumed

Fig. 2. Example of two tasks with non-harmonic periods
(upper plot) and harmonic periods (lower plot). The
job arrivals are shown with down-arrows and the job
finishing times with up-arrows.



that these periods have been chosen to give good total
control performance. From the figure one can see that the
response time of task τ2 varies according to the pattern
5, 4, 4, 5, 4, 4 . . .. If one changes the period of task τ2 to
6, i.e., harmonize the periods, then, as shown in the lower
plot, the response time will be always equal to 5, i.e., more
deterministic than in the first case. This will most likely
lead to worse control performance since both the period
and the average delay are larger than before. However,
if one also introduces an offset of 1 for τ2, i.e., perform
the sampling at the start of the job rather than at the
release time, then the response time will always be equal
to 4. The question is then whether the decrease in control
performance of the controller executing as task τ2 caused
by the longer sampling period is compensated for by the
increased performance caused by the shorter and constant
delay obtained through the period harmonization. As will
be shown in Section 4 this is very often the case.

Harmonic task sets have several nice properties (Lehoczky
et al., 1989). For instance, schedulability is guaranteed as
long as the total utilization is less than or equal to 1.
Further, under the assumption that execution times are
constant for each task, it holds that

• The response time for each task is constant.
• The start latency for each task is constant, and is
given by the response time of task τi−1, with τi being
the current task.

The co-design method starts by calculating initial task
periods using the stochastic LQG co-design method. The
task periods are then harmonized using Theorem 1 in
(Xu et al., 2016). The theorem finds the closest harmonic
periods to a set of initial periods in the Euclidean sense.
For n tasks there will be 2n−1 sets of possible periods.
All possible assignments are evaluated, and the one that
gives the best control performance is selected. It should
however be noted that the harmonic period assignment
with the lowest control cost is not necessarily restricted to
the above sets. The control cost function could have a form
so that the harmonic period assignment with the lowest
cost is not among the above candidates. However, as shown
in the general evaluation the proposed approach obtained
gives considerably better control performance than the
non-harmonic case.

Finally a release offset is added to each task except the
highest priority task. The length of the offset is the start
latency of each task. Then a set of LQG controllers are
designed for the obtained constant delays.

4. EVALUATION

In this section, the four co-design methods outlined above
are evaluated.

4.1 Design and Evaluation Tools: Jitterbug and TrueTime

Jitterbug is a MATLAB based toolbox used to design and
evaluate controllers under various timing conditions (Lin-
coln and Cervin, 2002). Jitterbug can be used to design
LQG controller with constant delays or delay probability
distributions. For various controllers, it can be used to
evaluate LQG costs by modeling different delay sequences.

In this paper, Jitterbug is used to design LQG controllers
and to evaluate LQG control performance, in cases where
Jitterbug supports this.

TrueTime is a MATLAB/Simulink-based simulation tool-
box for embedded and networked control systems (Cervin
et al., 2003). For real-time systems simulation, TrueTime
provides fixed-priority scheduling with preemption and
release offset. Using Monte Carlo simulations, TrueTime
can be used to evaluate the total system cost. Schedule
simulations are performed and the LQG control costs is
evaluated in TrueTime, in the cases not supported by
Jitterbug.

4.2 A Simple Example

As a simple co-design example, assume three plants,

P1(s) =
2

s2
, P2(s) =

1

s2 − 3
, P3(s) =

1

s(s+ 1)
,

that should be controlled by three tasks τ1, τ2, τ3. τ1 has
the highest priority and τ3 has the lowest priority. The
constant execution times are given as C1 = 0.1, C2 = 0.12,
C3 = 0.14. The LQG cost function parameters are given
as Q1c = CTC, and ρ = 0.01tr (Q1c).

The evaluation procedure is performed as follows:

• Delay-aware LQG co-design. The LQG cost of
each plant i is approximated by a linear function of
the period and delay as in Eq. (7). The sensitivity
coefficients αi and βi are evaluated at the point
Ti = Ci, Li = Ci using Jitterbug. Then the period
assignment method in (Bini and Cervin, 2008) is
used to minimize the LQG cost under the simplifying
assumption that these are the true cost functions.

• Stochastic LQG co-design. Using the delay-aware
LQG periods as a starting point, first 100 response
times are calculated to obtain the delay probability
distributions for each controller. This data is then
used to design a set of stochastic LQG controllers
(Xu et al., 2014). The whole procedure is repeated in
a sequential search for the optimal task periods.

• Periodic LQG co-design. Using the stochastic
LQG periods as a starting point, the solution is
perturbed with the tolerance ǫ = 0.05 to yield a
finite hyperperiod (Xu et al., 2015). A set of time-
varying LQG controllers are then designed based on
the resulting cyclic schedule.

• Harmonic LQG co-design. Using the delay-aware
LQG periods as a starting point, the 2n−1 = 4 closest
harmonic task period sets are investigated (Xu et al.,
2016). For each period set, the fixed start latencies
and response times are computed and used to design
standard LQG controllers. Jitterbug is then used to
find the minimal total cost among these four cases.

The resulting periods and the total LQG cost are shown
in Table 1, where all numbers have been rounded to two
decimal places. The stochastic LQG has lower cost than
the delay-aware LQG method, because more response time
information is taken into account in the design procedure.
The periodic LQG and harmonic LQG methods have
better performance than delay-aware LQG and stochastic
LQG. For periodic LQG the reason is that with a finite
hyperperiod the delay variation is smaller than it using



Table 1. Results for the simple example

T1 T2 T3 J

Delay-aware LQG 0.26 0.33 0.56 2.36

Stochastic LQG 0.30 0.41 0.45 2.18

Periodic LQG 0.26 0.34 0.58 1.85

Harmonic LQG 0.29 0.29 0.58 1.33

a potential infinite hyperperiod. For harmonic LQG the
reason is that using harmonic periods and task offsets the
schedule will give rise to both constant and short delays.

In the references that this paper is based on more elaborate
evaluations are presented. However, only partial compar-
isons have been made so far. In the next subsection, a
larger evaluation is performed using randomly generated
plant dynamics and showing the variability and confidence
of the results obtained.

4.3 Randomly Generated Examples

To see whether the results for the simple example above
holds in more general cases, sets of three plants are
randomly generated for large-scale evaluation from the
following three plant families:

• Family I: All plants have two stable poles and are
drawn from P1(s) and P2(s) with equal probability
where

P1(s) =
1

(s+ a1)(s+ a2)
, P2(s) =

1

s2 + 2ζωs+ ω2

with a1, a2, ζ ∈ unif(0, 1), ω ∈ unif(0, 1).
• Family II: All plants have two stable or unstable
poles, with each plant drawn with equal probability
from

P3(s) =
1

(s+ a1)(s+ a2)
, P4(s) =

1

s2 + 2ζωs+ ω2

with a1, a2, ζ ∈ unif(−1, 1), ω ∈ unif(0, 1).
• Family III: All plants have three stable or unstable
poles, with each plant drawn with equal probability
from

P5(s) =
1

(s+ a1)(s+ a2)(s+ a3)

P6(s) =
1

(s2 + 2ζωs+ ω2)(s+ a3)

with a1, a2, a3, ζ ∈ unif(−1, 1), ω ∈ unif(0, 1).

20 sets of plants are randomly generated for each family.
For the LQG controllers, the design parameters are Q1c =
CTC, and ρ = 0.01tr (Q1c). The task execution times
were randomly generated from C1 ∈ unif(0.09, 0.11), C2 ∈
unif(0.11, 0.13), C3 ∈ unif(0.13, 0.15). Task 1 has the
highest priority, while task 3 has the lowest priority.

The optimization procedure to assign initial non-harmonic
periods is the same as in the previous section. The overall
LQG costs are evaluated for delay-aware LQG, stochastic
LQG co-design, periodic LQG co-design, harmonic LQG
co-design. The overall results, averaged over 20 generated
plant sets for each family, are summarized in Table 2.

The delay-aware LQG costs are normalized to 1 for each
plant set, then each cost for stochastic LQG, periodic
LQG, harmonic LQG, is normalized and compared with
corresponding delay-aware LQG cost. The box plots are
shown in Figs. 3, 4 and 5.

Table 2. Average total costs in the randomly
generated examples

Family I II III

Delay-aware LQG 3.35 11.93 34.87

Stochastic LQG 2.92 5.98 22.10

Periodic LQG 2.88 6.48 21.06

Harmonic LQG 2.03 3.89 13.84

In Family III, the likelihood that the plants are unstable,
and, hence, more sensitive to delays and delay jitter, is
larger, and therefore the total cost is considerably higher
than for Family I and II. The values of stochastic LQG and
periodic LQG are lower than delay-aware LQG values. The
reason for this is that more information about delay are
taken into account when designing controllers. The best
results are obtained for the harmonic tasks with offsets.
In this case the increase in cost caused by the period
perturbation is small compared to the decrease in cost
caused by the smaller and jitter-free delays.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Stochastic LQG Periodic LQG Harmonic LQG

Fig. 3. Normalized costs for Family I

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Stochastic LQG Periodic LQG Harmonic LQG

Fig. 4. Normalized costs for Family II

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Stochastic LQG Periodic LQG Harmonic LQG

Fig. 5. Normalized costs for Family III



5. CONCLUSION

Several recent results on LQG-based control and schedul-
ing co-design for real-time control systems have been pre-
sented and compared. The methods differ in the way that
they treat the (possibly time-varying) scheduling-induced
control delays. The delay-aware method only considers an
approximation of the mean delay. The stochastic method
treats the delay as a sequence of independent and identi-
cally distributed random variables. The periodic method
looks at the deterministic delay pattern over a hyperpe-
riod. Finally, the harmonic method eliminates the time
variability all together by enforcing harmonic task periods.
The evaluation showed that the last method produces the
best results for randomly generated design examples. Elim-
inating the jitter allows for standard LQG design software
to be used, which is a further benefit of the harmonic
approach.

Throughout the paper several simplifying assumptions
have been made. It was assumed that there is no sampling
jitter, that all execution times are constant, and that the
task priorities are fixed and given. All of these assumptions
may be relaxed, but this leads to more complicated co-
design problems. The issue of varying execution times has
been treated in (Xu et al., 2015), leading to a periodic–
stochastic LQG formulation.

Overall, the issue of robustness deserves more attention,
both from a scheduling and a control point of view. The
methods in the paper are based on a standard quadratic
cost function that only captures the mean control perfor-
mance. What happens to the total system performance
in the worst case, when there are unmodeled tasks in
the system, when execution times are uncertain or time-
varying, or when the plant models are imperfect?

REFERENCES

Aminifar, A., Eles, P., Peng, Z., and Cervin, A. (2013).
Control-quality driven design of cyber-physical systems
with robustness guarantees. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2013,
1093–1098.

Åström, K.J. and Wittenmark, B. (1997). Computer-
Controlled Systems. Theory and Design. Prentice Hall,
third edition.

Bini, E. and Cervin, A. (2008). Delay-aware period
assignment in control systems. In Proceedings of the
29th IEEE Real-Time Systems Symposium, 291–300.
Barcelona, Spain.

Bonifaci, V., Marchetti-Spaccamela, A., Megow, N., and
Wiese, A. (2013). Polynomial-time exact schedulability
tests for harmonic real-time tasks. In 34th Real-Time
Systems Symposium (RTSS), 236–245.

Bund, T. and Slomka, F. (2013). A delay density model
for networked control systems. In Proceedings of the
21st International conference on Real-Time Networks
and Systems, 205–212.

Cervin, A., Henriksson, D., Lincoln, B., Eker, J., and
Årzén, K.E. (2003). How does control timing affect
performance? IEEE Control Systems Magazine, 23(3),
16–30.

Eker, J., Hagander, P., and Årzén, K.E. (2000). A
feedback scheduler for real-time controller tasks. Control
Engineering Practice, 8(12), 1369–1378.

Goswami, D., Lukasiewycz, M., Schneider, R., and
Chakraborty, S. (2012). Time-triggered implementa-
tions of mixed-criticality automotive software. In Pro-
ceedings of the Conference on Design, Automation and
Test in Europe, 1227–1232. Dresden, Germany.

Jones, D.R., Perttunen, C.D., and Stuckman, B.E. (1993).
Lipschitzian optimization without the lipschitz con-
stant. Journal of Optimization Theory and Applications,
79(1), 157–181.

Lehoczky, J.P., Sha, L., and Ding, Y. (1989). The rate-
monotonic scheduling algorithm: Exact characterization
and average case behavior. In Proceedings of the 10th

IEEE Real-Time Systems Symposium, 166–171. Santa
Monica (CA), U.S.A.

Lincoln, B. and Cervin, A. (2002). Jitterbug: A tool for
analysis of real-time control performance. In Proceedings
of the 41st IEEE Conference on Decision and Control.
Las Vegas, NV U.S.A.

Nasri, M., Fohler, G., and Kargahi, M. (2014). A frame-
work to construct customized harmonic periods for real-
time systems. In 26th Euromicro Conference on Real-
Time Systems (ECRTS), 211–220.

Nilsson, J., Bernhardsson, B., and Wittenmark, B. (1998).
Stochastic analysis and control of real-time systems with
random time delays. Automatica, 34(1), 57–64.

Samii, S., Cervin, A., Eles, P., and Peng, Z. (2009a). Inte-
grated scheduling and synthesis of control applications
on distributed embedded systems. In Proc. Design,
Automation & Test in Europe (DATE).

Samii, S., Eles, P., Peng, Z., and Cervin, A. (2009b).
Quality-driven synthesis of embedded multi-mode con-
trol systems. In Design Automation Conference, 2009.
DAC’09. 46th ACM/IEEE, 864–869.

Seto, D., Lehoczky, J.P., Sha, L., and Shin, K.G. (1996).
On task schedulability in real-time control systems.
In Proceedings of the 17th IEEE Real-Time Systems
Symposium, 13–21. Washington, DC, USA.

Tanasa, B., Bordoloi, U.D., Eles, P., and Peng, Z. (2015).
Probabilistic response time and joint analysis of periodic
tasks. In Proceedings of the 27th Euromicro Conference
on Real-Time Systems. Lund, Sweden.

Xu, Y., Årzén, K.E., Bini, E., and Cervin, A. (2014).
Response time driven design of control systems. In
Proceedings of the 19th World Congress of the Inter-
national Federation of Automatic Control, 6098–6104.
Cape Town, South Africa.

Xu, Y., Årzén, K.E., Cervin, A., Bini, E., and Tanasa,
B. (2015). Exploiting job response-time information
in the co-design of real-time control systems. In 21st
International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 247–
256.

Xu, Y., Cervin, A., and Årzén, K.E. (2016). Harmonic
scheduling and control co-design. In 22nd Int’l Confer-
ence on Embedded and Real-Time Computing Systems
and Applications (RTCSA).

Zhang, F., Szwaykowska, K., Wolf, W., and Mooney, V.
(2008). Task scheduling for control oriented require-
ments for cyber-physical systems. In IEEE Real-Time
Systems Symposium, 2008, 47–56.


